Supplemental Information

Expanding the *Burkholderia pseudomallei* complex with the addition of two novel species: *Burkholderia mayonis* sp. nov. and *Burkholderia savannae* sp. nov.

Running Title: Burkholderia mayonis and B. savannae sp. nov.

Carina M. Hall,^a Anthony L. Baker,^b Jason W. Sahl,^a Mark Mayo,^c Holger C. Scholz,^d Mirjam Kaestli,^c James Schupp,^e Madison Martz,^a Erik W. Settles,^a Joseph D. Busch,^a Lindsay Sidak-Loftis,^a Astrid Thomas,^d Lisa Kreutzer,^d Enrico Georgi,^d Herbert P. Schweizer,^a Jeffrey M. Warner,^b Paul Keim,^a Bart J. Currie,^b David M. Wagner^a#

^aPathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
^bDiscipline of Biomedicine and Australian Institute of Tropical Health and Medicine, James
Cook University, Townsville, Australia
^cMenzies School of Health Research, Darwin, Northern Territory, Australia
^dBundeswehr Institute of Microbiology, Munich, Germany
^eTranslational Genetics and Genomics, Flagstaff, Arizona, USA

MALDI-TOF

Preparations of bacterial isolates (BDU6^T, BDU8, MSMB266^T, MSMB852, BDU18, BDU19) for matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) were done according to the ethanol/formic acid extraction protocol recommended by the manufacturer (Bruker Daltonics) and as previously described (1). Briefly, strains were grown on Columbia agar supplemented with 5% sheep blood then a loopful of bacterial material was evenly dissolved in 300 µl analytical grade water, and 900 µl pure ethanol was added. The cell suspension was centrifuged at $13,000 \times g$ for 2 minutes and the supernatant was discarded. The centrifugation was repeated, and the residual ethanol was discarded. The pellet was air dried and thoroughly resuspended in 5-50 µl 70% formic acid depending on the size, and, finally, an equal volume of acetonitrile was added. After centrifugation at $13,000 \times g$ for 2 minutes, 1 µl of the supernatant was transferred to the MALDI target plate. After air-drying at room temperature 1 µl of matrix solution (saturated solution of α-cyano-hydroxy-cinnaminic acid in 50% aqueous acetonitrile containing 2.5% trifluoroacetic acid) per spot was was applied. MALDI-TOF MS was conducted using a Microflex LT mass spectrometer (Bruker Daltonics) equipped with a nitrogen laser. All spectra were recorded in linear, positive ion mode across a mass/charge ratio (m/z) of 2,000 to 20,000. The acceleration voltage was 20 kV. Spectra were collected as a sum of 240 shots across a spot. Main spectra were calculated from 8 spectra per strain and used for construction of a score oriented dendrogram by using the BioTyper software (version 2.3, Bruker Daltonics). In these analyses B. mayonis sp. nov. and B. savannae sp. nov. strains grouped together with other members of the *B. pseudomallei* complex and with *B.* ubonensis from the B. cepacia complex and (Fig. S4).

Fig. S1. Geographic origin of *B. mayonis* sp. nov. (Badu Island) and *B. savannae* sp. nov. (Acacia Hills, Badu Island, and Robin Falls) isolates from the environment (Google Earth, US Dept of State Geographer, Data SIO, NOAA, US Navy, NGA, GEBCO, Image Landsat/Copernicus, ©2018 Google). Panel B is a zoomed in version of panel A.

Fig. S2. *B. mayonis* sp. nov. (BDU6^T) on four media types after 96 hours of incubation at 25°C. Panels A. Ashdown's Agar; B. Columbia Blood Agar; C. MacConkey Agar; D. Luria-Bertani Agar.

Fig. S3. *B. savannae* sp. nov. (MSMB266^T) on four media types after 96 hours of incubation at 25°C. Panels A. Ashdown's Agar; B. Columbia Blood Agar; C. MacConkey Agar; D. Luria-Bertani Agar.

