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Supplementary Notes 1 

Supplementary Note 1. Additive model of driver advantages. 2 

In the main text, we focused on presenting a saturated model of driver advantages, assuming 3 

that each of the ccRCC drivers endowed a tumour voxel with one of the three possible levels 4 

of growth probabilities and that, once acquiring one of the strongest drivers, the growth 5 

probability of a tumour voxel became saturated. 6 

Separately, we evaluated an additive model of driver advantages (Extended Data Figure 2a, 7 

see Methods), assuming that acquisition of each ccRCC driver added to the growth 8 

probability of a tumour voxel and the relative selective advantages of drivers were defined 9 

according to their association with Ki67 score. Three scenarios were considered to reflect 10 

increasing amount of growth probabilities added by drivers on average (Extended Data 11 

Figure 2b).  12 

For a qualitative comparison between two models of driver advantages, we focused on 13 

examining the clonal diversity observed at the end of simulation for conditions of driver 14 

acquisition probability highlighted for Surface Growth model (!!"#$%" = 2 × 10&') and for 15 

Volume Growth model (!!"#$%" = 1 × 10&() in the Main Text (Main Figure 2). Consistent 16 

with the finding discussed in the main text, for all of these scenarios, Volume Growth models 17 

(Extended Data Figure 2c), even with a greater !!"#$%" employed, resulted in less extensive 18 

subclonal diversification than Surface Growth models (Extended Data Figure 2d). In both 19 

growth models, greater average growth probabilities added by drivers led to more extensive 20 

diversification. Additionally, in the Volume Growth model, clonal proportions across 21 

repeated simulations with the second scenrio (i.e., min(')) = 	0.015, ∆') = 0.005) were 22 

similar to those highlighted in the Main Text (Main Figure 2c (ii)), suggesting a minimal 23 



impact of the implementation of selective advantage on the observed clonal diversity at the 1 

end of simulation. In constrast, in the Surface Growth model, repeated simulations with the 2 

second scenario displayed a greater extent of subclonal diversification (i.e., smaller size of 3 

largest subclone “subclone 1”) than those highlighted in the Main Text (Main Figure 2c 4 

(iii)), suggesting that Surface Growth mode could be more sensitive to the implementation of 5 

selective advantage conferred by drivers, with greater extent of diversification in additive 6 

model of driver advantages. 7 

 8 

Supplementary Note 2. Growth modes impact the spatial patterns of fitness. 9 

In the main text, we presented the impact of growth modes on spatial patterns of fitness 10 

(Main Figure 2). Here, we discuss this finding in greater depth. In the model, we defined the 11 

“fitness” of a tumour voxel as its growth probability dependent on the list of drivers it 12 

harbours (See Methods). Then the fitness of each tumour voxel within a tumour slice was 13 

mapped (Supplementary Figure 3). In Surface Growth models with saturated driver 14 

advantages, bulging regions along the tumour contour were represented by outgrowing 15 

subclones with much greater fitness than adjacent tumour areas, while in those with additive 16 

driver advantages, many subclones, with small differences in fitness, coexisted at the tumour 17 

frontier. By contrast, Volume Growth models with saturated driver advantages showed few 18 

subclones with high fitness, while those with additive driver advantages generally lacked 19 

subclones with high fitness. With the incorporation of necrosis, less fit clones became extinct 20 

while fitter clones were selected to dominate at the tumour centre, in keeping with our recent 21 

study (Zhao Y., et al. Nat. Ecol. Evol. (2021)). 22 

 23 



The spatial features of fitness were quantitatively analysed by taking samples from the 1 

simulated tumours (see Methods; Supplementary Figure 4-5). For Volume Growth models, 2 

the presence of necrosis generally enhanced the fitness in both tumour margin and centre, 3 

with a pronounced effect in models with implementation of saturated driver advantage. For 4 

Surface Growth models, the tumour margin showed high fitness and was not impacted by 5 

necrosis; however, the fitness of the tumour centre was dramatically enhanced when necrosis 6 

was incorporated. 7 

Collectively, we found that necrosis in the simulated tumours could lead to the selection of 8 

fitter subclones with greater growth probabilities in the tumour centre, consistent with our 9 

experimental observation that aggressive subclones were enriched in the tumour centre (Zhao 10 

