Developmental Cell, Volume 57

Supplemental information

The imprinted *lgf2-lgf2r* axis is critical

for matching placental microvasculature

expansion to fetal growth

Ionel Sandovici, Aikaterini Georgopoulou, Vicente Pérez-García, Antonia Hufnagel, Jorge López-Tello, Brian Y.H. Lam, Samira N. Schiefer, Chelsea Gaudreau, Fátima Santos, Katharina Hoelle, Giles S.H. Yeo, Keith Burling, Moritz Reiterer, Abigail L. Fowden, Graham J. Burton, Cristina M. Branco, Amanda N. Sferruzzi-Perri, and Miguel Constância

SUPPLEMENTAL INFORMATION

FIGURE S1

Figure S1. Specificity and efficiency of *Igf2* deletion in fetal tissues and feto-placental endothelial cells by *Meox2*^{Cre}. Related to Figure 2.

(A) Schematic representation of the floxed *Igf2* allele. PO-P3 are alternative promoters. Protein-coding exons (4–5), flanked by loxP sites (green triangles), are excised upon Cre-loxP mediated recombination. (B) Representative confocal microscopy of a placental frozen section at E16 of

gestation, double transgenic for Meox2^{Cre} and Ai9(RCL-tdT) reporter. The Meox2^{Cre} is not expressed in the syncytiotrophoblast layers, as demonstrated by the lack of immunostaining overlap between the tomato protein (red) and MCT4 (a marker of the syncytiotrophoblast layer II, facing the feto-placental capillaries) or MCT1 (marker of the syncytiotrophoblast layer I, facing the maternal blood spaces). Scale bars are 1 mm (left panel) and 50 µm (middle and right panels). (C) Flow cytometry analysis shows that the majority (>80%) of *Iqf2*^{EpiKO} mutant FPEC (CD31⁺/CD41⁻ cells) express YFP (activated by Meox2^{Cre} mediated deletion of the Rosa26 ^{fl}STOP^{fl}YFP STOP cassette), thus demonstrating good efficiency of Meox2-Cre in these cells (n=9-18 per genotype). (D) Igf2 mRNA in situ hybridization (ISH) in E14 control and mutant fetuses. Dark blue indicates lgf2 mRNA, with nuclei marked in red. Insets illustrate efficient Igf2 deletion in the liver (Lv); arrows – small pockets of cells with incomplete Igf2 deletion (mosaic activity of Meox2^{Cre}). Scale bars are 6 mm (left) and 100 µm (right). (E) Igf2 mRNA ISH in E14 control and mutant placentae. Insets show reduced *lqf2* mRNA signal in the placental labyrinthine zone (Lz) of mutants, due to its deletion from FPEC, while Igf2 expression is unchanged in the junctional zone (Jz). Scale bars are 4 mm (left) and 500 µm (right). (F) Western blot analysis of pro-IGF2 (18 kDa) in cell lysates from whole fetuses (F), whole placenta (PL) micro-dissected Lz and Jz at E14, and corresponding data quantification shown as graphs (n=5 per genotype). SOD1 (19 kDa) was used as loading control. (G) Efficiency of Iqf2 deletion evaluated by qRT-PCR in fluorescence-activated sorted FPEC (n=12 per genotype). (H) Representative immunofluorescence confocal microscopy at E16 showing near complete absence of IGF2 protein within CD31+ feto-placental endothelial cells in *Igf2*^{EpiKO} mutants compared to littermate controls. FC – fetal capillaries, LT – labyrinthine trophoblast. Scale bars are $50\mu m$. (I) Fetal and placental growth kinetics are not altered in $Meox2^{Cre/+}$ carriers (maternal inheritance) (n=8-30 conceptuses per genotype at each developmental stage). For all graphs, data is shown as individual values or averages \pm SD; ** P < 0.01, *** P < 0.001 calculated by two-way ANOVA plus Sidak's multiple comparisons tests in (C) or Mann Whitney tests in (F) and (G).

Figure S2

Figure S2. Impact of *Igf2*^{EpiKO} and *Igf2*^{ECKO} deletions on feto-placental capillary expansion during gestation. Related to Figure 2.

(A) Parameters of feto-placental capillaries (FC) measured by stereology in $Igf2^{EpiKO}$ mutant ($Igf2^{+/fl}$; $Meox2^{Cre/+}$) versus control (C – $Igf2^{+/fl}$) placentae (n=6 per genotype at each developmental stage). (B) Parameters of feto-placental capillaries (FC) measured by stereology in $Igf2^{ECKO}$ mutant ($Igf2^{+/fl}$; $Tek^{Cre/+}$) versus control (C – $Igf2^{+/fl}$) placentae (n=5–7 per genotype at each developmental stage). For all graphs, data is shown as averages ± SD; * P < 0.05, *** P < 0.001 calculated by two-way ANOVA plus Sidak's multiple comparisons tests.

Figure S3. Specificity and efficiency of *Igf2* deletion in the endothelium by *Tek*^{Cre} and in the hematopoietic lineage by *Vav*^{iCre}. Related to Figure 2.