Fig. S4. Dendrogram demonstrating strain relatedness revealed by MALDI – TOF analysis. *B. mayonis* sp. nov. strains are in blue text while *B. savannae* sp. nov. strains are in green text. Although BDU5 was not described in this study the MALDI-TOF analysis suggests that this may be an additional *B. mayonis* sp. nov. strain and this is further supported by BDU5, BDU6, and BDU8 all reported as putative species 2 in a previous study (2). MSMB264 was also not described in this study but the MALDI-TOF analysis suggests that it may be an additional *B. savannae* sp. nov. strain.

Fig. S5. 16S maximum likelihood phylogeny using unique copies of 16S from *B. mayonis* sp. nov. and *B. savannae* sp. nov. strains, bolded (1,529 bp and 23 sequences). Rooted with *B. ubonensis*.

		B. ma	iyonis		B. sav	B. pseudomallei				
Locus	Region	BDU8	BDU6 ^T	MSMB266 ^T	BDU19	BDU18	MSMB852	K96243	1026b	
BPSS1492	bimA	0.30	0.19	0.31	0.19	0.19	0.19	1.00	1.00	
BPSS1390	T3SS	0.52	0.19	0.53	0.53	0.52	0.53	1.00	1.00	
BPSS1391	T3SS	0.34	0.05	0.33	0.33	0.33	0.33	1.00	1.00	
BPSS1392	T3SS	0.47	0.19	0.45	0.45	0.45	0.45	1.00	1.00	
BPSS1393	T3SS	0.27	0.12	0.29	0.28	0.29	0.28	1.00	1.00	
BPSS1394	T3SS	0.74	0.49	0.74	0.74	0.74	0.74	1.00	1.00	
BPSS1395	T3SS	0.35	0.07	0.36	0.36	0.36	0.36	1.00	1.00	
BPSS1396	T3SS	0.17	0.07	0.18	0.18	0.18	0.18	1.00	1.00	
BPSS1397	T3SS	0.54	0.26	0.53	0.53	0.53	0.53	1.00	1.00	
BPSS1398	T3SS	0.26	0.00	0.28	0.28	0.28	0.28	1.00	0.99	
BPSS1399	T3SS	0.30	0.00	0.28	0.29	0.29	0.29	1.00	1.00	
BPSS1400	T3SS	0.50	0.24	0.49	0.49	0.50	0.49	1.00	1.00	
BPSS1401	T3SS	0.67	0.36	0.68	0.68	0.67	0.68	1.00	1.00	
BPSS1402	T3SS	0.21	0.08	0.21	0.21	0.21	0.21	1.00	0.99	
BPSS1403	T3SS	0.23	0.00	0.21	0.21	0.21	0.21	1.00	1.00	
BPSS1404	T3SS	0.79	0.46	0.79	0.79	0.79	0.79	1.00	1.00	
BPSS1405	T3SS	0.60	0.34	0.60	0.60	0.60	0.60	1.00	1.00	
BPSS1406	T3SS	0.09	0.07	0.11	0.11	0.12	0.12	1.00	0.96	
BPSS1407	T3SS	0.28	0.07	0.30	0.30	0.30	0.31	1.00	0.99	
BPSS1408	T3SS	0.32	0.20	0.32	0.32	0.33	0.32	1.00	1.00	
BPSS1409	T3SS	0.00	0.18	0.16	0.18	0.18	0.17	1.00	0.96	
BPSS1410	T3SS	0.73	0.00	0.72	0.72	0.72	0.72	1.00	1.00	
BPSS0091	T6SS-5	0.21	0.29	0.81	0.81	0.81	0.81	1.00	0.99	

Table S1. The blast score ratios of three virulence genes, *bimA*, the type III secretion system (T3SS), and the type VI secretion system 5 (T6SS-5) across the *B. mayonis* sp. nov. and *B. savannae* sp. nov. strains. The blast score ratios are show where "0" (white) represents the locus fully absent and "1" (red) represents the locus fully present for that strain.