Y., et al. Nat. Ecol. Evol. (2021)).  11 

  12 

Supplementary Note 3. Spatial homogenenisation of subclones abolishes 13 

characteristic patterns of microdiversity hotspots. 14 

In the main text, we presented that microdiversity hotspots were increasingly frequent 15 

towards the tumour margin and the cumulative probablility distribution follows power law 16 

scaling (Main Figure 3). Importantly, the observed power law distribution exhibited an 17 

exponent much greater than the value as would be expected from a uniform spatial 18 

distribution in a circular area in two dimensions (2D) (Extended Data Figure 5a-b), 19 

suggesting a preferential enrichment of microdiversity hotspots at the margin.  20 

Here, we present additional analyses supporting that the spatial organisation of subclones 21 

underlied the observed chracterisatic scaling patterns of microdiversity hotspots. Briefly, we 22 

spatially homogenenised the patterns of subclones within the a tumour slice. Importantly, the 23 

proportions of subclones in a tumour slice were kept unchanged but the spatial organisation 24 



of subclones was entirely lost (Extended Data Figure 5c-d). Interestingly, this spatial 1 

homogenenisation was sufficient to reduce the scaling exponent to approximately 2, as would 2 

be expected via random sampling of spots from a 2D circular area (Extended Data Figure 3 

5e-f). Collectively, these data together with analyses presented in the main text (Main Figure 4 

4) suggested the importance of the emergent spatial organisation of subclones, as a 5 

consequence of tumour growth in a spatial context, in shaping the scaling patterns of 6 

microdiversity hotspots. 7 

 8 

Supplementary Note 4. Spatial features of microdiversity in an expanded set of 9 

growth models. 10 

In the main text, we presented the spatial patterns of microdiversity in Surface and Volume 11 

Growth models with saturated model of driver advantages in the absence of necrosis (Main 12 

Figure 3). 13 

Here, we further discuss the spatial patterns of microdiversity in an expanded set of growth 14 

models, considering the implementation of additive driver advantages and incorporation of 15 

necrosis (see Methods; Extended Data Figure 6). Models with different implementations of 16 

driver advantages showed similar profiles of probability density distributions characterising 17 

the spatial locations of microdiversity hotspots, in the absence of necrosis. With necrosis 18 

incorporated, microdiversity hotspots were largely enriched in the non-necrotic tumour 19 

margin. However, Surface Growth models, especially those with saturated driver advantages, 20 

clearly showed a bi-modal probability density distribution indicating the enrichment of 21 

additional microdiversity hotspots at the necrotic tumour centre. This finding was in 22 

accordance with our recent finding that harsher environments at the tumour interior could 23 



select aggressive clones and potentiate continual subclonal diversification (Zhao Y. et al. Nat. 1 

Ecol. Evol. (2021)). 2 

 3 

Supplementary Note 5. Scaling features of microdiversity in ccRCC tumours are 4 

associated with clinical behaviours. 5 

In the main text, we presented that, corroborating the modelling observations, 606 regions 6 

with at least 2 clones from 54 tumours, defined as microdiversity hotspots in the tumour data, 7 

were increasingly frequent towards the tumour margin (Main Figure 3). Furthermore, the 8 

cumulative probability distribution characterising the spatial locations of these regions 9 

followed a power law distribution, consistent with the model, and the exponent of the power 10 

law was associated with clinical behaviours, based on previously published annotations 11 

(Turajlic S., et al. Cell (2018), Supplementary Table 2).  12 

Here, we present the analysis that established this association. When the 54 tumours were 13 

split into two subsets according to whether the patient has relapsed (270 tumour regions) or 14 

not (336 tumour regions), the subset where the patient has relapsed showed a significantly 15 

steeper gradient of spatially distributed microdiversity hotspots (i.e., larger power law 16 

exponent) than the subset where the patient hasn’t (Supplementary Figure 7). Additionally, 17 

when the 54 tumours are split into three subsets according to the rates of disease progression 18 

