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1 Solving the toy model of localised transport

We consider the following reaction-diffusion system,

∂Bout
∂t

= Dout
∂2Bout
∂x2

+ αBin − β(x)Bout, (1)

∂Bin
∂t

= Din
∂2Bin
∂x2

− αBin + β(x)Bout, (2)

where β(x) = β0
L in the case of non-dividing cells and β(x) = β0δ(x) for dividing cells, where δ(x) is the

Dirac delta function. The parameters α, β0, Dout, Din are taken to be strictly positive, and we use reflective
(Neumann) boundary conditions at x± L

2 . It is easy to see that the above equations are mass conserved such
that we can set

1

L

∫ L
2

−L
2

(Bout +Bin)dx = T . (3)

We implement the following non-dimensionalisation:

Bout →
Bout
T

, Bin →
Bin
T
, x→ x

L
, t→ Dint

L2

to obtain

∂Bout
∂t

= d
∂2Bout
∂x2

+ aBin − ab′(x)Bout (4)

∂Bin
∂t

=
∂2Bin
∂x2

− aBin + ab′(x)Bout (5)

in terms of the function b′(x), specified below, and the dimensionless variables,

d =
Dout

Din
, a =

L2α

Din
, b =

β0

αL
.

We next find the steady state solutions to equations (4) and (5) for both dividing and non-dividing cells.

Non-dividing cells

For non-dividing cells b′(x) = b. This can be solved relatively easily and applying the reflective boundary
conditions and mass conservation rule it can be seen that:

Bin =
b

1 + b
, (6)

1



and

Bout =
1

1 + b
. (7)

From this it is obvious that the total concentration of Bin and Bout across the length of the domain is given
by

∫ 1
2

− 1
2

Bindx =
b

1 + b
, and

∫ 1
2

− 1
2

Boutdx =
1

1 + b
. (8)

Observe that when the transport rate b� 1, all the concentration of the system is in the inner periplasm.

Dividing cells

For dividing cells, b′(x) = bδ(x), we can find the solution to equation (5) at steady state as

Bin = bB̄G(x), (9)

where G(x) is the Green’s function defined by

G(x) =
κ

2

cosh(κx) + cosh(κ(| x | −1))

sinh(κ)
, (10)

where κ =
√
a, and B̄ = Bout(0). The derivative of G(x) with respect to x is discontinuous at x = 0:

Gx(x) =

{
1
2

sinh(κx)−sinh(κ(−x−1))
sinh(κ) , −1

2 ≤ x < 0
1
2

sinh(κx)+sinh(κ(x−1))
sinh(κ) , 0 < x ≤ 1

2

(11)

Putting the solution for Bin in equation (4) we are then able to solve for Bout away from the sink,

d2Bout
dx2

= −a
d
Bin, (12)

to find that

Bout(x) = −ab
d
B̄

(
1

κ2
G(x) + Cx+D

)
. (13)

It can easily be seen, using the boundary conditions, that C = 0. Evaluating the equation at x = 0, we
obtain

D = − d

ab
− 1

2κ

1 + cosh(κ)

sinh(κ)
. (14)

Finally, we use conservation of mass
∫ 1/2
−1/2(Bin +Bout) dx = 1 to find

B̄ =
1

b+ 1 + ab
dκ2

κ̄
(15)

where κ̄ is the monotonically increasing function of κ

κ̄ =
κ

2

1 + cosh(κ)

sinh(κ)
− 1. (16)
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The total concentration of Bin and Bout across the length of the domain are

∫ 1
2

− 1
2

Bin dx = bB̄ =
b

b+ 1 + bκ̄
d

, (17)

∫ 1
2

− 1
2

Bout dx =
1 + bκ̄

d

b+ 1 + bκ̄
d

. (18)

We immediately see that for any parameter values there is less TolB in the inner periplasm in dividing compared
to non-dividing cells i.e localised transport is less efficient than homogeneous transport. Therefore, there is
more TolB in the outer periplasm of dividing cells to mobilise Pal and increase its effective diffusion coefficient.
In the limit of 1 + bκ̄

d � b all TolB of dividing cells is located in the outer periplasm. We have seen above
that when b� 1 all TolB of non-dividing cells is in the inner periplasm of non-dividing cells. In this case, we
must also have κ̄

d sufficiently large to have a substantial amount of TolB in the outer periplasm of dividing
cells.