(A) Representative confocal microscopy of frozen placental sections from a double transgenic for TeK^{Cre} and Ai9(RCL-tdT) reporter at E16 of gestation. The TeK^{Cre} is not expressed in the syncytiotrophoblast layers, as demonstrated by the lack of immunostaining overlap between the

tomato protein (red) and MCT4 (Syn-TII layer) or MCT1 (Syn-TI layer). Scale bars are 50 μm. (B) Western blot analysis of pro-IGF2 (18 kDa) in cell lysates from Lz micro-dissected at E16 and corresponding data quantification (n=3 per genotype). SOD1 (19 kDa) was used as internal control for loading. (C) Efficiency of Igf2 deletion evaluated by qRT-PCR in fluorescence-activated sorted FPEC (n=5–7 per genotype). (**D**) Flow cytometry analysis shows that the majority (>80%) of $Igf2^{ECKO}$ mutant FPEC express YFP, thus demonstrating good efficiency of TeK^{Cre} in these cells (n=5–11 per genotype). (E) Fetal and placental growth kinetics are not altered in TeK^{Cre/+} carriers (maternal inheritance) at E19 (n=13-15 conceptuses per genotype from 4 independent litters). (F) Representative double immunostainings for laminin (marking feto-placental capillaries) and YFP in E19 Igf2^{HCKO} mutant and littermate control (C) placentae. YFP expression is activated in cells of hematopoietic lineage by deletion of the floxed STOP cassette within the Rosa26^{fl}STOP^{fl}YFP reporter construct. Scale bars are 50µm. (G) Gating strategy used to isolate cells of hematopoietic lineage from E13 placentae by FACS (top) and efficiency of *Igf2* deletion evaluated by qRT-PCR (bottom). The CD34⁺/c-kit⁺ population gated in the top left panel was subsequently used to isolate Lin⁺/Sca1⁻ hematopoietic cells (top right panel). Bottom left: more than 90% of CD34⁺/c-kit⁺/Lin⁺/Sca1⁻ cells are positive for YFP, indicating efficient activity of Vav^{iCre} in the hematopoietic cells. Bottom right: measurement of mRNA levels at E13 by qRT-PCR indicates overall low levels of *Igf2* expression in the hematopoietic lineage (approximately one order of magnitude lower than in CD34⁻/c-kit⁻ cells), as well as efficient deletion of *Iqf2* in hematopoietic cells of Igf2^{HCKO} mutants compared to littermate controls (n=4-8/group). (H) Fetal, placental, and Lz growth kinetics are not altered in Igf2^{HCKO} mutants compared to controls (n=11–25 conceptuses from n=5-6 litters for each developmental stage). (I) Left: representative double immunostaining for lectin (brown, marking feto-placental capillaries) and cytokeratin (blue, marking the labyrinthine trophoblast) in E19 placental sections of $lgf2^{HCKO}$ mutants and littermate controls. Right: the relative volume fractions occupied by the three main labyrinthine constituents (FC – fetal capillaries, MBS – maternal blood spaces and LT – labyrinthine trophoblast) are not altered in $Igf2^{HCKO}$ mutants compared to controls at E19 (n=4-7 samples/group). For all graphs, data is shown as individual values or averages ± SD in (B), (D), (E), (G) – bottom left and (I), SEM in (C) and (G) – bottom right, or 95% confidence intervals (95%CI) in (H); N.S. – statistically non-significant; * P < 0.05, ** P < 0.01 and *** P < 0.001 calculated by Mann Whitney tests in (B), (C), (E) and (G) – bottom left, twoway ANOVA plus Sidak's multiple comparisons tests in (D) and (I), Brown-Forsythe and Welch ANOVA tests in (G) – bottom right and mixed effects model in (H).

Figure S4. Fetus-derived *Igf2* deletion (*Igf2*^{EpiKO}) alters gene expression in placental Lz and FPEC survival and proliferation. Related to Figure 3.

(A) Volcano plot depicting differentially expressed genes (DEG) identified in E19 Lz by expression microarray analysis (n=6 samples per genotype, all from male conceptuses). (B) Biological validation using qRT-PCR for 13 DEGs (n=6–7 samples per genotype), normalized against three housekeeping

