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Model development and simulation methods 

Previous models compared with our models 
The first mathematical model of predator-prey interactions was developed separately by Lotka (1) 
and Volterra (2):  
 !"

!#
= 	𝜇𝑁 − 	𝛼𝑁𝑃  (1a) 

 !$
!#
= 𝛽𝑁𝑃 − 	𝜆𝑃  (1b) 

Where 𝑁 is the prey and 𝑃 the predator. The specific growth rate of the prey is 𝜇 and the predator 
has a mortality rate 𝜆. 𝛼 and 𝛽 are constants that reflect the amount of prey consumed in order 
to produce a certain number of predators. This model demonstrated that predator-prey 
interactions could result in oscillations of population densities without any external forcing, but 
these oscillations (which are neutral cycles) are not robust, as changes to initial conditions, or 
subsequent perturbations cause the oscillations to have a different period and amplitude. 
These initial models assumed that prey growth is exponential (unlimited by resources) and that 
predation rate is proportional to predator and prey population sizes and does not saturate. More 
realistic models allow for saturation of responses. Monod (3) found that the specific growth rate 
of bacteria is proportional to substrate concentration until it saturates at high concentrations, 
analogous to Michaelis-Menten enzyme kinetics: 
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 𝜇 = 	 %!"#&
&'($

  (2) 

Where 𝜇)*+ is the maximum specific growth rate of the prey and 𝐾& the level of substrate needed 
for half maximum growth rate. Holling (4) introduced a mathematically identical function to 
describe saturation of predation rate, known as type II functional response. 
Only a few microbial predator-prey studies have modelled predatory bacteria. These models vary 
in prey growth function, predator functional response and the presence or absence of an explicit 
bdelloplast stage or other delay between prey death and the birth of new predators (Table S1). 
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Table S1 Previous models of Bdellovibrio and other relevant microbial predators, compared to our principal Model 6. 

Bdelloplast 
stage? 

Predator 
Mortality? 

Prey 
Growth 

Functional 
response 

type 

Batch or 
chemostat 

Notes Source 

No No Exponential Non-
saturating 

Batch Lotka-Volterra 
model 

(5) 

No Yes Monod Non-
saturating 

Chemostat Delay between 
predation and birth 
of predators 

(6) 
Model 1 

No Yes Monod Non-
saturating 

Chemostat As Crowley Model 
1, but also includes 
bdellophage (phage 
that infect 
Bdellovibrio) 

(6) 
Model 2 

No Yes Monod Holling 
type II 

Chemostat Protist predation (7) 

No Yes Monod Holling 
type II 

Chemostat  (8) 
Model 1 

Yes No Monod Non-
saturating 

Chemostat As Wilkinson Model 
1, but also contains 
decoys 

(8) 
Model 2 

Yes Yes Exponential Non-
saturating 

Batch Contains decoys 
and nutrient 
recycling 

(9) 

Yes Yes Monod Non-
saturating 

Batch Includes effects of 
serum 

(10) 

Yes No Exponential Non-
saturating 

Batch Gaussian function 
for bdelloplast 
maturation time 

(11) 

Yes Yes Monod Holling 
type II 

Batch Family of models 
with various 
ingredients 
examined 

(12) 

Yes Yes Monod Holling 
type II 

Chemostat Family of models 
with various 
ingredients 
examined 

Model 6 
of this 
study 

 

Models 1 to 6 
Several versions of our model were run on the same set of test conditions to determine the 
effects of each part of the model (Table S2). In Model 1, there was no predator mortality and 
no bdelloplast stage. Model 2 was like Model 1 but used delay differential equations (DDE) to 
implicitly model the delay between prey death and the birth of new predators. Model 3 was 
like Model 1 but had predator mortality. Models 4 to 6 had both mortality and a bdelloplast 
stage. In Model 4, the predator had a non-saturating functional response whereas in Models 
5 and 6, a Holling type II functional response was implemented. Unlike all the other models, 
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Model 5 replaces substrate dynamics with constant inflow of prey, as if the prey were grown 
in a separate chemostat feeding into the chemostat with the predator. 
 
Table S2 Differences between model variants. 

Mode
l 

Substrate Prey Predator Bdelloplast 

 Dilution Prey Growth Dilution Growth Predation Dilution Predation Bdelloplast 
maturation 

Mortality Dilution Predation Maturatio
n 

             

1 (𝑺𝟎 − 𝑺)𝑫 −𝑺𝑵𝝁𝑵
(𝑲𝑺,𝑵 + 𝑺+𝒀𝑵 𝑺%

 −𝑵𝑫 𝑺𝑵𝝁𝑵
𝑲𝑺,𝑵 + 𝑺

 
−𝑵𝑷𝝁𝑷

(𝑲𝑵,𝑷 +𝑵+𝒀𝑷 𝑵%
 −𝑷𝑫 𝑵𝑷𝝁𝑷

𝑲𝑵,𝑷 +𝑵
      

2 (𝑺𝟎 − 𝑺)𝑫 −𝑺𝑵𝝁𝑵
(𝑲𝑺,𝑵 + 𝑺+𝒀𝑵 𝑺%

 −𝑵𝑫 𝑺𝑵𝝁𝑵
𝑲𝑺,𝑵 + 𝑺

 
−𝑵𝑷𝝁𝑷

(𝑲𝑵,𝑷 +𝑵+𝒀𝑷 𝑵%
 −𝑷𝑫 𝑵𝑷𝝁𝑷

𝑲𝑵,𝑷 +𝑵
 Implicit via DDE     

3 (𝑺𝟎 − 𝑺)𝑫 −𝑺𝑵𝝁𝑵
(𝑲𝑺,𝑵 + 𝑺+𝒀𝑵 𝑺%

 −𝑵𝑫 𝑺𝑵𝝁𝑵
𝑲𝑺,𝑵 + 𝑺

 
−𝑵𝑷𝝁𝑷

(𝑲𝑵,𝑷 +𝑵+𝒀𝑷 𝑵%
 −𝑷𝑫 𝑵𝑷𝝁𝑷

𝑲𝑵,𝑷 +𝑵
  −𝒎𝑷    

4 (𝑺𝟎 − 𝑺)𝑫 −𝑺𝑵𝝁𝑵
(𝑲𝑺,𝑵 + 𝑺+𝒀𝑵 𝑺%

 −𝑵𝑫 𝑺𝑵𝝁𝑵
𝑲𝑺,𝑵 + 𝑺

 
−𝑵𝑷𝝁𝑷
𝒀𝑩

𝑵%
 −𝑷𝑫 −𝑵𝑷𝝁𝑷

𝒀𝑩
𝑷%

 𝒌𝑷𝑩 −𝒎𝑷 −𝑩𝑫 𝑵𝑷𝝁𝑷 −𝒌𝑷𝑩
𝒀𝑷

𝑩%
 

5   (𝑵𝟎 −𝑵)𝑫  −𝑵𝑷𝝁𝑷
(𝑲𝑵,𝑷 +𝑵+𝒀𝑩 𝑵%

 −𝑷𝑫 −𝑵𝑷𝝁𝑷
(𝑲𝑵,𝑷 +𝑵+𝒀𝑩 𝑷%

 𝒌𝑷𝑩 −𝒎𝑷 −𝑩𝑫 𝑵𝑷𝝁𝑷
𝑲𝑵,𝑷 +𝑵

 
−𝒌𝑷𝑩
𝒀𝑷

𝑩%
 

6 (𝑺𝟎 − 𝑺)𝑫 −𝑺𝑵𝝁𝑵
(𝑲𝑺,𝑵 + 𝑺+𝒀𝑵 𝑺%

 −𝑵𝑫 𝑺𝑵𝝁𝑵
𝑲𝑺,𝑵 + 𝑺

 
−𝑵𝑷𝝁𝑷

(𝑲𝑵,𝑷 +𝑵+𝒀𝑩 𝑵%
 −𝑷𝑫 −𝑵𝑷𝝁𝑷

(𝑲𝑵,𝑷 +𝑵+𝒀𝑩 𝑷%
 𝒌𝑷𝑩 −𝒎𝑷 −𝑩𝑫 𝑵𝑷𝝁𝑷

𝑲𝑵,𝑷 +𝑵
 

−𝒌𝑷𝑩
𝒀𝑷

𝑩%
 

 