– attenuated progression (265 tumour regions), rapid progression (65 tumour regions), and no 19 

progression (276 tumour regions), the subset with attenuated progression showed the steepest 20 

gradient of spatial distribution of microdiversity hotspots, while subsets with either lack of or 21 

rapid progression showed shallow gradient (Supplementary Figure 7).  22 

These data suggested that tumours mapped to a poorer clinical outcome are typically 23 

associated with a steeper spatial distribution of microdiversity hotspots and enrichment 24 

towards the tumour margin. Furthermore, together with the macrodiversity and 25 



microdiversity analysis in the simulated tumours (Main Figures 2-3), we conclude that 1 

different growth modes correspond to tumours with distinct patterns of evolution and 2 

progression. Surface Growth models, showing enrichment microdiversity hotspots towards 3 

the margin, are mapped to tumours with branched evolution and attenuated progression; 4 

Volume Growth models, showing more uniform distribution of microdiversity hospots, are 5 

mapped to either indolent tumours with lack of evolution and progression or aggression 6 

tumours with punctuated evolution and rapid progression. 7 

 8 

Supplementary Note 6. Frequency of parallel mutational events in ccRCCs 9 

In the main text, we presented the spatial patterns of parallel mutational events with limited 10 

clonal expansion (Main Figure 4). Here, we also briefly report the frequency of parallel 11 

evolution events in the cohort. 12 

The observation of parallel evolution in ccRCCs was reported previously (Turajlic S., et al. 13 

Cell (2018)). Due to the limits of spatial sampling and sequencing, parallel gene mutations 14 

were detected in 28 out of 66 tumours (Supplementary Table 3). A total of 71 of 114 15 

parallel events in 18 tumours were alterations in known ccRCC drivers, including ARID1A, 16 

BAP1, KDM5C, PBRM1, PTEN, SETD2, and VHL. Among these drivers, parallel evolution 17 

of alterations in PBRM1, SETD2, and BAP1 were most frequent, in 6, 5, and 4 tumours, 18 

respectively. Consistent with previous observations (Turajlic S., et al. Cell (2018)), parallel 19 

mutational events could span a variable number of patient tumour (PT) regions. For example, 20 

in K520 (Main Figure 5), multiple parallel events of PBRM1 mutations co-existed, with one 21 

highly prevalent event spanning more than 10 PT regions and additional events displaying 22 

less clonal expansion. 23 



Supplementary Note 7. Evolutionary replay in silico suggests that budding may 1 

inform evolutionary trajectories 2 

In the main text, we presented that the appearance of budding structures in Surface Growth 3 

models preceded the subsequent subclonal outgrowth and diversification (Main Figure 5). 4 

This suggested that the evolutionary trajectories could become more constrained after the the 5 

emergence of budding structures. Here, we explored this by performing evolutionary replay 6 

simulations. 7 

Specifically, an in-silico tumour under Surface Growth was prepared for evolutionary replay 8 

(Extended Data Figure 9, Extended Data Figure 10a). Using the historical state of this 9 

tumour at a particular time point as a common starting state, 50 new in-silico tumours were 10 

simulated (Extended Data Figure 10b). While re-grown tumours starting from earlier 11 

historical states displayed markedly divergent patterns of subclones in the end (Extended 12 

Data Figure 10c (i)), those grown from historical states collected from later stages, 13 

especially after the emergence of the budding structure, appeared very similar to the original 14 

pattern of subclones (Extended Data Figure 10c (ii-iv)). Quantitatively, this was evidenced 15 

by a decreasing divergence in Shannon diversity at the end of simulations after evolutionary 16 

replay as a function of the size of the starting tumour state (Extended Data Figure 10d). 17 

Similarly, this trend of decreasing divergence was noted in in-silico tumours under Surface 18 

Growth with a greater probability of driver acquisition (Extended Data Figure 10e) as well 19 

as those under Volume Growth (Extended Data Figure 10f). This finding suggested that 20 

budding structures in a tumour under Surface Growth could indicate future evolutionary 21 

trajectories. 22 

 23 



Supplementary Note 8. Considerations for the selection of driver acquisition rates in 1 
the coarse-grained model 2 

For a number of reasons, we believe that choosing an exact driver acquisition rate in this 3 

coarse-grained model is fundamentally difficult and may be unnecessary for our aim of study:  4 

Firstly, and most importantly, employing a mutation rate based on a “macroscopic” metric of 5 

evolutionary outcome via inference (e.g., as in Williams et al. (2016) Nature Genetics) may 6 

well lead to the risk of generating circular arguments in our study. As discussed in other parts 7 

of the manuscript (e.g., Main Figure 5, Extended Data Figure 8), Volume Growth and 8 