BPSS0092	T6SS-5	0.28	0.41	0.91	0.90	0.91	0.90	1.00	1.00
BPSS0093	T6SS-5	0.28	0.32	0.89	0.89	0.89	0.89	1.00	1.00
BPSS0094	T6SS-5	0.00	0.26	0.85	0.84	0.84	0.84	1.00	1.00
BPSS0095	T6SS-5	0.08	0.00	0.77	0.77	0.77	0.77	1.00	0.99
BPSS0096	T6SS-5	0.06	0.07	0.83	0.84	0.84	0.84	1.00	0.99
BPSS0097	T6SS-5	0.76	0.76	0.98	0.98	0.98	0.98	1.00	1.00
BPSS0098	T6SS-5	0.86	0.86	0.99	0.99	0.99	0.99	1.00	1.00
BPSS0099	T6SS-5	0.69	0.70	0.96	0.96	0.96	0.96	1.00	0.99
BPSS0100	T6SS-5	0.44	0.45	0.89	0.89	0.89	0.89	1.00	0.99
BPSS0101	T6SS-5	0.64	0.64	0.99	0.99	0.99	0.99	1.00	1.00
BPSS0102	T6SS-5	0.39	0.39	0.93	0.93	0.93	0.93	1.00	1.00
BPSS0103	T6SS-5	0.44	0.44	0.91	0.91	0.91	0.91	1.00	1.00
BPSS0104	T6SS-5	0.00	0.00	0.86	0.86	0.86	0.86	1.00	0.99
BPSS0105	T6SS-5	0.28	0.28	0.85	0.86	0.86	0.85	1.00	0.97
BPSS0106	T6SS-5	0.24	0.20	0.82	0.82	0.82	0.82	1.00	1.00
BPSS0108	T6SS-5	0.00	0.00	0.64	0.64	0.64	0.64	1.00	0.99
BPSS0109	T6SS-5	0.00	0.00	0.48	0.47	0.47	0.47	1.00	1.00
BPSS0110	T6SS-5	0.39	0.39	0.92	0.92	0.92	0.92	1.00	0.99
BPSS0111	T6SS-5	0.53	0.53	0.96	0.96	0.96	0.95	1.00	1.00
BPSS0112	T6SS-5	0.65	0.66	0.99	0.99	0.99	0.99	1.00	1.00
BPSS0113	T6SS-5	0.43	0.43	0.93	0.93	0.93	0.93	1.00	1.00
BPSS0114	T6SS-5	0.37	0.36	0.90	0.90	0.90	0.90	1.00	1.00
BPSS0115	T6SS-5	0.05	0.05	0.82	0.82	0.82	0.82	1.00	0.99
BPSS0116	T6SS-5	0.79	0.79	0.92	0.92	0.92	0.92	1.00	1.00
BPSS0117	T6SS-5	0.85	0.14	0.87	0.87	0.87	0.87	1.00	1.00

Table S2. Pairwise matrix of 16S rRNA sequence percent identity and SNPs. Top half of matrix lists the number of SNPs and the bottom half of the matrix lists the percent identity of the 16S rRNA gene sequences. Species: Bma, *Burkholderia mallei*; Bp, *B. pseudomallei*; Bt, *B. thailandensis*; Bo, *B. oklahomensis*; Bh, *B. humptydooensis*; Bm, *B. mayonis* sp. nov.; Bs, *B. savannae* sp. nov.; Bsi, *B. singularis*; Bu, *B. ubonensis*.