Model 6 description 
The differential equations developed to track the concentrations of each variable are set out 
below. 
 !&

!#
= (𝑆, − 𝑆)𝐷 − 𝑁

%%&
-($,%'&./%

$'
 (3a) 

 !"
!#
= 𝑁 %%&

($,%'&
− 𝑁𝐷 − 𝑃 %("

-(%,('"./)
%'
 (3b) 

 !$
!#
= 𝑘$𝐵 − (𝐷 +𝑚)𝑃 − 𝑃

%("
-(%,('"./)

('
 (3c) 

 !0
!#
= 𝑃 %("

(%,('"
− 𝐵𝐷 − 1(0

/(
)'
 (3d) 

𝑆, is the concentration of substrate flowing into the system and 𝐷 is the dilution rate of the 
system. The maximum growth rate of the prey is 𝜇" and its substrate half-saturation constant 
is 𝐾&,". The attack rate constant of the predator is 𝜇$ and its prey half-saturation constant is 
𝐾",$. For ease of reading these half-saturation constants will be referred hereafter as the prey 
𝐾-value and the predator 𝐾-value. The rate of maturation of bdelloplasts into new Bdellovibrio 
is 𝑘$ and the mortality of Bdellovibrio is 𝑚. All yields are expressed in the form 𝑌3

04
, which is 

the yield of consumer A per resource B consumed. The 𝐾-value of consumer B for resource 
A is expressed as 𝐾3,0.  
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Remarks on yields and biomass versus particle based unit systems 
In most animal predator-prey models, the yield terms would be expressed as the gain of 𝑌 
predators at the expense of 1 prey (where 𝑌 is likely to be less than 1). The model developed 
here however has to be different to account for the unusual biology, in that both predator and 
prey are ‘consumed’ to produce a bdelloplast (which will later mature into new predators). 
This combined prey-predator entity does not exist in canonical predator-prey models and as 
is shown here, requires special treatment. If just a single yield term were to be associated 
with the bdelloplast resulting from predation, then identical amounts of predator and prey 
would have to go into making up that bdelloplast, which is not correct. Placing two yield terms, 
one on each producer species (prey and predator), by contrast, allows the ratios of producers 
going into the bdelloplast to be varied. This is also necessary for varying the relative sizes of 
prey and predator. Thus, a single yield term on the ‘product’ species needs to be replaced by 
two separate yield terms on the two ‘reactant’ species to use a chemical analogy. 
The standard approach in animal predator-prey models is to track species in terms of 
individuals and not to attempt to balance biomass as this is not tractable in the wild. In 
contrast, the approach of studies of microbial growth and physiology in the laboratory is based 
on substrate and product concentrations rather than individual molecules, and biomass is 
often more conveniently determined than cell numbers. Moreover, for understanding 
metabolic pathways and energy metabolism as well as process modelling in biotechnology, 
the mass balance is an essential tool and growth and product yields are of primary interest.  
These two traditions collide when modelling the predator-prey dynamics of a bacterial prey 
and a bacterial predator, suggesting the use of either particle-based or biomass-based unit 
systems. In this study, the biomass-based system is used predominantly, but for modelling 
phage, the particle-based system was found to be more suitable, so both systems were 
compared for a subset of the results and found to be in agreement. When tracking numbers 
of individuals of a species no attempt is made to explicitly balance biomass, as one prey cell 
combines with one predator cell to give one bdelloplast, so the two yields of bdelloplast per 
prey and bdelloplast per predator are both unity (𝑌0

"4
= 𝑌0

$4
= 1). When the units are in terms 

of biomass however, mass is tracked explicitly, so care must be taken to ensure that the 
equations satisfy conservation of mass of prey and predator when forming a bdelloplast. For 
this it is required that the mass of the bdelloplast not exceed the combined mass of the 
predator cell and prey cell from which it is formed. For simplicity it is assumed that the 
conversion of predator and prey into a bdelloplast occurs without loss, such that the mass of 
the bdelloplast equals the combined mass of the predator cell and the prey cell. Any loss is 
best accounted for in the following conversion of bdelloplast into predator offspring, as this is 
more tractable experimentally. To enforce this mass balance constraint, it is necessary (for 
mass-based units) that the sum of the inverse yields is one (the inverse of the yield of 
bdelloplast mass formed per predator mass is the ‘yield’ of predator mass consumed per 
bdelloplast mass formed, analogously for the prey): 
 5

/)
('
+ 5

/)
%'
= 1 (4a) 
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Hence 𝑌0
"4
=

/)
('

/)
('
65

  (4b) 

Model Parameters 
Details of the model parameters are shown in Table 1. Parameters for the substrate and prey 
interactions of the model were based on E. coli as the prey species, growing on glucose as 
the substrate. The kinetics of this are relatively well studied and understood and the 
parameters were previously compiled from the literature (13). 
For the predator, certain information is also well known. It takes 2-4 hours for bdelloplasts to 
mature (14) and release between 4 and 6 new predators when formed from E. coli prey (15). 
The relative sizes of the bacteria are also known and were used to calculate the yields. 
Predator dry mass per cell was assumed to be 1/7th that of the prey based on their relative 
sizes (15, 16). When one predator and one prey cell combined to give a bdelloplast each g of 
dry mass formed was at the expense of 0.125 g dry mass of predator and 0.875 g dry mass 
of prey. So, 1 g dry mass of prey gave 1.143 g dry mass of bdelloplast (𝑌!

"#
) and 1 g dry mass 

of predator gave 8 g dry mass of bdelloplast (𝑌!
$#
). For the yield of predators from bdelloplasts 

(𝑌$
!#

), one bdelloplast gave 3.5 predators (15), each 1/8th the size, since a bdelloplast 
contained the mass of both the predator and the prey that formed it. Hence 1 g dry mass of 
bdelloplast gave 3.5/8 = 0.438 g dry mass of predator. Mortality rates were based on 
observations by Hespell et al. (17). 

Model Simulation 
The model was run in MatLab 8.6.0.267246 (R2015b) using the Ode45 solver, which 
implements an explicit Runge-Kutta method (18). None of the other ODE solvers were robust 
and accurate enough. Also, the relative and absolute tolerances of Ode45 had to be set to 
the very low values of 1 x 10-9. Additionally, all variables were forced to be non-negative, and 
all other options left as default. After every 100 hours of simulated time (equivalent to 5 volume 
changes at a dilution rate of 0.05 h-1), it was checked whether the system had reached a 
steady state, was in sustained oscillations, or had still to reach its final state. The system was 
considered to be in a steady state if the maximum and minimum values of each variable were 
within a (settable) relative tolerance of each other for a (settable) number of hours. The system 
was considered to be in sustained oscillations if two consecutive peaks in the substrate values 
were within a (settable) relative tolerance of each other. If the system was neither in a steady 
state nor in sustained oscillations after 8,000 hours (equivalent to 400 chemostat volume 
changes at a dilution rate of 0.05 h-1), it was deemed unstable. 

Parameter Sweeping 
Parameter sweeps were performed for both simulations and analytical calculations. For the 
simulation sweeps, the final concentration of each variable was plotted, unless the system 
displayed sustained oscillations, when instead the average over one oscillatory cycle was 
used. This average was calculated over a period between two consecutive peaks and was 
obtained by averaging all values recorded during this period, weighted by the time step size 
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between recordings. For analytical sweeps the calculated steady state values for the 
parameter settings were plotted, as were the eigenvalues of the system and the type of regime 
predicted, e.g., damped oscillations. Sweeps were made in small increments through various 
parameters. Other parameters were set according to Table 1. 