genes (Sdha, Gapdh and Pmm1). (C) The reduction in proliferation seen in FEPC (Fig. 3e) is not observed in non-endothelial cells from Lz measured by flow cytometry analysis after EdU injections (16 hours exposure; n=4–11 per group). (D) Representative confocal microscopy image of FPEC proliferation in control (panel i) versus mutant (panel ii) E16 placentae by immunofluorescent staining for CD31 combined with Click-iT EdU imaging. Arrows point towards FPEC nuclei that incorporated EdU in vivo during the 16 hours exposure to the thymidine analogue. Scale bar is 50 μ m. The accompanying graph shows data quantification based on counting between 250 to 600 FPEC per sample (n=6 placentae/genotype). (E) Top row: CD31 staining in control (C) and Igf2^{EpiKO} mutant E16 Lz illustrating abnormally large FCs lacking endothelial cells (i) or obstructed capillaries surrounded by fragmented and disorganized FPEC (ii, iii). Scale bars are 50µm. Bottom row: methylene blue-stained E16 Lz resin sections (arrows indicate a FPEC in C and thrombotic FC in mutants: i-iii). Scale bars are 30µm. The graph on the right side shows the quantification of percentage of Lz areas with disorganized pattern of FC. Measurement of total Lz and abnormal Lz areas was performed using HALO image analysis software (n=6 samples per genotype at each developmental stage). (F) Representative transmission electron microscopy (TEM) micrographs showing intact feto-maternal barriers separating fetal capillaries (FC) from maternal blood spaces (MBS) in both controls (C) and Igf2^{EpiKO} mutants, at E16. Scale bars are 2µm (n=3 biological replicates per group with 6-15 micrographs/sample). (G) TEM micrographs from E16 *Iqf2^{EpikO}* mutants. White arrows point towards an apoptotic endothelial cell (panel i) and a blocked/thrombotic capillary with apoptotic endothelial lining (panel ii). In both cases the overlying trophoblast is intact. Scale bars are 2µm. (H) qRT-PCR analysis of genes expressed in Syn-TI in micro-dissected Lz in mutants versus controls (n=6–8 samples per group for each developmental time point). For all graphs, data is presented as averages or individual values \pm SD; N.S. – non-significant, * P < 0.05, ** P < 0.01, *** P < 0.001 by two-way ANOVA plus Sidak's multiple comparisons tests in (C), (D) and (H) or Mann Whitney test in (E).

Figure S5

Figure S5. Experimental design used for FPEC analysis by flow cytometry and FPEC isolation by FACS. Related to Figures 4 and 5.

(A) Gating strategy used for flow cytometry analysis of CD45 expression (marker of all differentiated hematopoietic cells, except erythrocytes and plasma cells) within FPEC (defined as CD31⁺/CD41⁻ cells). The example shown is from an E19 sample. (B) Statistical analysis of CD45+, CD31⁺/CD41⁻ (FPEC) and CD45⁺/CD31⁺/CD41⁻ cells at E14, E16 and E19. At all three developmental stages, the proportion of CD45⁺ within the FPEC (CD31⁺/CD41⁻) is very low. The graph show individual data points with averages and SD (n=10-12 samples from two litters at each developmental stage). *** p < 0.001 by two-way ANOVA with Tuckey's multiple comparisons test. (C) Gating strategy used for FPEC and YFP analysis by flow cytometry and FPEC isolation by FACS. Mutant FPEC are also positive for YFP (activated by Cre mediated deletion of the *Rosa26* ^{fl}STOP^{fl}YFP STOP cassette), thus providing an internal control for Cre efficiency in each biological sample. (D) RNA-seq analysis of marker genes expressed in FPEC or non-endothelial cells isolated by FACS from E16 control Lz. The graph shows the relative enrichment in

FPEC of known markers of endothelial cells (black) and depletion of marker genes expressed by other cell types found in the Lz (grey): pericytes (*Acta2*), sinusoidal trophoblast giant cells (*Ctsq*, *Prl2b1*, *Prl8a9*), parietal trophoblast giant cells (*Prl3b1*) or spongiotrophoblast cells (*Tpbpa*, *Tpbpb*).

Figure S6. Specificity and efficiency of *Igf2*^{TrKO}, *Igf2*^{UbKO} and *H19*-DMD^{EpiKO} deletions. Related to Figure 4.

(A) Representative confocal microscopy on frozen sections from a double transgenic Ai9(RCL-tdT), $Cyp19^{Cre}$ fetus and corresponding placenta, at E16, demonstrating high Cre activity (red) in placenta and weak activity in embryonic skin and eye lenses. Right panel: $Cyp19^{Cre}$ is only active in the trophoblast cells in Lz, as demonstrated by lack of overlapping between the tomato protein (red) and laminin (green) expressed in FPEC. Scale bars are 1 mm (left and middle panel) or 50 µm (right panel). (B) Efficiency of *Igf2* deletion by $Cyp19^{Cre}$ in *Igf2*^{TrKO} mutants (*Igf2*^{+/fl}; $Cyp19^{Cre/+}$) versus controls (*Igf2*^{+/fl}) evaluated using qRT-PCR in micro-dissected placental Jz layer (n=20–31 samples per genotype). Only 23-29% of all *Igf2*^{TrKO} mutants have high levels of deletion (>80%). (C) Placenta growth restriction precedes fetal growth restriction in *Igf2*^{TrKO} mutants (n=4–9 litters at each developmental stage; only mutants with >80% deletion were included in this analysis). (D) Flow cytometry analysis showing that *Cyp19*^{Cre} is not expressed in FPEC (note lack of YFP expression in *Igf2*^{TrKO} mutants) (n=6–21 per genotype). (E) Representative CD31 immunostainings in E16 control and *Igf2*^{TrKO} Lz (scale bars are 100µm) showing no impact of the deletion on FPEC numbers. (F) Severe fetal and placental growth