	Bo E0 14 7 co py 1	Bo E0 14 7 co py 2	Bo C6 78 6	Bu MS M B2 2 cop y3	Bu MS M B2 2 cop y1	Bu MS M B2 2 cop y2	Bs B D U1 9	Bs MS MB 266 copi es1, 4	Bs MS MB 852 copi es 1-4	Bs B D U1 8 co pie s 1-4	Bs MS MB 266 copi es2- 3	Bsi MS MB 715	B m D U6 co py 1	B m D U6 co pie s2- 4	B m D U8 co pie s1- 3	B m D U8 co py 4	Bma AT CC2 334 4 copy 2	Bma AT CC2 334 4 copy 1	Bp K9 62 43 co py 1	Bp K9 62 43 co py 2	Bh MS M B4 3 cop y2	Bt E2 64	Bh MS M B4 3 cop y1
Bo E0147 copy1		5	2	33	31	32	22	22	22	23	23	30	24	23	21	22	25	24	24	23	26	23	27
Bo E0147 copy2	99 .7		3	31	29	30	20	20	20	21	21	30	24	23	19	20	24	23	23	22	25	21	25
Bo C6786	99 0	99. 8		31	29	30	20	20	20	21	21	28	24	23	19	20	23	22	22	21	24	21	25
Bu MSMB2 2 copy3	.9 97 .8	8 98. 0	98. 0		2	3	22	24	24	23	23	29	31	32	34	35	27	26	24	25	21	26	26
Bu MSMB2 2 copy1	98 .0	98. 1	98. 1	99. 9		1	20	22	22	21	21	27	29	30	32	33	25	24	22	23	19	24	24
Bu MSMB2 2 copy2	97 .9	98. 0	98. 0	99. 8	99. 9		21	23	23	22	22	28	30	31	33	34	26	25	23	24	20	25	25
Bs BDU19	98 .6	98. 7	98. 7	98. 6	98. 7	98. 6		4	4	3	3	23	16	17	20	21	23	22	20	21	22	18	22
Bs MSMB2 66	98 .6	98. 7	98. 7	98. 4	98. 6	98. 5	99. 7		2	1	1	21	20	21	16	17	25	24	22	23	24	20	24

copies1, 4																							
Bs	98	98.	98.	98.	98.	98.	99.	99.		1	1	21	20	21	16	17	25	24	22	23	24	20	24
MSMB8 52 copies	.6	7	7	4	6	5	7	9															
Bs	98	98	98	98	98	98	99	99	99		0	20	19	20	17	18	24	23	21	22	23	19	23
BDU18	5	6	6	5	6	6	8	9	9		U	20	17	20	1 /	10	21	25	21	22	23	17	23
copies 1- 4		Ū	Ũ	C	0	0	0	,	-														
Bs	98	98.	98.	98.	98.	98.	99.	99.	99.	10		20	19	20	17	18	24	23	21	22	23	19	23
MSMB2 66	.5	6	6	5	6	6	8	9	9	0.0													
Copies2-5	00	08	08	08	08	08	08	08	08	08	08		27	20	26	27	17	16	14	15	21	\mathbf{r}	27
DSI MSMR7	90	98.	90. 2	90. 1	90. 2	90. 2	90. 5	98. 6	90. 6	90. 7	90. 7		21	20	20	21	1 /	10	14	13	51	LL	21
15 15	.0	0	2	1	2	2	5	0	0	/	/						•	10		10	• •		10
Bm	98	98.	98.	98.	98.	98.	99.	98.	98.	98.	98.	98.		1	12	13	20	19	17	18	29	14	19
BDU6 copy1	.4	4	4	0	I	0	0	7	7	8	8	2											
Bm	98	98.	98.	97.	98.	98.	98.	98.	98.	98.	98.	98.	99.		11	12	19	18	18	17	28	13	18
BDU6 copies2-4	.5	5	5	9	0	0	9	6	6	7	7	2	9										
Bm	98	98.	98.	97.	97.	97.	98.	99.	99.	98.	98.	98.	99.	99.		1	22	21	21	20	27	12	19
BDU8 copies1-3	.6	8	8	8	9	8	7	0	0	9	9	3	2	3									
Bm	98	98.	98.	97.	97.	97.	98.	98.	98.	98.	98.	98.	99.	99.	99.		23	22	22	21	28	13	20
BDU8 copy4	.6	7	7	7	8	8	6	9	9	8	8	2	1	2	9								
Bma	98	98.	98.	98.	98.	98.	98.	98.	98.	98.	98.	98.	98.	98.	98.	98.		1	3	2	26	14	17
ATCC23 344	.4	4	5	2	4	3	5	4	4	4	4	9	7	8	6	5							
$\frac{1}{2}$																							
Bma	08	90	90	98	90	90	99	90	08	98	98	00	90	99	90	98	00.0		2	1	25	13	16
	70 4	5	6	3	70. 4	70. 4	6	70. 4	70. 4	5	5	0	8	8	6	6	<i>)).)</i>		2	1	23	15	10
344	.+	5	0	5	т	7	0	т	7	5	5	0	0	0	0	0							
copy1	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00.8	00.0		1	25	12	16
вр	98	98.	98.	98. ₄	98.	98. F	98. 7	98.	98.	98.	98.	99. 1	98.	98.	98.	98.	99.8	99.9		1	23	15	10
K96243 copy1	.4	3	0	4	0	3	/	0	0	0	0	1	У	ð	0	0							