Prey cell size variations 
Changing the size of a prey cell had several consequences for the model. Firstly, the 
concentration of prey biomass into fewer, but larger, cells meant the surface area to volume 
ratio decreased, reducing the likelihood of predators encountering prey and the predator	𝐾-
value (𝐾",$) was increased to reflect this. Secondly, when a prey cell was encountered the 
time taken to cross the prey membrane was unchanged, but a larger prey biomass was 
accessed and the predator attack rate constant (𝜇$) was increased to reflect this. Thirdly, the 
bdelloplast formed consisted of a larger ratio of prey to predator biomass and so the prey yield 
(𝑌0

"4
) and predator yield (𝑌0

$4
) were adjusted down and up respectively. Finally, the burst 

size was increased as a larger bdelloplast provided resources for more predator cells and the 
bdelloplast yield (𝑌$

04
) was increased to reflect this.  

Global Sensitivity Analysis 
A global sensitivity analysis was carried out on all seven parameters obtained by dimensional 
analysis (see SI Results). To avoid bias in the analysis, we used a Latin hypercube design 
(19) to obtain 10,000 tuples of parameters that were both randomly chosen and well 
distributed in each dimension, using the MatLab function lhsdesign to create five sets of tuples 
and select the best set by maximising the minimum distance between any two points to reduce 
clumping of tuples in parameter space. Each of these tuples was scaled evenly across the 
realistic parameter range (see Table 2 for minimum and maximum values), to give a set of 
parameter values (parameter value = minimum value + design point value * parameter range). 
For each set of parameters created, the steady state values were calculated using equations 
9a-d. Each of the parameters was varied 1% up and down. The percentage difference 
between the perturbed values and the baseline values was stored for further analysis.  

Two prey species 
We extended the single prey Model 6 to investigate the effects of adding a second prey 
species, without adding unnecessary complexity. Just adding a second identical prey, fed in 
the same way by an additional resource, would not change the dynamics of the predator as it 
would not see a difference between prey. However, making the resource supply seasonal 
with one resource higher in one season and the other higher in the following season has the 
potential to change predator dynamics in a simple way that reflects environmental 
fluctuations. Thus, we decided to vary the availability of resources to each prey species over 
time by varying the inflow substrate concentration following a sine wave with a minimum of 
zero. Oscillating the inflow concentrations exactly out of phase (180˚ phase shift), and at the 
same frequency, ensured that at any time the total concentration of substrate flowing into the 
system was constant and only its partitioning varied. We then scanned the frequency at which 
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the inflow substrate concentrations oscillated, to investigate the effect of seasonally 
alternating prey on predator dynamics. 

Competitions 
Competing two species following different strategies is an unbiased and unequivocal way to 
compare the fitness of their strategies. This meant that we could compare effects, such as 
changes in rates at which Bdellovibrio consumes prey, at the expense of its economy of prey 
resource use. Competitions also allow a comparison of the effectiveness of Bdellovibrio 
versus bacteriophage as alternatives to antibiotics. To enable competitions, a second 
predator species with a second bdelloplast stage was introduced. Equation (3a) for the 
substrate was unaffected. Equation (3b) for the prey species became: 

 !"
!#
= 𝑁 %%&

($,%'&
− 𝑁𝐷 − 𝑃5

%(*"
-(%,(*'"./)* %'

− 𝑃7
%(+"

-(%,(+'"./)+ %'
 (5) 

Equations (3c & 3d) were duplicated for 𝑃7 and 𝐵7, the second predator and its bdelloplast or 
infected cell stage. 

High Rate Predator Adjustments 
For the simulations of high rate or high yield predators, the standard settings were used for 
the high yield predator. The high rate predator was assumed to lyse the bdelloplast before all 
the available nutrients were consumed in order to more quickly release its offspring into the 
environment, to locate and prey upon more prey cells. As a consequence, the yield of high 
rate predators per bdelloplast (𝑌$

04
) was halved to 0.313 mg predator mg bdelloplast-1. This 

reduction in yield increased the rate at which new predator biomass was formed as this rate 
is dependent upon the yield. To further reflect the faster maturation rate of high rate 
bdelloplasts, the 𝑘8 was increased by a third to 0.278 mg predator mg bdelloplast-1 h-1. This 
higher rate of predator growth has not been observed in Bdellovibrio. However, chemostats 
generally select for faster growth so long-term growth of predators in a chemostat might 
therefore be expected to select for faster growing predators. 

Bacteriophage models 
For modelling bacteriophage predation, the ‘bdelloplast’ stage represents the phage infected 
cell stage. Both in Bdellovibrio and phage predation, there is a lag between consumer entry 
and release of offspring, during which the prey cell does not grow. 
Attempts to numerically solve the model using a biomass-based unit system with parameters 
appropriate for a bacteriophage were unsuccessful. All the ODE solvers tried were unable to 
resolve the rate equations in a reasonable time period. All bacteriophage simulations were 
therefore run using a particle-based unit system. When converting between mg dry biomass 
and unit cells, a prey cell is assumed to be 1 fl in size (16). The cell is assumed to be 20% dry 
biomass, giving 0.2 pg dry mass per unit cell. Predator dry mass per cell is assumed to be 
1/7th that of the prey based on their relative sizes (15, 16). 
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In this unit system, one bdelloplast, or one infected cell, is formed from one predator cell, or 
one virion, and one prey cell (𝑌0

$4
= 𝑌0

"4
= 1). One bdelloplast is assumed to yield 3.5 

Bdellovibrio (14), so 𝑌$
04
= 3.5 and one cell infected by a T4 virulent bacteriophage of E. coli 

is assumed to give 64 phage virions (𝑌$
04
= 64) [ref. 19]. 

The lysis time for T4 phage infected cells is assumed to be 36 minutes (20), giving a rate of 
virion production (𝑘!) of 107 hour-1. Data for T4 from Stent & Wollman (21) were used to 
calculate an attack rate constant (𝜇$) of 19.3 infected cells predator-1 h-1 and a predator 	𝐾-
value (𝐾",$) of 1.32 x 108 prey cells ml-1.  
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Results 