restriction in $Igf2^{UbKO}$ ($Igf2^{+/fl}$; $CMV^{Cre/+}$) mutants (n=3-8 litters at each developmental stage). (G) Flow cytometry analysis shows that the majority (>80%) of H19-DMD^{EpiKO} ($Meox2^{+/Cre}$; H19-DMD^{fl/+}) mutant FPEC express YFP, demonstrating good efficiency of $Meox2^{Cre}$ in these cells (n=9–15 per genotype). (H) Fetal and placental overgrowth in H19-DMD^{EpiKO} mutants (n=3-4 litters at each developmental stage). For all graphs, data is shown as averages or individual values ± SD in (B), (D) and (G) or 95% confidence intervals (95%CI) in (C), (F) and (H). N.S. – non-significant, * P < 0.05; ** P < 0.01; *** P < 0.001 calculated by two-way ANOVA plus Sidak's multiple comparisons tests in (B), (D), and (G) and mixed effects model in (C), (F) and (H).

Figure S7

Figure S7. Conditional deletion of *Igf1r* from endothelium using *Tek*^{Cre}. Related to Figure 7.

(A) qRT-PCR analysis of *Igf1r* mRNA levels in primary FPEC isolated by FACS from E19 Lz of *Igf1r*^{ECKO} (*Igf1r*^{fl/fl}; *Tek*^{+/Cre}) mutants versus *Igf1r*^{fl/fl} controls. (B) Flow cytometry analysis showing that the majority (>80%) of *Igf1r*^{ECKO} mutant FPEC express YFP, demonstrating good efficiency of *Tek2*^{Cre} in these samples (n=5–11 per genotype). Fetal, placental (C) and Lz (D) growth kinetics are not altered in *Igf1r*^{ECKO} mutants compared to controls (n=6–18 conceptuses from n=3-7 litters for each developmental stage). (E) Total numbers and proportions of FPEC/Lz measured by flow cytometry (n=5–11 per genotype). For all graphs, data is shown as individual values or averages ± SD in (A), (B) and (E) or 95%CI in (C) and (D); N.S. – non-significant, * *P* < 0.05, ** *P* < 0.01, *** *P* < 0.001 by Mann-Whitney tests in (A) or two-way ANOVA plus Sidak's multiple comparisons tests in (B) and (E) or mixed effects model in (C) and (D).

Table S4. Angiostatic and pro-angiogenic factors produced by feto-placental endothelial cells under the control of fetus-derived IGF2. Related to Figure 5.

Protein	Expression	Function (cellular	Role in angiogenesis	PMID
	change	compartment)		
CXCL10	Up-regulated	Cytokine (extracellular		7537965,
		space)		7540647,
				8611715,
				9064358,
			angiostatic	10914483
IL15	Up-regulated	Cytokine (extracellular		28379958
		space)	angiostatic	
THBS1	Up-regulated		angiostatic	22553494
ADAMTS1	Up-regulated	Peptidase (extracellular		12716911,
		space)		12814950,
				17082774,
			angiostatic	22776012
APCDD1	Up-regulated	Membrane-bound		29154126
		glycoprotein (cellular		
		membrane)	angiostatic	
IFIT2	Up-regulated	Interferon-induced		26515391
		protein (cytoplasm)	angiostatic	
IFI16	Up-regulated	Transcription regulator		14729471,
		(nucleus)	angiostatic	21488755
CCL2	Up-regulated	Cytokine (extracellular	pro-angiogenic/	15516694,
		space)	angiostatic if prolonged	16888027,
			expression	23329645
EGR1	Up-regulated	Transcription regulator	pro-angiogenic/	10339488,
		(nucleus)	angiostatic if prolonged	12872165,
			expression	16818645,
				27041221
KLF4	Up-regulated	Transcription regulator	pro-angiogenic/	24599951,
		(nucleus)	angiostatic if prolonged	27431648,
			expression	26823670
GDF15	Up-regulated	Growth factor		21773947,
		(extracellular space)	pro-angiogenic	28831101
HBEGF	Up-regulated	Growth factor	pro-angiogenic	15289334,
		(extracellular space)		18925469
SERPINE1	Up-regulated	Protease inhibitor	pro-angiogenic	26180080
		(extracellular space)		
PLAT	Up-regulated	Peptidase (extracellular	pro-angiogenic	24601228
		space)		
ISG20	Up-regulated	Exonuclease (nucleus)	pro-angiogenic	29195126
HEY2	Down-regulated	Transcription regulator	pro-angiogenic	15107403,
		(nucleus)		16219802,
				22421041

Table S5: Mouse strains and crosses. Related to STAR Methods.