Вр	98	98.	98.	98.	98.	98.	98.	98.	98.	98.	98.	99.	98.	98.	98.	98.	99.9	99.9	99.		24	12	15
K96243	.5	6	6	4	5	4	6	5	5	6	6	0	8	9	7	6			9				
copy2																							
Bh	98	98.	98.	98.	98.	98.	98.	98.	98.	98.	98.	98.	98.	98.	98.	98.	98.3	98.4	98.	98.		15	12
MSMB4	.3	4	4	6	8	7	6	4	4	5	5	0	1	2	2	2			4	4			
3 copy2																							
Bt E264	98	98.	98.	98.	98.	98.	98.	98.	98.	98.	98.	98.	99.	99.	99.	99.	99.1	99.1	99.	99.	99.		7
	.5	6	6	3	4	4	8	7	7	8	8	6	1	1	2	1			1	2	0		
Bh	98	98.	98.	98.	98.	98.	98.	98.	98.	98.	98.	98.	98.	98.	98.	98.	98.9	99.0	99.	99.	99.	99.	
MSMB4	.2	4	4	3	4	4	6	4	4	5	5	2	8	8	8	7			0	0	2	5	
3 copy1																							

NCBI assembly			Assembly
accession number	Burkholderia species	Strain ID	type
GCA_001522635.2	B. mayonis sp. nov.	BDU8	Complete
GCA_001523745.2	B. mayonis sp. nov.	BDU6	Complete
GCA_001462435.1	B. humptydooensis	MSMB122	Chromosome
GCA_002888035.1	B. humptydooensis	MSMB121	Contig
GCA_002888095.1	B. humptydooensis	MSMB122	Contig
GCA_000170355.1	B. oklahomensis	EO147	Contig
GCA_000755985.1	B. oklahomensis	EO147	Complete
GCA_001522105.2	B. oklahomensis	EO147	Complete
GCA_000170375.1	B. oklahomensis	C6786	Contig
GCA_001522135.2	B. oklahomensis	C6786	Complete
GCA_000959365.1	B. oklahomensis	C6786	Complete
GCA_900608545.1	B. oklahomensis	LMG_23618	Contig
GCA_900446275.1	B. oklahomensis	NCTC13388	Contig
GCA_000011545.1	B. pseudomallei	K96243	Complete
GCA_001524445.2	B. savannae sp. nov.	MSMB0266	Complete
GCA_001546955.1	B. savannae sp. nov.	BDU19	Contig
GCA_001546915.1	B. savannae sp. nov.	BDU18	Contig
GCA_001524625.2	<i>B. savannae</i> sp. nov.	MSMB0852	Complete
GCA_001523725.1	B. singularis	TSV85	Contig
GCA_900176645.1	B. singularis	LMG_28154	Contig
GCA_000012365.1	B. thailandensis	E264	Complete
GCA_000567925.1	B. thailandensis	2002721723	Complete
GCA_002588555.1	B. thailandensis	FDAARGOS_425	Contig
GCA_002888235.1	B. thailandensis	2002721723	Contig
GCA_000959425.1	B. thailandensis	2002721643	Complete
GCA_002891195.1	B. thailandensis	FDAARGOS_240	Contig
GCA_002891115.1	B. thailandensis	FDAARGOS_236	Contig
GCA_003568605.1	B. thailandensis	E264	Complete
GCA_000152285.1	B. thailandensis	E264	Chromosome
GCA_002888315.1	B. thailandensis	2002721643	Contig
GCA_000567945.1	B. thailandensis	E444	Complete
GCA_002888205.1	B. thailandensis	E0444	Contig
GCA_003614835.1	B. thailandensis	FDAARGOS	Complete
GCA_000706745.1	B. thailandensis	USAMRU_Malaysia20	Complete
GCA_001555555.1	B. thailandensis	Malaysia20	Contig
GCA_003614815.1	B. thailandensis	FDAARGOS_241	Complete
GCA_000877335.1	B. thailandensis	Phuket4W1	Scaffold