Model implementation and validation 
Solver choice. Results from ODE model simulations can be affected by the choice of ODE 
solver. Different solvers exist because the best choice of solver depends on the nature of the 
ODEs and parameters of the particular model being investigated. In order to find the most 
appropriate solver for this model, we ran simulations with a number of parameter settings 
(corresponding to the different dynamic regimes shown in Fig. 2) using MatLab solvers 
Ode15s, Ode23, Ode23s, Ode23t, Ode23tb, Ode45 and Ode113. All solvers were tested with 
absolute and relative tolerances set to the very low value of 1 x 10-9, and all variables 
constrained to be non-negative (provided the solver permitted this). While all solvers tested 
could correctly handle conditions where the linear stability analysis had predicted a steady 
state (Fig. 2a, f), solvers Ode113, Ode15s, Ode23t and Ode23tb could not handle conditions 
where sustained oscillations were predicted (Fig. S1). Solvers Ode23 and Ode23s could 
handle all the scenarios, except for predicted oscillations when the initial predator numbers 
were increased from 1 x 10-3 mg ml-1 to 5 x 10-2 mg ml-1 for Ode23 or to 1 x 10-1 mg ml-1 for 
Ode23s. Under these conditions, simulations with the Ode23 solver incorrectly led to a sterile 
state with all bacteria eliminated (Fig. S1e). Solver Ode23s (which cannot be set to not allow 
negative values) blew up (it generated an exponential increase of substrate concentrations to 
the order of 10154 mg ml-1 with negative density of prey in the order of -1 x 10154 mg ml-1) (Fig. 
S1f). In both cases, solver Ode45 (Fig. S1g) gave sustained, extreme oscillations. Although 
we expected the solvers for stiff systems to be appropriate, we found that the non-stiff Ode45 
solver was the only reliable one under all tested conditions, so it was used for all further 
investigations.   
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Fig. S1 Ode45 was the only reliable and accurate solver as demonstrated by simulation results with standard parameters 
and 𝑆, = 0.25 mg ml-1 and 𝐷 = 0.003 h-1.  
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Solver options. We then tested a range of tolerance settings for the Ode45 solver, as 
tolerances that are too loose can result in inaccurate simulations, whilst overly strict tolerances 
are inefficient (Fig. S2). Absolute tolerance had a much stronger influence than relative 
tolerance. An absolute tolerance of 1 x 10-9 was needed to achieve accurate simulations. With 
this absolute tolerance, a relative tolerance of 1 x 10-6 or lower was needed. Reducing the 
relative tolerance to 1 x 10-9 produced a small improvement in the final result. Based on these 
finding, all further simulations were run with both absolute and relative tolerances of 1 x 10-9, 
unless otherwise noted.  
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Fig. S2 Effects of Ode45 solver tolerances on simulations with standard parameters and 𝑆, = 0.25 mg ml-1 and 𝐷 = 0.003 
h-1. Absolute tolerance decreases (becomes stricter) from left to right; relative tolerance decreases from top to bottom. 
The strictest settings of panel i were used for all simulations in this study unless stated otherwise.  
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Particle-based versus biomass-based units for species densities. Most simulations were 
run using units of biomass density (mg dry mass ml-1). When this was attempted with 
bacteriophage predators, which only differ in parameter settings from Bdellovibrio, simulations 
ran for several days without completing and eventually crashed MatLab. This was probably 
due to the solver being unable to find a suitable time step, as the large differences in densities 
of the species led to large differences in the rate of change of species over a time step. To 
handle these scenarios numerically, the biomass-based unit system had to be changed to a 
particle-based unit system (cells or particles ml-1). This resulted in simulations completing 
within minutes to a few hours. We confirmed that the only effect of this change of units was 
to allow successful completion of simulations that would otherwise crash MatLab by rerunning 
simulations that could be completed with biomass-based units using particle-based units. The 
results from the simulations with particle-based units (Fig. S3) were equivalent to those with 
biomass-based units (Fig. 2), considering that the relative proportions of the species changed 
only apparently, since prey cells were set to be seven times larger and heavier than predator 
cells. There was one exception for a dilution rate of 0.0025 h-1, where the observed pattern 
differed between particle- and biomass-based units. This dilution rate was very close to the 
boundary of a Hopf bifurcation between damped and sustained oscillations (Fig. 2a), where 
simulation results were very sensitive to initial conditions. For both unit systems, the initial 
conditions could be adjusted to obtain either dampened or sustained oscillations. For the 
simulation using particle-based units, the initial conditions were adjusted slightly to best match 
the outcome from biomass-based units.  
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Fig. S3 Results do not depend on the choice of unit system. Here, simulations use particle-based units, while in Fig. 2 
biomass-based units were used, giving the same outcome and dynamic regimes under the same conditions (𝑆, = 0.25 mg 
ml-1, various dilution rates as in the corresponding panels in Fig. 2).   
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Fig. S4 Modelling choices affect the qualitative dynamics. In all cases, the same set of default conditions, based on 
Bdellovibrio predating E. coli that are growing on glucose (0.05 mg ml-1) and a dilution rate of 0.0333 h-1 (equivalent to a 
30 hour retention time) were used. This dilution rate is substantially less than 1.175 h-1, the critical dilution rate for E. coli 
growing on this concentration of glucose in the absence of predation. All models had a Holling type II predator functional 
response unless otherwise stated (cf. Table S2). a Model 1 run without any predators (the same result was obtained for 
all models). b Model 1: without bdelloplast stage. c Model 2: with delay equations implicitly modelling the bdelloplast 
stage. d Model 3: as Model 1, but with predator mortality. e Model 4: incorporating a bdelloplast stage, predator mortality 
and a non-saturating functional response. f Model 5: as Model 4, but with constant prey input into the system instead of 
substrate inflow, g Model 6: Final model with bdelloplast stage, predator mortality and a Holling type II functional 
response.  
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Model analysis 

Dimensional Analysis 
Model 6 has twelve parameters, many of which are interconnected in various ways. The more 
parameters a model has, the more difficult it is to determine what and how strong an effect 
the parameters (or their combinations) have on model outcomes. In order to reduce the 
number of parameters to be considered independently, and deduce any relationships 
between parameters, a dimensional analysis was performed. The set of dimensional 
equations for Model 6 were already given but are shown again for convenience: 

 !&
!#
= (𝑆, − 𝑆)𝐷 − 𝑁

%%&
-($,%'&./%

$'
 (3a) 

 !"
!#
= 𝑁 %%&

($,%'&
− 𝑁𝐷 − 𝑃 %("

-(%,('"./)
%'
 (3b) 

 !$
!#
= 𝑘$𝐵 − (𝐷 +𝑚)𝑃 − 𝑃

%("
-(%,('"./)

('
 (3c) 

 !0
!#
= 𝑃 %("

(%,('"
− 𝐵𝐷 − 1(0

/(
)'
 (3d) 

First the variables were explicitly written as products of numbers and units to give: 

 !-&-&^.
!(#-:)

= (𝑆, − 𝑆<𝑆^)𝐷 − 𝑁<𝑁^ %%&-&^

-($,%'&-&^./%
$'
  (6a) 

 !-"-"^.
!(#-:)

= 𝑁<𝑁^ %%&-&^

($,%'&-&^
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-(%,('"-"^./)
%'
 (6b) 

 !-$-$^.
!(#-:)
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%("-"^

-(%,('"-"^./)
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= 𝑃<𝑃^ %("-"^

(%,('"-"^
− 𝐵<𝐵^𝐷 − 1(0-0^

/(
)'
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where primes denote numbers, carets denote units and 𝜏 is the time unit. 

Next, the equations were divided by the units 𝑆^, 𝑁^, 𝑃^ and 𝐵^ and multiplied by 𝜏 to remove 
these from the left-hand side of the equations: 

 	!&-

!#-
= ;&/

&^
− 𝑆<< 𝜏𝐷 − 𝜏𝑁<𝑁^ %%&-

-($,%'&-&^./%
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-(%,('"-"^./)
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 !0-

!#-
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  (7d) 

Then we choose units to eliminate parameters (𝜏 = 5
?
, 𝑆^ = 𝐾&,", 𝑁^ = 𝐾",$, 𝑃^ =

(%,(/)
%'

/)
('

 and 

𝐵^ = 𝐾",$𝑌0 "4
) to give: 
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 !&-
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Finally, we identified seven independent, dimensionless parameters of Model 6: 

 DP1  𝜇"< =
%%
?

  

 DP2  𝜇$< =
%(

?/)
('
 

 DP3  𝑘$< =
1(

?/(
)'
 

 DP4  𝑚< = )
?

 

 DP5  𝑆,< =
&/
($,%

 

 DP6  𝐾@< =
(%,(

($,%/%
$'
 

 DP7  𝑌0∗$< =	𝑌$
04
𝑌0

$4
  

to give dimensionless ODEs: 

 !&
!#
= 𝑆,< − 𝑆 −

&"%%
- (0

-

5'&
  (9a) 

 !"
!#
= &"%%

-

5'&
− 𝑁 − "$%(

-

5'"
  (9b) 

 !$
!#
= 𝑘$< 𝐵𝑌0∗$< − (1 +𝑚<)𝑃 − "$%(

-

5'"
 (9c) 

 !0
!#
= "$%(

-

5'"
− 𝐵 − 𝑘$< 𝐵 (9d) 

Four of the seven dimensionless parameters (DP1 – DP4) are related to the dilution rate of 
the system as they are ratios of rates relating to the four intrinsic biological processes 
occurring: prey growth (DP1), predation of prey to form a bdelloplast (DP2), maturation of that 
bdelloplast into new predators (DP3) and predator mortality (due to starvation – DP4). 
The other three parameters are mass ratios. 𝑆,<  (DP5) is the ratio of substrate concentration 
entering the chemostat to the prey 	𝐾-value. 𝐾@<  (DP6) is the ratio of predator and prey 𝐾-
values, adjusted for the economy with which the prey converts substrate. The final parameter 
𝑌0∗$<  (DP7) is the burst size of the Bdellovibrio, i.e., the number of new predators formed from 
a single bdelloplast. 