Paternal genotype	Maternal genotype	Offspring/embryo	Related to Figure
laf2 ^{+/+}	laf2 ^{+/+}	laf2 ^{+/+}	Figure 1
·9)-	.9)-	.9)-	Figure 21
			Figure 6
			Figures S5A, S5B, S5D
		C (<i>lqf2</i> ^{+/fl} ;	Figures 2B, 2C, 2D, 2J
lqf2 ^{fl/fl} ;	Meox2 ^{+/Cre}	Rosa26YFP-stop ^{fl/fl} ;	Figure 3
Rosa26YFP-stop ^{fl/fl}		Meox2 ^{+/+})	Figure 4A
		$Iaf2^{EpiKO}$ ($Iaf2^{+/fl}$;	Figures 5A, 5C
		Rosa26YFP-stop ^{+/fl} ;	Figures S1C, S1D, S1E,
		Meox2 ^{Cre/+})	S1F, S1G, S1H
			Figure S2A
			Figure S4
			Figure S5C
		C (<i>lgf2</i> ^{+/fl} ;	Figures 2F, 2G, 2H, 2J
Igf2 ^{fl/fl} ;	Tek ^{+/Cre}	<i>Rosa26YFP</i> -stop ^{fl/fl} ;	Figure 4B
<i>Rosa26YFP</i> -stop ^{fl/fl}		<i>Tek</i> ^{+/+})	Figure 5D
		$Igf2^{ECKO}$ ($Igf2^{+/fl}$;	Figure S2B
		<i>Rosa26YFP</i> -stop ^{+/fl} ;	Figures S3B, S3C, S3D
		Tek ^{Cre/+})	
		C (<i>lgf2</i> ^{+/fl} ;	Figures S3F, S3G, S3H,
Igf2 ^{fl/fl} ;	Vav ^{+/iCre}	<i>Rosa26YFP</i> -stop ^{fl/fl} ;	S3I
Rosa26YFP-stop ^{fl/fl}		Vav ^{+/+})	
		$Igf2^{HCKO}$ ($Igf2^{+/fl}$;	
		<i>Rosa26YFP</i> -stop ^{+/fl} ;	
		Vav ^{iCre/+})	
lgf2 ^{+/+}	Meox2 ^{+/Cre}	Igf2 ^{+/+} ; Meox2 ^{Cre/+}	Figure S1I
		Igf2 ^{+/+} ; Meox2 ^{+/+}	
Ai9(RCL-tdT) ^{fl/fl}	Meox2 ^{+/Cre}	Ai9(RCL-tdT) ^{+/fl} ; Meox2 ^{Cre/+}	Figure S1B
		Ai9(RCL-tdT) ^{+/fl} ; Meox2 ^{+/+}	
Ai9(RCL-tdT) ^{fl/fl}	Tek ^{+/Cre}	Ai9(RCL-tdT) ^{+/fl} ; Tek ^{Cre/+}	Figures 2E, S3A
		Ai9(RCL-tdT) ^{+/fl} ; Tek ^{+/+}	
Igf2 ^{+/+}	Tek ^{+/Cre}	Igf2 ^{+/+} ; Tek ^{Cre/+}	Figure S3E
0.10	10	Igf2 ^{+/+} ; Tek ^{+/+}	
<i>lgf2</i> ^{ti/ti} ;	Cyp19 ^{+/Cre}	C (<i>lgf2</i> ^{+/tl} ;	Figure 4C
Rosa26YFP-stop ^{11/11}		Rosa26YFP-stop ^{+/tl}	Figures S6B, S6C, S6D,
		<i>Cyp19</i> ^{+/+})	S6E
		$Igf2^{1rko}$ ($Igf2^{+/ti}$;	
		Rosa26YFP-stop ^{+/TI}	
51/61		<i>Cyp19</i> ^{Cre/+})	
Ai9(RCL-tdT) [™]	Cyp19 ^{+/Cre}	Ai9(RCL-tdT) ^{+/n} ; Cyp19 ^{cre/+}	Figure S6A
. c=f1/f1		Ai9(RCL-tdT) ^{+/11} ; Cyp19 ^{+/+}	
<i>lgf2</i> ^{11/11} ;	CMV ^{+/Cre}	C (<i>Igf2</i> ^{+/11} ;	Figure 4D
Rosa26YFP-stop ^{1/11}		Rosa26YFP-stop ^{+/11}	Figure S6F
		$CMV^{+/+})$	4
		<i>Igf2</i> ^{UDKU} (<i>Igf2</i> ^{+/II} ;	