Surface Growth models show very different time scales of growth and spatial extent and 9 

uniformity of driver accumulation. These two models would apparently differ in the inferred 10 

mutation rates given the same “macroscopic” metric. For example, to achieve the same 11 

Shannon diversity at the end, it requires a much higher driver acquisition rate for Volume 12 

Growth than for Surface Growth (Main Figure 2e). Thus, we chose to contrast two models 13 

always at the same driver acquisition rate, for a range of values, and with the same 14 

implementation of driver advantages. 15 

Secondly, a mapping relationship from mutation rate per cell division to the effective 16 

mutation rate at the tumour voxel level is lacking and would be an interesting question for 17 

future study. With our coarse-grained approach, we focused on large-scale clonal dynamics 18 

and therefore neglected finer-scale clonal dynamics within each tumour voxel as well as the 19 

impact of cell migratory dynamics, which will be needed for establishing a mapping 20 

relationship. Recent work started to shed lights on this question by simulating clonal 21 

dynamics under domains with varying sizes and found that the spatial constraint could 22 

influence the type of realised evolution. i.e., neutral vs. Darwinian evolution (West et al 23 

Nature Communications (2021)). 24 



Thirdly, the ways to collecting samples could make inference of evolutionary parameters 1 

difficult. As demonstrated in Chkhaidze et al PLoS Comput Biol. (2019), spatial tumour 2 

growth and specific sampling procedures could influence the inferred type of evolution. 3 

Given that in the TRACERx Renal cohort, the number and spatial distribution of regional 4 

samples vary among tumours, it’s difficult to dissect the difference in mutation rates from 5 

these factors.  6 

With all the considerations above, we decided to examine our model outputs across a range 7 

of driver acquisition rates and evaluate rates that range from very small value 8 

(Supplementary Figure 1) where both growth models lack macrodiversity to large value 9 

where both growth models show high macrodiversity. While this choice doesn’t inform us of 10 

the mutation rates in ccRCCs, which is not the focus of our study, we are able to consistently 11 

contrast outcomes in clonal diversification between Volume Growth and Surface Growth 12 

models at the same driver acquisition rate, across a wide range of values.  13 



Supplementary Figure Legends  1 

 2 

Supplementary Figure 1. Clonal diversity in models with small driver acquisition 3 

probabilities (!!"#$%"). 4 

(a-b) Whole-tumour CCF of parental and largest subclones in in-silico tumours under Surface 5 

Growth (a) and Volume Growth (b), respectively, under the indicated parameter conditions. 6 

“Parental (3p loss, VHL)” clone is shown along with up to five subclones with a whole-7 

tumour CCF of  0.01 or higher. All remaining subclones are represented in the “other” group. 8 

(d) Whole-tumour CCF of parental clone in in-silico tumours under Volume Growth and 9 

Surface Growth with varying driver acquisition probabilities. N = 100 for each condition. 10 

(e) Shannon diversity index in in-silico tumours under Volume Growth and Surface Growth 11 

with varying driver acquisition probabilities. N = 100 for each condition. 12 

Statistical annotations in (d-e) reflect two-sided Wilcoxon tests: “****” indicates , ≤13 

0.0001. 14 

 15 

Supplementary Figure 2. Clonal diversity in models with zero or small selective 16 

coefficient (").  17 

(a-b) Reproduced from Main Figure 2a-b for reference to parameter domains. (a) Schematic 18 

figure for the whole-tumour analysis of clonal diversity. (b) Heatmap showing the average 19 

number of clones (i.e., parental clone and subclones) with respect to driver acquisition 20 

probability and selective coefficient in the Volume Growth (i) and Surface Growth (ii) models. 21 



The average is calculated from 50 in-silico tumours per parameter condition. Clones with a 1 

whole-tumour CCF of at least 0.05 are counted for this analysis. 2 

(c-d) Whole-tumour CCF of parental clone and largest subclones in in-silico tumours under 3 

Surface Growth and Volume Growth, respectively, under the indicated parameter conditions. 4 

“Parental (3p loss, VHL)” clone is shown along with up to five subclones with a whole-tumour 5 

CCF of  0.01 or higher. All remaining subclones are represented in the “other” group. 6 