Analytical Determination of Steady States 
Simulating the ODE system tracks population densities over time but the numerical integration 
can fail or be relatively slow and dependent on an appropriate choice of (sets of) initial 
conditions. Analytical treatment of the ODEs is an alternative that avoids these 



Summers & Kreft Supplementary information Predation strategies of Bdellovibrio 

 19 

disadvantages, but results may not be valid far from steady states. We calculated all the 
nullclines of the ODE system. Each nullcline is the set of parameter values for which a 
particular differential equation equals zero (making the variable described by that equation 
constant in time). Where all the nullclines intersect, all of the variables are constant, so the 
system is in a steady state (stable or unstable). Calculating steady states was much quicker 
than simulation (numerical solution of the system), making it feasible to study how the steady 
state varied over a very large range of parameter values. 
Analysis showed that for any particular set of parameters, there were up to three steady 
states. One only had substrate present but no organisms. A second steady state had 
substrate and prey, but no predators or bdelloplasts. The final potential steady state had 
substrate, prey and predator co-existing and as a consequence also the bdelloplast. We were 
particularly interested in this co-existence state. To calculate the species values at the co-
existence state, equation 9d was first rearranged to describe 𝐵 in terms of 𝑁 and 𝑃. 

 "$%(
-

5'"
− 𝐵 − 𝑘$< 𝐵 = 0  (10) 

 𝐵 = "$%(
-

(5'")-5'1(
- .

  (11) 

This value was substituted into equation 9c to give: 

 𝑘$<
/)∗(
- "$%(

-

(5'")-5'1(
- .
− (1 +𝑚<)𝑃 − "$1(

-

5'"
= 0  (12) 

Which could be rearranged into: 

 𝑁 = -5')-.-5'1(
- .

1(
- %(

- /)∗(
- 6%(

- -5'1(
- .6(5')-)-5'1(

- .
  (13) 

Equation 9a was used to give 𝑆 in terms of 𝑁: 

 𝑆,< − 𝑆 −
&"%%

- (0
-

5'&
= 0  (14) 

 𝑆7 + 𝑆(1 + 𝑁𝜇"< 𝐾@< − 𝑆,<) − 𝑆,< = 0  (15) 

This quadratic equation has two solutions, however, only the physically possible non-negative 
solution was recorded as a genuine steady state. 

Finally, equation 9b was used to get 𝑃 in terms of 𝑁 and 𝑆: 

 &"%%
-

5'&
− 𝑁 − "$%(

-

5'"
= 0 (16) 

 𝑃 = ;&%%
-

5'&
− 1< (5'")

%(
-  (17) 

 
This meant the three equilibrium points or steady states of the system were, in order 𝑆, 𝑁, 𝑃, 
𝐵: 
Abiotic state: 

(𝑆,< , 0, 0, 0)  
Predator free state (prey and substrate only): 
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⎟⎟
⎞

 

Jacobian Matrix 

The Jacobian matrix is the set of all first order partial derivatives of all differential equations 
of a system with respect to all variables, evaluated at a particular steady state (Fig. S5). It 
represents the linearized system of the non-linear ODEs at a given steady state and is used 
for linear stability analysis because linear systems can be solved. The caveat is that the 
linearization only approximates the system behaviour, and may only be valid near the steady 
state.  The solution consists of sums of exponential functions of the form 𝒙(𝑡) = 𝒗𝑒B# with the 
eigenvalues 𝜆  of the Jacobian matrix in the exponents determining the time evolution of 
perturbations 𝒙(𝑡) of the steady state and therefore the local stability of steady states (22).  
Any complex eigenvalues indicate that the system will display some form of oscillations. If the 
common real part of the complex conjugate eigenvalue pair is negative, the oscillations will 
be damped, and the equilibrium point is a stable focus. While for a positive real part, the 
oscillations are sustained, and the equilibrium point is an unstable node, which may have an 
associated stable limit cycle. If all the eigenvalues are real and negative this indicates a stable 
steady state with the equilibrium point being a stable node. If all eigenvalues are real and at 
least one is positive, the state is unstable, and the equilibrium point is either a saddle node or 
an unstable node. In order to calculate these eigenvalues for various system parameters, the 
Jacobian matrix was determined for the dimensionless equations. The rows of the Jacobian 
matrix were derived for the substrate 𝑆, prey 𝑁, predator 𝑃 and bdelloplast 𝐵 rates of change 
in this order (Eqs. 9a-d) by partially differentiating by 𝑆, 𝑁, 𝑃 and 𝐵 in turn for each column 
(Fig. S5). 
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(18) 

Fig. S5 Jacobian matrix for Model 6 at four species co-existence steady state. Zero entries, circled in brown, indicate 
independence, i.e., changing a variable had no effect on the rate of change of the other variable. Entries that were always 
negative, circled in red, mean that an increase in one variable caused a decrease in the rate of change of the corresponding 
variable. Entries that were always positive, circled in blue, meant that an increase in one variable caused an increase in 
the rate of change of the other. Entries circled in green, could be positive or negative depending on parameter values.  

Each entry in the Jacobian matrix (Eq. 18) describes the effect of a small change in one 
species on the rate of change of another species, when the system was initially at steady 
state. The values on the main diagonal, are the effects of a change in the density of a variable 
on its own rate of change. The eigenvalues of the Jacobian matrix are found using equation 
19, where 𝜆 is an eigenvalue, 𝐽 the Jacobian matrix and 𝐼 the identity matrix (22). 
 𝐽 − 𝜆𝐼 = 0 (19) 
This can in theory be solved analytically, but gives rise to a quartic equation that is intractable 
and has to be evaluated numerically. Instead taking inspiration from the graphical analysis 
method of Rosenzweig and MacArthur (23) we examined the C

C"
 of !"

!#
 entry of the Jacobian 

matrix (Eq. 18) circled in green in Fig. S5. This is the rate of change of the prey nullcline with 
respect to prey density. In a two-dimensional predator-prey system, when this is positive, the 
equilibrium point is unstable, and the result is stable oscillations, resulting from a stable limit 
cycle. When it is negative, the equilibrium point is stable. The point at which the steady state 
of the system goes from being a stable limit cycle, surrounding an unstable node, to damped 
oscillations around a stable node, is a Hopf bifurcation of the system. A four-dimensional 
system, such as described by Model 6 is inherently more complex than a two-dimensional 
system, but similar principles apply. Substituting the equilibrium value of: 
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into the equation for the  C
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 entry in the Jacobian matrix (Eq. 18): 
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Which can only be zero if either 𝑁 = 0, which is not a point at which all four species are co-

existing, as prey density is zero, or when &%%
-

5'&
− 1 = 0. Substituting the equilibrium value for 𝑆  

 𝑆 =
6F5'"%%

′(0
′6&/′G± IF5'"%%

′(0
′6&/′G

+
6J&/′

+

7
 (23) 

into equation 22 gave an equation that could be solved for inflow substrate concentration (𝑆,). 
Inputting the default parameters (Table 1) and a dilution rate of 0.02 h-1 and solving gave a 
negative and thus impossible value for 𝑆, of -0.00607 mg ml-1, indicating that there is no value 
of 𝑆, that, with these parameter values, would make the C

C"
 of !"