		<i>Rosa26YFP</i> -stop ^{+/fl}	
		CMV ^{Cre/+})	
Meox2 ^{+/Cre}	H19-DMD ^{fl/fl} ;	C (H19-DMD ^{fl/+} ; Rosa26YFP-	Figure 4E
	<i>Rosa26YFP</i> -stop ^{fl/fl}	stop ^{fl/+} ; <i>Meox2</i> ^{+/+})	Figures S6G, S6H
		H19-DMD ^{EpiKO} (H19-	
		DMD ^{fl/+} ; Rosa26YFP-stop ^{fl/+} ;	
		Meox2 ^{+/Cre})	
Tek ^{+/Cre}	Igf2r ^{fl/fl} ;	C (<i>Igf2r</i> ^{fl/+} ;	Figures 7A, 7B, 7C, 7D,
	<i>Rosa26YFP</i> -stop ^{fl/fl}	<i>Rosa26YFP</i> -stop ^{fl/+} ; <i>Tek</i> ^{+/+})	7E, 7F, 7G
		Igf2r ^{ECKO} (Igf2r ^{fl/+} ;	
		<i>Rosa26YFP</i> -stop ^{fl/+} ; <i>Tek</i> ^{+/Cre})	
lgf1r ^{+/fl} ;	lgf1r ^{fl/fl} ;	C (<i>lgf1r</i> ^{fl/fl} ;	Figure S7
<i>Rosa26YFP</i> -stop ^{+/fl} ;	<i>Rosa26YFP</i> -stop ^{fl/fl}	<i>Rosa26YFP</i> -stop ^{fl/fl or +/fl} ;	
Tek ^{Cre/+}		Tek ^{+/+})	
		<i>lgf1r</i> ^{ECKO} (<i>lgf1r</i> ^{fl/fl} ;	
		<i>Rosa26YFP</i> -stop ^{fl/fl or +/fl} ;	
		Tek ^{+/Cre})	
		Het deletions (Igf1r ^{+/fl} ;	
		<i>Rosa26YFP</i> -stop ^{fl/fl or +/fl} ;	
		<i>Tek</i> ^{+/Cre}) – not used	

Table S6. Primers used for genotyping or qRT-PCR. Related to STAR Methods.

Primers used for genotyping by PCR						
Strain	Primer	Sequence	Primer	Sequence	Amplicon (bp)	
lgf2 ^{fl/fl}	F	TTACAGTTCAAAGCCACCA	RW RD	GCCAAAGAGATGAGAAGCAC	WT: 324	
				GCCAAACACAGTAAAAAGAA	del: 384	
Rosa26	F	ΤΩΤΤΑΤΓΑΩΤΑΑΘΟΘΑΘΟ	R-W/T		W/T· 239	
^{fl} STOP ^{fl} YFP		T	R-fl	AAGACCGCGAAGAGTTTGT	fl: 301	
<i>Meox2</i> -Cre	F	GGACCACCTTCTTTTGGCT TC	R-WT	AAGATGTGGAGAGTACGGGG TAG	WT: 410	
			R-Cre	CAGATCCTCCTCAGAAATCAG C	Cre: 311	
<i>Tek</i> -Cre	F	TGTAAACAAGAGCGAGTG	R-WT	AGAGAATGGCGAGAAGTCAC	WT: 240	
		GA	R-Cre	TGAGTGAACGAACCTGGTCG	Cre: 610	
Vav-iCre	F-WT	ATGTCTCCAATCCTTGAAC ACTG	R-WT	GCAGTGGGAGAAATCAGAAC C	WT: 254	
	F-Vav	GACTACCTCCTGTACCTGC AAG	R-Vav	ACTCTGATTCTGGCAATTTCG G	Cre: 329	
<i>Cyp19</i> -Cre	F	GACCTTGCTGAGATTAGAT C	R	AGAGAGAAGCATGTTTAGCTG G	Cre: 545	
CMV-Cre	F	CGAGTGATGAGGTTCGCA AG	R	TGAGTGAACGAACCTGGTCG	Cre: 390	
H19-DMD ^{fl/fl}	F	CAGGCCTGTCCTCACCTGA AC	R	GCCAGCTTGCCTTGGCAACCC CTT	WT: 387 fl: 520	
lgf2r ^{fl/fl}	F	CCTTCCCTCCAGGCCGTTA	R	GGTGAGGTCTCCATCTGAGTA CC	WT: 225 fl: 259	
lgf1r ^{fl/fl}	F	CTTCCCAGCTTGCTACTCT AGG	R	CAGGCTTGCAATGAGACATGG G	WT: 124 fl: 220	
		Primers used	for gRT-F	PCR	_	
Gene	Primer	Sequence	Primer	Sequence	Amplicon (bp)	
lgf2	F	AGTCCGAGAGGGACGTGT CTA	R	CGGACTGTCTCCAGGTGTCAT	102	
Angpt1	F	GAAGCAACTTCTCAACAG ACA	R	TTCTTTGTGTTTTCCCTCCATT	100	
Angpt2	F	CTTCTACCTCGCTGGTGAA GAG	R	GCTAAAATCACTTCCTGGTTG G	106	
Tek	F	GGAGTGGAGTGAAGAACT AGG	R	GTGGAGTCAGTGATGTTGGA GA	93	
Fas	F	CTGCAGACATGCTGTGGA TCT	R	GCCTCCTCAGCTTTAAACTCTC	114	
Ctss	F	AGAGACCCTACCCTGGACT ACC	R	GATTCTTTTCCCAGATGAGAC G	109	
Spp1	F	ACCATGAGATTGGCAGTG ATTT	R	GAGCTGCCAGAATCAGTCACT T	83	
Tnnc1	F	GATCTCTTCCGCATGTTTG AC	R	TCAATGTCATCTTCCGTAATG G	107	
Myocd	F	ATTCCTGTGCACACTGCTG TAA	R	GAGCTTCTTCACCTTTGGTTTG	96	
Apobec1	F	GCACACCTGAGGAAACAA AGTC	R	CAGAGTGGGATCAACAGCTAC A	134	
Cd72	F	CCAAGGAGAACCTGAAAA CTGA	R	GCACCTTTCCTGATATGGAAT C	146	

