Table S1: List of strains, plasmids and bacteriophage used in this study.

Strains	Relevance						
S. thermophilus UCCSt50	Host strain for phage SW13						
<i>S. thermophilus</i> UCCSt50::pNZ44 acrIIA6	- Host strain harbouring the control vector						
S. thermophilus B1	Phage insensitive derivative of <i>S. thermophilus</i> UCCSt50						
S. thermophilus B2	Phage insensitive derivative of <i>S. thermophilus</i> UCCSt50						
S. thermophilus B4	Phage insensitive derivative of <i>S. thermophilus</i> UCCSt50						
S. thermophilus B9	Phage insensitive derivative of <i>S. thermophilus</i> UCCSt50						
S. thermophilus B1::pNZ44-acrIIA6	S. thermophilus B1 harbouring the control plasmid						
S. thermophilus B1::pNZ44-06955	S. thermophilus B1 harbouring the complementing plasmid						
S. thermophilus B1ApNZ44-06955	Cured derivative of the complementing strain						
Plasmids							
pNZ44-acrIIA6	Control vector - pNZ44 harbouring an anti-CRISPR homolog						
pNZ44-06955	pNZ44-acrIIA6 harbouring native <i>orf</i> 06955 from UCCSt50						
pHTP9 (NZYTech, Portugal)	Gfp fusion vector used to produce recombinant Gfp- RBP-module _{SW13}						
Phage							
SW13 (Accession number MH892362)	<i>ussowvirus</i> of <i>S. thermophilus</i> UCCSt50 used for M generation and subsequent assays						

Table S2: List of primers used in this study. Restriction sites are highlighted by bold text. The TEV cleavage site incorporated into the Gfp fusion CBD is underlined.

Primer	Sequence 5' – 3'
06955F	aaaaa etacaa aaaaatcaeettaaaaattttaataataatte
007551	aaaaaacigcagaggaggacacciigagagiiilaaigalaanic
06955R	aaaaaaaactagtttattcactctccttcataaag
RBP-module F	tcagcaagggctgagggaaaacctgtattttcagggcagtaataacggtggtcc
RBP-module R	tcagcggaagctgaggttatatgtcttcaattgc
pNZ44F	ctaatgtcactaacctgccccg
pNZ44R	gctttatcaactgctgct

Table S3: Detail of the CRISPR arrays of the parent strain UCCSt50 and its four derived BIMs. Whilst no spacer acquisition against phage SW13 was observed, modifications were noted in the CRISPR3 array including deletions and single spacer uptake with 100% identity (Blastn) to *L. lactis* derived cloning vectors.

Strain		C2 C3 Var		Significance			
S. thermophilus UCCSt50	36	1	20 N/A	N /A			
S. thermophilus B1	36	1	20 0	N/A			
S. thermophilus B2	36	1	21 +1	100% identity to <i>L. lactis</i> derived cloning vectors			
S. thermophilus B4	36	1	17 -3	Deletion of 3 spacers present in the parent strain			
S. thermophilus B9	36	1	18 -3 /	+1 100% identity <i>L. lactis</i> derived cloning vectors			

Table S4. NMR data for *S. thermophilus* UCCSt50 Rgp and its derivatives (600 MHz, 25 °C, δ ppm).

Sugar		H/C 1	H/C 2	H/C 3	H/C 4	H/C 5	H/C 6
α -Rha A DPS	Н	5.09	4.10	3.90	3.50	3.79	1.30
	С	100.9	78.0	70.7	73.2	70.7	17.7
α-Glc B DPS	н	5.01	3.55	3.76	3.47	4.16	3.70; 3.94
	С	99.1	72.4	73.9	70.7	72.0	67.5
α -Rha C DPS	н	4.93	4.03	3.92	3.47	3.74	1.30
	С	100.1	79.9	71.0	73.3	70.0	17.7
β-Gal D OS	Н	4.66	3.54	3.67	3.92	3.67	3.76; 3.79
	С	104.7	72.7	73.9	69.7	76.3	62.0
α -Rha E OS	Н	4.95	4.09	3.80	3.45	3.75	1.27
	С	103.3	71.1	71.1	73.1	70.3	17.7
lpha-Rha F OS	н	5.07	3.95	4.11	3.75	3.93	1.37
	С	99.1	79.6	71.0	81.7	68.8	18.0
anhMan G OS	Н	5.09	3.83	4.20	4.17	3.95	3.68; 3.77
	С	90.5	84.9	84.8	76.6	84.2	61.6
α -Rha A PS	Н	5.07	4.28	3.97	3.58	3.80	1.32
	С	100.7	77.7	79.4	72.7	71.0	17.9
α -Glc B PS	н	4.98	3.51	3.71	3.58	4.20	3.94; 3.94
	С	99.1	72.6	74.0	70.1	71.5	67.3
α -Rha C PS	н	4.93	4.06	3.92	3.48	3.75	1.34
	С	100.8	79.4	71.3	73.4	70.1	18.1
β-Gal D PS	Н	4.64	3.54	3.66	3.92	3.67	3.77; 3.77
	С	104.9	72.9	74.0	69.7	76.3	62.1
α -Rha E PS	н	4.86	4.07	3.78	3.44	3.75	1.29
	С	103.7	71.3	71.3	73.3	70.1	18.1
α -Rha F PS	Н	5.08	3.79	3.85	3.72	4.08	1.32
	С	100.7	81.4	71.0	81.9	68.8	17.9
β -GlcNAc G PS	Н	4.76	3.73	3.63	3.47	3.47	3.76; 3.96
	С	103.6	57.0	82.7	70.2	76.9	62.1

Fig. S2 ¹H-¹³C HSQC spectrum of the Rgp from *S. thermophilus* UCCSt50 B1mutant.