!#
 entry in the Jacobian matrix 

zero (or negative). This is not entirely surprising, as this is an unusual four species system in 
which predator and prey densities both decrease when predation events occur and only 
bdelloplast densities increase. 
Fig. 2a shows that the system does in fact undergo Hopf bifurcations. Take as an example 
the series of points indicated by the series of white crosses in Fig. 2a, whose Jacobian matrix 
values and eigenvalues are listed in Table S3. The inflow substrate concentration (𝑆,) was 
set to 0.25 mg ml-1 (and all other parameters to their default values). When the dilution rate 
(𝐷) was set to 0.04 h-1, the predator washed out of the system and only the prey remained 
(Fig. 2a, g). When 𝐷 was reduced to 0.03465 h-1, the predator could multiply fast enough to 
survive within the chemostat and a four species equilibrium point occurred, the eigenvalues 
for which were all real and negative, indicating the equilibrium point was a stable node (Table 
S3 and Fig. 2a, f). When 𝐷 was lowered further to 0.003 h-1, two of the eigenvalues became 
negative real numbers, the other two became a complex conjugate pair, with a positive real 
part, indicating the equilibrium point was an unstable node, with an associated stable limit 
cycle (Table S3 and Fig. 2a, d). Driving 𝐷 still lower to 0.0025 h-1, resulted in the system 
passing through a Hopf bifurcation. The complex conjugate pair of eigenvalues associated 
with the equilibrium point of this system had crossed the imaginary axis and now had negative 
real parts, while the other two eigenvalues were both still negative real numbers, indicating 
the equilibrium point was a stable focus, with associated damped oscillations (Table S3 and 
Fig. 2a, c). 
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Table S3 Eigenvalues and Jacobian matrix of the co-existence state for selected dilution rates. Parameters all had default 
values (Table 1), except 𝑺𝟎 = 0.25 mg ml-1 and 𝑫 was as shown. 

Dilution 
rate (𝐷) 

(h-1) 

Jacobian matrix Eigenvalues Type of 
node 

0.0001 

-5.65x103 -0.105x103 0 0 -5.52 
-3.34 

-
0.0255+0.167i 
-0.0255-0.167i 

Stable 
focus (with 

damped 
oscillations) 

6.83x103 63.4 -2.40 x102 0 
0 -62.0 -84.1 8.72 x102 
0 0.0620 0.2402 -2.4896 

0.0025 

-93.4 -93.1 0 0 -139 
-

0.0540+0.666i 
-0.0540-0.666i 

-19.7 

Stable 
focus (with 

damped 
oscillations) 

112 59.4 -10.1 0 
0 -52.1 -35.1 349 
0 52.1 10.1 -101 

0.003 

-62.5 -90.7 0 0 -117 
7.10 + 57.1i 
7.10 - 57.1i 

-14.2 

Unstable 
node (with 
associated 
limit cycle) 

74.4 58.6 -8.53 0 
0 -50.2 -29.5 291 
0 50.2 8.53 -84.0 

0.02 -1.14 -27.5 0 0 24.0 
-20.0 
-1.04 
0.983 

Unstable 
node 0.168 24.2 -1.78 0 

0 -8.04 -5.78 43.6 
0 8.04 1.78 -13.4 

0.035 

-227 -4.27 0 0 -222 
-12.2 
-0.679 
-0.439 

Stable 
node 

274 4.00 -1.31 0 
0 -0.160 -4.04 25.1 
0 0.160 1.31 -8.16 

 
Dynamic regimes, linear stability analysis and dimensionless equations.  
There was usually a good agreement between the type of regime predicted from the 
eigenvalues of the Jacobian matrix (Table S4) and those observed in simulations (Fig. 2). 
Exceptions were at the boundaries between regimes and in the region predicted by the 
eigenvalues to be linearly unstable, where the simulations resulted in very long-period, 
extreme oscillations. The calculations based on the eigenvalues were using the 
dimensionless form of the ODEs, whilst the simulations were performed using dimensional 
equations. To check that any differences seen were not due to using dimensional or 
dimensionless equations, all scenarios from Fig. 2 were also simulated with dimensionless 
equations, producing identical results (data not shown). Hence, dimensional equations were 
used for all further simulations. 
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Table S4 Possible dynamical outcomes and associated eigenvalues of the predator and prey co-existence state where it 
exists. Predator and prey coexistence implies the presence of the bdelloplast and substrate. Eigenvalues were not 
determined (ND) when not all variables were positive. 

Dynamical regimes Real parts of eigenvalues Imaginary parts of eigenvalues 

Complete washout of all 
bacteria 

N/A as four species co-existence state does not exist 

Prey only survival N/A as four species co-existence state does not exist 
Stable co-existence of all 
species (stable node) 

All negative All zero 

Co-existence of all species 
with damped oscillations 
(stable focus) 

All negative Not all zero 

Co-existence of all species 
with sustained, stable 
oscillations (stable limit cycle) 

At least two positive Not all zero 

Co-existence of all species, 
but linearly unstable (saddle 
node or unstable node) 

At least one positive All zero 
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Protist model 
The population dynamics generated by our model are qualitatively different from those 
generated by typical Lotka-Volterra models for animal populations (24). In Lotka-Volterra 
models, the oscillations are gentle and fairly similar to sine waves, whereas in our model the 
waves are very asymmetric, approach zero very closely and rise and fall abruptly. Such 
extreme oscillations were also seen by Curds and Bazin when they modelled protist predation 
(24), but their oscillations had a much shorter period. We sought to understand the reason for 
the differences in period length by recreating their model, then introducing parameters 
relevant to Bdellovibrio predation (Fig. S6). We found that decreasing the dilution rate, 
decreasing the predator 𝐾-value and reducing the attack rate constant all increased the period 
length. 

Fig. S6 The protist model of predation (24) shows similarly extreme oscillations as the Bdellovibrio model but shorter 
periods. a The protist predation model without predator mortality or the equivalent to a bdelloplast stage gave a similar 
pattern of behaviour to that seen in our model. With a dilution rate (𝐷) of 0.1 h-1, the value used in (24), the oscillatory 
period was shorter than seen in our model. b Reducing 𝐷 lengthened the period. c Adjusting the much higher predator 
𝐾-value of the protist (𝐾5,6 = 1.2 x 10-2 mg dry mass ml-1) to that of Bdellovibrio (𝐾5,6 = 8.6 x 10-4 mg dry mass ml-1) 
lengthened the oscillatory period and reduced the prey recovery, resulting in a different pattern of oscillations. d When 
the attack rate constant was also adjusted from the protist rate (𝜇6 = 0.43 h-1) to that of Bdellovibrio (𝜇6 = 0.38 h-1), the 
original pattern was restored but the period further lengthened. 

Improved prey growth benefits the predator 
Inflow of the substrate for prey growth. The dimensional analysis showed that, in terms of 
qualitative system behaviour, the inflow concentration of the substrate consumed by the prey 
should be seen relative to the 𝐾&," (𝑆,< = 𝑆, 𝐾&,"⁄ ). In essence, this parameter determines the 
productivity of the prey. It might be expected that increasing the amount of nutrients coming 
into a system would be of benefit to all species within that system, especially predators, which 
are at the top of the food chain. On the other hand, increased nutrient levels can destabilise 
an ecosystem, known as the paradox of enrichment effect (25). We sought to determine which 
of these effects would be observed in our system. As varying 𝐾&," would have altered another 
dimensionless parameter, 𝐾@< , we instead varied 𝑆,. Increasing 𝑆, from 0 initially benefitted 
the predator more than the prey and led to a predator maximum (Fig. S7). Increasing 𝑆, 
beyond this led to a drop in predator abundance and a rise in prey abundance until a 
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bifurcation occurred from stable co-existence of predator and prey to a regime of extreme 
oscillations. Once oscillations were seen, further increases in 𝑆, benefitted the prey but not 
the predator (Fig. S7a, b), while the oscillatory period increased to a maximum (Fig. S7c, d). 
Beyond the maximum period, and only for the lower dilution rate, further increases in 𝑆, 
benefitted both the predator and the prey (Fig. S7a).  
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Fig. S7 With increasing inflow substrate concentration (𝑆,), system behaviour underwent a sequence of changes. First, 
predator but not prey abundance increased towards a maximum and dropped thereafter. Then a bifurcation led to 
oscillations with increasing prey but not predator abundance and the period increased to a maximum. Only at the lower 
dilution rate, did the predator eventually benefit. Note predator abundances are shown on a 100-fold magnified scale. 
Top row shows concentrations at steady state or averaged over one oscillatory cycle. Bottom row shows the oscillatory 
period (blue, left axis) and phase shifts (green, right axis) from substrate peak to peak of prey (solid line), free Bdellovibrio 
(dashed line) or bdelloplast (dotted line). 
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Fig. S8 Tragedy of the commons. The prey biomass range for permanence of the predator (robust co-existence with prey) 
shrinks rapidly as the predator’s attack rate constant (𝜇6) increases, as a too effective predator overexploits the prey, 
and then becomes extinct. This large drop in survival range occurs over a small increase in 𝜇6, illustrating the sensitivity 
of the system to 𝜇6 (see Fig. 3). Increased inflow substrate concentration (𝑆,) narrowed the prey biomass range for co-
existence (top row), whilst increased dilution rate (𝐷) expanded the range (panel a and bottom row). Below the blue line, 
the predator is washed out. Above the red line, extreme oscillations occur resulting in bottlenecks and predator extinction 
due to stochastic dynamics. Within the shaded area, permanence occurred. The green line is the biomass ratio between 
an average E. coli and Bdellovibrio and similar to most prey used in laboratory studies or for isolating Bdellovibrio from 
the environment. 