Dusp14	F	CTCCCTGGAAATCCTTAGC	R	ACCTCTGGAGCTCATGAAGAT	133
Bmp10	F	CTCTACAACAAATTCGCCA	R	GAGCCCATTAAAAGTGACTGG	108
lgfbp3	F	CAGGCAGCCTAAGCACCT AC	R	GGAACTTGGAATCGGTCACTC	135
Adgre1	F	TAGCTGCTCTTCTGATACC CTC	R	CCAACATTCATCTTGTCCCCTC	145
Gcm1	F	CCGCAAGATTTACCTGAGA CC	R	GAATAAGCTTCAGGGGTCCAT T	98
Syna	F	AGCCCTCTCTGGACAATAT TCA	R	CAAGGTGGGAGAAGATATTT GG	89
Synb	F	CAGCTGACACCCTCATTAA ACA	R	ATCCAGAAATGGGAATGAAG TG	122
Slc16a1	F	TCGCAGCTTCTTTCTGTAA CAC	R	TCATAGTCAGAGCTGGGTTCA A	102
Slc16a3	F	TGCAGAAGCATTATCCAG ATCTAC	R	GTATCGATTGAGCATGATGAG G	99
Ly6e	F	ACATGAGAGTCTTCCTGCC TGT	R	TTCTGATCGGTACATGAGAAG C	91
Adamts1	F	CAAAGGACAGGTGCAAGC TC	R	TTGCACACAGACAGAGGTAG AG	119
Cxcl10	F	CGTCATTTTCTGCCTCATCC TG	R	TGATTTCAAGCTTCCCTATGGC	134
Thbs1	F	ATGTACCCATCCAGAGCAT CTT	R	GGTTCCAAAGACAAACCTCAC A	125
Edn1	F	GACATCATCTGGGTCAACA CTC	R	AAGTCTTTCAAGGAACGCTTG G	86
ligp1	F	ATGATTTGCCCTCCAGCTT TAC	R	ACTGAATATTCCCTTTTCTCAT CCT	117
Cdkn1a	F	GAACATCTCAGGGCCGAA AAC	R	CACTTCAGGGTTTTCTCTTGCA	96
Hey2	F	CTGCCAAGTTAGAAAAGG CTGA	R	CTCATGAAGTCTGTGGCAAGA G	118
lgf1r	F	GTTATCCACGACGATGAGT GC	R	AGTCACCGAATCGATGGTTTT C	150
lgf2r	F	GGAAGACACCAGAACCAG ACA	R	TGACACTCATCCTCTGGAAGC	103
Insr	F	GAGAGGATGTGAGACGAC GG	R	AGCAGTTCTCCAGCTCATGTA G	149
Gapdh	F	ACAACTCACTCAAGATTGT CAGCA	R	ATGGCATGGACTGTGGTCAT	121
Sdha	F	TTCCGTGTGGGGGAGTGTA TTG	R	ATTCTGCAGCTCCAGGGTCTC	135
Pmm1	F	ATCCGGGAGAAGTTTGTG GAA	R	GCTGTCTTCATCCAGGCTGTC	144
Ppia	F	AAGGGTTCCTCCTTTCACA GAA	R	GATGCCAGGACCTGTATGCTT	146