 7 

Supplementary Figure 3. Representative examples of spatial maps of subclones and 8 

fitness under various model conditions.  9 

Implementations without or with necrosis are shown at top or bottom, respectively. 10 

Subclones are shown in randomly generated colours, while parental clone is shown in grey in 11 

spatial maps of subclones. Higher fitness values are reflected by greater intensities of purple. 12 

Driver acquisition probabilities in these representative simulations are !!"#$%" = 2 × 10&'. 13 

 14 

Supplementary Figure 4. Spatial features of tumour fitness in models with saturated 15 

driver advantages.  16 

(a) Mean fitness of marginal-most (10%) of tumour voxels. (b) Mean fitness of central-most 17 

(10%) tumour voxels. (c) Ratio of the mean fitness of central-most (10%) tumour voxels to 18 

that of marginal-most (10%) tumour voxels (“Ratio_C2M”). Panels (i)-(iii) in (a-c) reflect 19 

runs with varying driver acquisition probabilities. (d) Mean fitness of randomly sampled 20 

(10%) tumour voxels against the Ratio_C2M. Data points in (d) reflect sets of simulations 21 



with varying growth patterns (colour), driver acquisition rates (size), and implementation of 1 

necrosis (symbol). N = 50 simulations for each condition. 2 

 3 

Supplementary Figure 5. Spatial features of tumour fitness in models with additive 4 

driver advantages.  5 

(a) Mean fitness of marginal-most (10%) tumour voxels. (b) Mean fitness of central-most 6 

(10%) of tumour voxels. (c) Ratio of mean fitness of central-most (10%) tumour voxels to 7 

that of marginal-most (10%) tumour voxels (“Ratio_C2M”). Panels (i)-(iii) in (a-c) reflect 8 

runs with varying driver acquisition probabilities. (d) Mean fitness of randomly sampled 9 

(10%) tumour voxels against the Ratio_C2M. Data points in (d) reflect sets of simulations 10 

with varying growth patterns (colour), driver acquisition rates (size), and implementation of 11 

necrosis (symbol). N = 50 simulations for each condition. 12 

 13 

Supplementary Figure 6. Quantile-Quantile (Q-Q) plots of observed distribution of 14 

microdiversity hotspots versus the fitted power law distribution.  15 

From left to right represent Surface Growth Model, Volume Growth Model and experimental 16 

data, with conditions indicated within figures. “S” and “V” in the figure reflect Surface 17 

Growth and Volume Growth, respectively. “p=2e-4” reflects a driver acquisition probability 18 

of 2e-4. In addition, the median fitted power law exponent ., as in ,(0 ≤ 1)~1), from 19 

bootstrapping (in Main Figure 3f-g) is indicated within figures. 20 

 21 

 22 



Supplementary Figure 7. Association between spatial features of microdiveristy and 1 

clinical behaviour.  2 

(a-b) Cumulative probability distribution, ,(0 ≤ 1), of the normalised distance to tumour 3 

centre in ccRCC tumours, split into subsets according to either relapse status (a) or rates of 4 

disease progression (b). 606 patient tumour (PT) regions from 54 ccRCC tumours are 5 

considered for this analysis (“complete.set”). Subsets with different relapse statuses consist of 6 

270 (“relapse”) and 336 regions (“no.relapse”), respectively. Subsets with different rates of 7 

disease progression consist of 276 (“no.progression”), 265 (“attenuated.progression”), and 65 8 

regions (“rapid.progression”), respectively. 9 

(c-d) Bootstrapped power law exponent ., as in ,(0 ≤ 1)~1), fitted to cumulative probability 10 

distribution of normalised distance to tumour centre in each of bootstrap samples, in subsets of 11 

RCC tumours. 12 

(e) Quantile-Quantile (Q-Q) plots of observed versus fitted distributions of microdiversity 13 

hotspots in subsets of RCC tumours. 14 

Statistical annotations in (c-d) reflect two-sided Wilcoxon tests: “****” indicates , ≤15 

0.0001. 16 

 17 

Supplementary Figure 8. Photograph and histological images of representative case 18 

K156. 19 

Photograph of the ex-vivo tumour (top left) and histological images of regional biopsies 20 

(R21, R36, R37, and R38) are presented. 21 

 22 
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