Optimal predator efficiency avoids overexploitation 
𝐾-values of predator and prey. One of the fundamental system parameters identified from the 
dimensional analysis was 𝐾@< =

(%,(
($,%	/%

$'
, the ratio of predator and prey 𝐾-values (𝐾",$  and 

𝐾&," ), scaled by the yield of prey per substrate (𝑌"
&4

). While 𝐾&,"  and 𝑌"
&4

 are better 

understood, 𝐾",$ has hardly been studied. By re-analysing data from the study by Varon & 
Zeigler (5) of a relative of Bdellovibrio, the marine strain BM4, predating Photobacterium 
leiognathi, we were able to calculate an estimate for both 𝜇$ and 𝐾",$. It should be noted that 
this involved a different predator strain predating a different prey species, and as such, this 
system likely has somewhat different attack kinetics. To gain an understanding of the effect 
of these differences we swept through a range of 𝐾",$  values at various inflow substrate 
concentrations (𝑆,). At the lowest 𝑆, values, populations did not cycle and the lowest 𝐾",$ was 
optimal (Fig. S9a). However, at higher 𝑆,,	low 𝐾",$ values resulted in oscillations with reduced 
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average predator levels (Fig. S9b-e). Counterintuitively, raising the 𝐾",$  resulted in a 
bifurcation to a stable co-existence that benefited the predator at the expense of the prey. The 
optimal 𝐾",$ was just above this critical value. Further increases resulted in a slow decline in 
predator density and a sharper increase in prey, until a second threshold was reached leading 
to a prey only steady state (Fig. S9b). As would be expected, increasing 𝑆, increased the prey 
density, resulting in an increase in the 𝐾",$ at which the bifurcations occurred.  

Fig. S9 Predator 	𝐾-value (𝐾5,6): lowest was not always best. a At the lowest inflow substrate concentration	(𝑆,), the 
system did not oscillate and the lowest 𝐾5,6  was best for the predator. b-e At higher 𝑆, , a too low 𝐾5,6  resulted in 
oscillations and reduced predator density. An optimal 𝐾5,6 existed just below the critical value where oscillations stopped. 
Top row shows concentrations at steady state or averaged over one oscillatory cycle. Bottom row shows the oscillatory 
period (blue, left axis) and phase shifts (green, right axis) from substrate peak to peak of prey (solid line), free Bdellovibrio 
(dashed line) or bdelloplast (dotted line). All simulations were performed with a dilution rate of 0.03 h-1.  
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Fig. S10 Optimal predator mortality. Above a critical predator mortality rate, the population densities no longer oscillated, 
prey density dropped, and predator density reached a maximum, which was higher than at zero mortality. At even higher 
mortality, the predator died out, leading to a prey only steady state. At higher substrate inflow concentrations (𝑆,) and 
dilution rates, the predator abundance peak narrowed. Top row shows concentrations at steady state or averaged over 
one oscillatory cycle. Bottom row shows the oscillatory period (blue, left axis) and phase shifts (green, right axis) from 
substrate peak to peak of prey (solid line), free Bdellovibrio (dashed line) or bdelloplast (dotted line).  
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Maturation rate of bdelloplast. We swept through a range of bdelloplast maturation rates (𝑘$) 
from 0.02 to 0.5 mg predator mg bdelloplast-1 h-1 under various inflow substrate 
concentrations (𝑆, ) and dilution rates (𝐷) (Fig. S11). There was obviously a minimal 𝑘$ 
required for predator persistence. There was also a 𝑘$ that was optimal for predator density, 
visible at the higher 𝐷. This optimum was just below the 𝑘$ threshold leading to oscillations 
at higher 𝑆, (Fig. S11). Increasing 𝐷 caused an increase in the minimum value of 𝑘$ required 
for predator survival, but otherwise did not affect the trends seen (Fig. S11a, c). Increasing 𝑆, 
destabilised the system and resulted in oscillations (Fig S11b, d, e, f). Increasing 𝑘$ generally 
reduced the period of oscillations where these occurred (Fig. S11e, f). 

Fig. S11 Varying the maturation rate of the bdelloplast (𝑘$) from 0.02 to 0.5 mg predator mg bdelloplast-1 h-1 had a 
plethora of effects. a, c At low inflow substrate concentrations (𝑆, ), the populations did not oscillate regardless of 
maturation rate. The minimal 𝑘6 for predator persistence and the optimal 𝑘6 are visible in c. b, d At higher 𝑆,, populations 
oscillated above a threshold 𝑘6; the optimal 𝑘6 was just below this threshold (visible in d). a-d Concentrations at steady 
state or averaged over one oscillatory cycle. e, f Oscillatory period (blue, left axis) and phase shifts (green, right axis) from 
substrate peak to peak of prey (solid line), free Bdellovibrio (dashed line) or bdelloplast (dotted line).   
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Bdelloplast burst size. The final dimensionless parameter, 𝑌0∗$< , corresponded to the 
Bdellovibrio burst size, i.e., the number of offspring emerging from a prey cell. Hence, 𝑌0∗$<  
increases with prey cell size. We hypothesised that increased burst sizes would benefit the 
predator as it would be using its prey more economically, whilst lower burst sizes would reflect 
a more wasteful use of prey. Since the two components of 𝑌0∗$< , 𝑌0

$4
 and 𝑌$

04
, were also 

components of other parameters, 𝜇$<  and 𝑘$< , respectively, altering either would change two 
dimensionless parameters. To prevent this, we varied both 𝑌0

$4
 and 𝜇$  at the same time, 

such that their ratio was kept constant. This ensured that 𝑌0∗$<  was varied without altering 𝜇$< . 
We found a minimal and optimal burst size (Fig. S12). The lower the dilution rate, the lower 
the minimal and optimal burst size and the broader the optimum (Fig. S12). Increasing the 
burst size above the optimal value resulted in a bifurcation to extreme oscillations, 
corresponding to a sharp rise in prey and drop in predator average densities, but only at the 
low inflow substrate concentration (𝑆,) . Further increases caused the densities of both 
predator and prey to decline (Fig. S12b, c). At higher 𝑆,, the optimum was very narrow, and 
oscillations did not occur. Contrary to initial expectations, we found that once again, whilst a 
certain burst size is required for predator survival, too large a burst size, i.e. too economic a 
predator, results in a boom in the predator population that cannot be sustained by the prey, 
as it cannot reproduce quickly enough to make up for losses due to predation. 
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Fig. S12 Minimal and optimal burst sizes. Oscillations occur above the optimal burst size, but only at low inflow substrate 
concentrations (𝑆,) (top row) not higher 𝑆, (bottom row). Top and bottom rows show concentrations at steady state or 
averaged over one oscillatory cycle. The burst size for an E. coli prey cell (3.5 predators bdelloplast-1) is indicated by the 
vertical green line. Middle row shows the oscillatory period (blue, left axis) and phase shifts (green, right axis) from 
substrate peak to peak of prey (solid line), free Bdellovibrio (dashed line) or bdelloplast (dotted line) for the scenarios in 
the top row.  
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Global parameter sensitivity analysis 
When parameterising our model, we based our values on literature data from the best-studied 
predator strain (B. bacteriovorus strain HD100) predating the best-studied prey (E. coli 
MG1655) growing on glucose as the sole carbon and energy source (Table 1). Nevertheless, 
some processes such as prey growth are better studied, whilst others such as attack rate 
constant (𝜇$ ) are hardly studied. To understand how much the system behaviour would 
change if the parameters were different due to changes in substrate, prey or predator species, 
we conducted a global sensitivity analysis for each of the parameters identified from the 
dimensional analysis. 
Note it was not possible to vary one of the dimensionless parameters (𝑌0∗$< ) by changing a 
single dimensional parameter without affecting a second dimensionless parameter. Hence, 
we chose to vary each of its components (𝑌0