Staining	Antigen retrieval	Blocking	Primary antibody	Secondary antibody
IGF2	Digestion with 1% pronase (Protease from Streptomyces griseus, Sigma – P6911) in 1xPBS for 10 min at 37°C	15% Donkey serum (Sigma – D9663) in PBS	Goat anti-human IGF2 (1:50, R&D systems AF-292) overnight at 4°C	AF488 Donkey anti- goat (1:200, Jackson ImmunoResearch – 705-546-147), one hour at room temperature (RT)
IGF2R	Boiling for 20 min in Tris-EDTA buffer (10 mM Tris, 1 mM EDTA, 0.05% Tween 20, pH 9.0,)	Animal-free blocking solution (Vector – SP-5030)	Rabbit anti-IGF2R (1:400, Cell Signaling 14364) overnight at 4°C	AF594 Donkey anti- rabbit (1:200, Jackson ImmunoResearch 711- 546-152), one hour at RT
YFP	Autoclaving for 15 min at 121°C in citric acid buffer (10 mM citric acid, pH 6.0, 0.05% Tween 20)	5% Donkey serum (Sigma – D9663) in PBS	Goat anti-GFP (1:200, Abcam – ab6673) overnight at 4°C	AF488 Donkey anti- goat (1:200, Jackson ImmunoResearch – 705-546-147), one hour at RT
CD31 (immune- histochemistry)	Boiling for 30 min in citric acid buffer (10 mM citric acid, pH 6.0, 0.05% Tween 20)	 - 3% H2O2 solution (peroxidase inactivation) 30 min at RT; - 10% Goat serum (Sigma – G9023) and 1% BSA in PBS 	Rabbit anti-CD31 (1:50, Abcam – ab28364) overnight at 4°C	Goat anti-Rabbit IgG, biotinylated (1:1000, Abcam – ab6720), one hour at room temperature, then Streptavidin-horse radish peroxidase (1:250 Rockland S000- 03), one hour at room temperature, then DAB (Dako – K3468), 3-20 minutes at RT
CD31 (immune- fluorescence – assay 1)	Boiling for 30 min in citric acid buffer (10 mM citric acid, pH 6.0, 0.05% Tween 20)	15% Donkey serum (Sigma – D9663) in PBS	Rabbit anti-CD31 (1:50, Abcam – ab28364) overnight at 4°C	AF594 Donkey anti- rabbit (1:200, Jackson ImmunoResearch 711- 546-152), one hour at RT
CD31 (immune- fluorescence – assay 2)	Boiling for 20 min in Tris-EDTA buffer (10 mM Tris, 1 mM EDTA, 0.05% Tween 20, pH 9.0,)	Animal-free blocking solution (Vector – SP-5030)	Goat anti-CD31 (1:20, R&D – AF3628) overnight at 4°C	NL557-conjugated Donkey Anti-Goat (1:200, R&D – NL001), one hour at RT
F4/80	Heat-induced antigen retrieval in Target Retrieval Solution (pH=6) – Dako S236984-2	- Bloxall (peroxidase) Blocking Solution – Vector Labs SP- 6000; - Animal-Free Blocker - Vector Labs SP-5030	Rat anti-Mouse F4/80 (1:20, [CI:A3-1] – Bio- Rad MCA497) 1 hour at RT	 Rabbit anti-Rat IgG (H+L) (1:250, Bethyl A110-322A) 1 hour at room temperature; Anti-Rabbit HRP (ImmPress – Vector Labs MP-7451) 30 min at RT; DAB (ImmPact DAB Kit - Vector Labs SK-4105)
MCT1	Proteinase K digestion (Dako – S3020) for 3 minutes at room temperature	15% Donkey serum (Sigma – D9663) in PBS	Chicken anti- MCT1 (1:200, Merk Millipore – AB1286-I) overnight at 4°C	AF488 Donkey anti- chicken (1:200, Jackson ImmunoResearch – 703-546-155), one hour at RT

 Table S7. Conditions used for immunostainings. Related to STAR Methods.

MCT4	Proteinase K	15% Donkey serum	Rabbit anti-MCT4	AF488 Donkey anti-
	digestion (Dako –	(Sigma - D9663) in	(1.500 Merck	rabbit (1.200 Jackson
	S3020) for 3 minutes	PBS	Millipore –	ImmunoResearch –
	at room	1 00	AB3314P)	711-546-152) one hour
	temperature		overnight at 4°C	at RT
Laminin	Proteinase K	15% Donkey serum	Rabbit anti-	AF488 Donkey anti-
	digestion (Dako –	(Sigma – D9663) in	laminin (1:500.	rabbit (1:200. Jackson
	S3020) for 3 minutes	PBS	Dako – Z0097)	ImmunoResearch –
	at room		overnight at 4°C	711-546-152), one hour
	temperature		5	at RT
Lectin	Digestion with 0.04%	- 3% methanol	biotinylated lectin	horseradish peroxide-
	pepsin (Sigma –	(peroxidase	(1:250 isolectin	conjugated
	10108057001) in	inactivation) for	B4, B-1205,	streptavidin (1:500
	0.01M HCl, for	10min at RT;	Vector	Rockland
	10min at 37°C	- 2% bovine serum	Laboratories) for	Immunochemicals
		albumin, 1%	90min at 37°C	S000-03 for 60min at
		skimmed dry milk		RT) followed by DAB
		and 0.1% Tween20,		(Sigma D3939) for
		for 15min at RT		10min at RT
Cytokeratin	Digestion with 0.04%	- 3% methanol	Rabbit anti-pan	alkaline phosphatase-
	pepsin (Sigma –	(peroxidase	cytokeratin (1:75	conjugated goat anti-
	10108057001) in	inactivation) for	Novus Biologicals	rabbit (1:500 Abcam
	0.01M HCl, for	10min at RT;	nb600-579)	ab6722) for 60min at
	10min at 37°C	- 2% bovine serum	overnight at 4°C	RT followed by
		albumin, 1%		NBT/BCIP containing
		skimmed dry milk		levimasole to block
		and 0.1% Tween20,		endogenous
		for 15min at RT		phosphatase (Thermo
				Fisher Scientific 34070)
				for 10min at RT
EPCAM	None	15% Donkey serum	Rat anti-mouse	AF594 Donkey anti-rat
(trozen		(Sigma – D9663) in	CD326/Epcam	(1:250, Thermo Fisher
sections)		PBS	Clone G8.8 (1:50,	Scientific A-21209) one
			BD Biosciences	hour at room
			552370)	temperature
	1	1	overnight at 4°C	1