Title

N-glycosylation of a cargo protein C-terminal domain recognized by the type IX secretion system in *Cytophaga hutchinsonii* affects protein secretion and localization

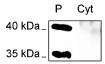
Running title

Protein N-glycosylation in Cytophaga hutchinsonii

Authors

Shuaishuai Xie, Yahong Tan, Wenxia Song, Weican Zhang, Qingsheng Qi, Xuemei Lu#

Author's affiliation


State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237,

China

Address Correspondence to: Xuemei Lu, <u>luxuemei@sdu.edu.cn</u>

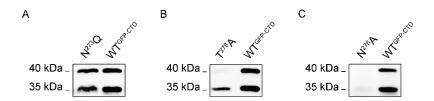

Supplemental Material

Fig. S1

Fig. S1 The modification of the GFP-CTD_{CHU_2708} fusion protein occurred in the periplasm. The periplasmic and cytoplamic proteins (Cyt) of the WT^{GFP-CTD} separated by SDS-PAGE, then identified by Western blotting with the anti-GFP antibody.

Fig. S2

Fig. S2 Site-directed mutagenesis of CTD_{CHU_2708}. (A) The mutation of N273 in CTD_{CHU_2708} to glutamine. (B) The changing of T278 of CTD_{CHU_2708} to alanine. (C) The mutation of N276 of CTD_{CHU_2708} to alanine. The periplasmic space proteins of the WT^{GFP-CTD}, N²⁷³Q, T²⁷⁸A, and N²⁷⁶A strains were identified by Western blotting with the anti-GFP antibody.

Fig. S3

Fig. S3 The structural prediction of CTD_{CHU 2708}. The sites N273, N276, and N296

are shown.