$4
 and 𝑌$

04
) in turn, resulting in a total of eight 

parameters being varied. Each parameter was increased and decreased by 1% for 10,000 
settings of the other parameters over the ranges given in Table 1 and the relative change of 
substrate concentration or population densities was calculated.  
For most of these parameter sets, a small change of the parameter value caused a 
correspondingly small change in substrate concentration or population densities or no change 
at all (Fig. S13). However, occasionally a 1% change in a parameter led to extreme changes 
in model output of several orders of magnitude (Fig. S14). These extreme sensitivities 
occurred where parameter sets were close to the boundaries of the dynamical regimes, e.g., 
between survival and extinction (cf. Fig. 2a). 
Substrate concentration was only sensitive to the inflow substrate concentration (proportional 
response, Figs. S13a, S14a). Prey density was not sensitive to substrate concentration and 
prey growth kinetics (Monod parameters) but sensitive to predator parameters, particularly 
attack rate constant and biomass burst size where the response was more than proportional 
(Figs. S13b, S14b). Predator densities were also particularly sensitive to the attack rate 
constant but also to the maximal specific prey growth rate and less so to the yield of 
bdelloplast per predator, 𝑌0

$4
 (Figs. S13c, S14c). Predator and bdelloplast densities 

responded similarly to parameter changes apart from the two parameters governing the 
conversion between bdelloplast and predator, i.e., bdelloplast maturation rate 𝑘$ and yield of 
bdelloplast per predator, 𝑌0

$4
 (Figs. S13c, d, S14c, d).   
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Fig. S13 Global sensitivity of a substrate concentration, b prey, c predator and d bdelloplast population densities to small 
changes of a given model parameter (at 10,000 settings of the other model parameters). The distributions of the 10,000 
sensitivities of outcomes to a 1% increase of the given model parameter are shown as box plots. Here, only median (red 
line) and 25th and 75th percentiles (blue lines) are shown; Fig. S14 includes the sometimes orders of magnitude different 
sensitivities outside the box.  
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Fig. S14 Global sensitivity analysis of model parameters as in Fig. S13 but now including all values. At this scale, the blue 
25th and 75th percentiles are indistinguishable from the median in red. Black crosses are sensitivities outside the box and 
sometimes orders of magnitude higher.  
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Fig. S15 Paradox of enrichment. The range of prey to predator biomass ratios enabling permanence or stable co-existence 
(here including the regions of stable co-existence and damped oscillations in Fig. 2a) shrank with increasing productivity 
(inflow substrate concentration - 𝑆,). At higher dilution rates, prey had to be unrealistically large for permanence; also, 
the prey biomass range for permanence shrank. Below the blue line, the predator is washed out. Above the red line, 
extreme oscillations occur resulting in bottlenecks and predator extinction due to stochastic dynamics. Within the shaded 
area, permanence (stable, long-term co-existence) occurred. The green line is the biomass ratio between an average E. 
coli and Bdellovibrio and similar to most prey used in laboratory studies or for isolating Bdellovibrio from the environment. 

Why bacteriophage outcompetes Bdellovibrio 
Under both inflow substrate concentrations (𝑆, ) tested, the bacteriophage outcompeted 
Bdellovibrio (Fig. 5). Compared to Bdellovibrio, the bacteriophage is hampered by an 
increased predator 𝐾 -value (𝐾",$ ), but helped by a lack of mortality, higher attack rate 
constant (𝜇$) and improved kinetics of prey consumption (increased 𝑘$ and burst size). To 
find out which of these advantage(s) allowed the phage to outcompete Bdellovibrio, we ran 
competitions where the phage kept the 𝐾",$  disadvantage and had one or more of the 
advantages. We found that increased burst size (𝑌$

04
) alone was sufficient to allow the phage 

to outcompete the Bdellovibrio (Fig. S16d). Increased attack rate constant (𝜇$) and reduced 
mortality (𝑚 ) were also sufficient, but only in combination (Fig. S16a, b, e). Increased 
maturation rate (𝑘$) was insufficient even in the presence of either an increased 𝜇$ or reduced 
𝑚 (Fig. S16c, f, g). 
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Fig. S16 Competitions between Bdellovibrio and a phage that has one disadvantage, an increased predator 𝐾-value (higher 
𝐾5,6), but one or more compensating advantages. The phage wins if it has a larger burst size (panel d) or a combination 
of immortality and higher attack rate constant (panel e). All competitions were carried out at a dilution rate of 0.02 h-1 
and an inflow substrate concentration (𝑆,) of 0.05 mg ml-1. To enable all data to be shown on the same axis, the phage 
data values were divided by 10, so 1 axis unit represents 10 virions. 

Predator spiking in a batch system 
Williams and co-workers spiked seawater mesocosms with Vibrio parahaemolyticus and 
observed that the naturally resident Halobacteriovorax (a marine predatory bacterium with the 
same lifecycle as Bdellovibrio) spiked in numbers, whilst no resident bacteriophages did (26). 
We used our model, with the dilution rate set to 0 h-1 to mimic the batch culture setting of the 
mesocosm, to explore the response of Bdellovibrio and bacteriophage to a spike in prey 
numbers. We observed that in the absence of bacteriophage, Bdellovibrio densities spiked in 
response to the spike in prey (Fig. S17a). When both Bdellovibrio and bacteriophage where 
present, however, only the bacteriophage spiked in numbers – as expected given our results 
on Bdellovibrio versus phage competitions. Since this is in contrast to the findings in (26), we 
suspect that the mesocosms did not contain any phages able to infect the non-indigenous 
strain of V. parahaemolyticus added to the microcosms. The presence of such phages was 
not demonstrated. 
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Fig. S17 Predator response to a spike in prey in a closed batch system (dilution rate = 0 h-1). 

Co-existence of two predators on one prey 
We found that a predator with a higher attack rate constant (𝜇$) and another with a lower 
predator 𝐾-value (lower 𝐾",$) could co-exist on the same prey assuming that there is a trade-
off between these two parameters (Fig. S18). Depending on the extent of each advantage, 
the predators either co-existed in a steady state (Fig. S18a) or sustained oscillations (Fig. 
S18d). There were two combinations of 𝜇$ and 𝐾",$ that allowed co-existence (Fig. S18e). 
Low inflow substrate concentrations (𝑆,) limited the maximal prey density, hence, the 𝐾",$ 
became the key factor (Fig. S18a, b). At higher 𝑆,  there was more prey, so predators 
encountered prey more often and the 𝜇$ became the key factor (Fig. S18c, d). 
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Fig. S18 Due to a trade-off, a fast attacking predator (high 𝜇6) can co-exist with a low 𝐾-value predator (low 𝐾5,6). Dilution 
rate 0.02 h-1. a, c Competition between predator pair A at two inflow substrate concentrations (𝑆,). b, d Competition 
between predator pair B at the same 𝑆, values. e Details of predator attack rate kinetics for both predator pairs. f, g Attack 
rates for predator pairs A (panel f) and B (panel g), fast predator (blue) and low 𝐾-value predator (red), over a range of 
prey densities. The green line indicates average prey density at low 𝑆, and the gold line at high 𝑆,.  
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