Limits of Din and Dout

Here, returning to our dimensionfull equations, we will consider Bout as we take the limits Din, Dout → 0 and
Din, Dout →∞. The limits for Dout are relatively trivial and we find that

lim
Dout→0

Bout = 1. (19)

and

lim
Dout→∞

Bout =
1

1 + β0
αL

=
1

1 + b
, (20)

where we simplify slightly by returning to the dimensionless variable b. Next we can find these limits for Din,
such that

lim
Din→0

Bout =
1

1 + β0
αL

=
1

1 + b
. (21)

The limit of Bout as Din →∞ is not so trivial, we will first find the limit of κ̄d. Taylor expanding sinh(κ) and
cosh(κ) and considering the dimensionfull variables we find that

lim
Din→∞

κ̄d =
L2α

12Dout
, (22)

substituting this back in we can then see that

lim
Din→∞

Bout =
1 + β0L

12Dout

β0
αL + 1 + β0L

12Dout

=
1 + β0L

12Dout

b+ 1 + β0L
12Dout

. (23)

From these limits it can be seen that in order for the majority of the TolB to be in the outer periplasm i.e.
Bout > 0.5, that for any chosen Din it is possible to choose a Dout small enough to ensure that this is true.
However, for a chosen Dout which is too large it is not possible to choose a Din which will rescue this.

3



2 Proving Dc > Db for a TolB peak

Here, we will prove an important result described in the main text. This result applies to both the toy model
and the full model but we will prove it here only for the full model as the simplification to the toy model is
obvious. First, we prove that TolB in the outer periplasm, B has the shape of a peak centred around x = 0 at
steady state. We consider the pde for the Tol-Pal complex from the full model at steady state:

Dc
∂2C

∂x2
+ αBPF − β(x)C − γC (24)

where β(x) is the truncated normal distribution centered at x = 0, on the domain x ∈ [−L
2 ,

L
2 ]. We can then

find the Taylor expansion around the location of the truncated normal at x = 0 and looking at the second
order terms we find,

αB0PF2 + 2αB1PF1 + αB2PF0 − β2C0 − (β0 + γ)C2 +DcC4 = 0, (25)

where f0 = f(0), f1 = df
dx |x=0, f2 = d2f

dx2
|x=0, ... ∀f ∈ {C,B, Pf , β}. Since all of the functions have a stationary

point at x = 0 we know that the first derivatives will be equal to 0. Furthermore, a regular function symmetric
about a stationary point at x = 0 has a Maclaurin expansion with alternating signs of the even order terms
(there are no odd order terms due to symmetry) then,

f4 = −kf2 (26)

where k ≥ 0. Using these two facts we then find,

αB0PF2 + αB2F0 − β2C0 − (β0 + γ +Dck)C2 = 0 (27)

Conservation of mass of this system of equations gives two relations,

Dc
d2C

dx2
+Db

d2B

dx2
= 0 and Dc

d2C

dx2
+Df

d2Pf
dx2

= 0 . (28)

Evaluating at x = 0 this gives a relationship between the second-order terms in the Maclaurin:

B2 = −Dc

Db
C2 and PF2 = −Dc

Df
C2 (29)

Substituting these back into equation (27) then gives,

−C0β2 − (β0 + γ +Dck +
αDc

Df
+
αDc

Db
)C2 = 0, (30)

where γ, α, k,Dc, Db, Df , β0 > 0. Since we have defined β(x) as the truncated normal function, a peak, the
second derivative at x = 0, β2, is negative. Therefore, C2, must be positive and thus C must have the shape
of a valley centered around x = 0.

Using this we can now show that we must have Dc < Db in order for the total TolB profile C(x) +B(x) to be
peak. From conservation of mass and the boundary conditions we can see that

DcC +DbB = constant. (31)

Taking the derivative of this at x = 0+, i.e. just to the right of x = 0, we have

C ′ |x=0+= −Db

Dc
B′ |x=0+ , (32)
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and hence

C ′ |x=0+ +B′ |x=0+= (1− Db

Dc
)B′ |x=0+ . (33)

For a peak in TolB (C(x) + B(x)), as observed experimentally, it is required that C ′ |x=0+ +B′ |x=0+> 0.
We have shown B to have a peak centred at x = 0, therefore B′ |x=0+> 0. Therefore for a peak in the total
concentration of TolB it is required that Dc > Db.
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