Table S3. List of the 66 assemblies used to construct the WGS phylogeny for Figure 1.

GCA_002888355.1	B. thailandensis	Phuket4W1	Contig
GCA_003020025.1	B. thailandensis	FDAARGOS_237	Complete
GCA_000765375.1	B. thailandensis	E254	Complete
GCA_002891095.1	B. thailandensis	FDAARGOS_244	Contig
GCA_002888335.1	B. thailandensis	E254	Contig
GCA_000170395.1	B. thailandensis	Bt4	Contig
GCA_000764595.1	B. thailandensis	MSMB59	Complete
GCA_001718595.1	B. thailandensis	MSMB59	Complete
GCA_001524345.1	B. thailandensis	MSMB60	Contig
GCA_001524325.1	B. thailandensis	E1	Contig
GCA_000170315.1	B. thailandensis	TXDOH	Contig
GCA_000808035.2	B. thailandensis	2003015869	Complete
GCA_001718295.1	B. thailandensis	2003015869	Complete
GCA_002888425.1	B. thailandensis	TXDOH	Contig
GCA_000179515.1	B. thailandensis	E555	Contig
GCA_002803565.1	B. thailandensis	2_1	Contig
GCA_000567905.1	B. thailandensis	H0587	Complete
GCA_002888395.1	B. thailandensis	H0587	Contig
GCA_003020185.1	B. thailandensis	FDAARGOS_238	Complete
GCA_001718615.1	B. thailandensis	2002721121	Complete
GCA_000959605.1	B. thailandensis	34	Complete
GCA_002891155.1	B. thailandensis	FDAARGOS_243	Contig
GCA_001718635.1	B. thailandensis	2002721643	Complete
GCA_001555485.1	B. thailandensis	2002721621	Contig
GCA_000170495.1	B. thailandensis	MSMB43	Contig
GCA_000266985.1	B. thailandensis	MSMB43	Scaffold
GCA_000385525.1	B. thailandensis	MSMB121	Complete
GCA_002386205.1	B. thailandensis	FDAARGOS_426	Complete
GCA_000959245.1	B. ubonensis	MSMB22	Complete

References

- Mellmann A, Cloud J, Maier T, Keckevoet U, Ramminger I, Iwen P, Dunn J, Hall G, Wilson D, LaSala P, Kostrzewa M, Harmsen D. 2008. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. Journal of Clinical Microbiology 46:1946-1954.
- Sahl JW, Vazquez AJ, Hall CM, Busch JD, Tuanyok A, Mayo M, Schupp JM, Lummis M, Pearson T, Shippy K, Colman RE, Allender CJ, Theobald V, Sarovich DS, Price EP, Hutcheson A, Korlach J, LiPuma JJ, Ladner J, Lovett S, Koroleva G, Palacios G, Limmathurotsakul D, Wuthiekanun V, Wongsuwan G, Currie BJ, Keim P, Wagner DM. 2016. The Effects of Signal Erosion and Core Genome Reduction on the Identification of Diagnostic Markers. mBio 7:e00846-16. <u>https://doi.org/10.1128/mBio.00846-16</u>.