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Supplementary Information

Supplementary Note 1: Input data from tools

supported by InterCellar
In order to increase the general usability of InterCellar, four published methods allowing the

prediction of cell-cell communication from scRNA-seq data are automatically supported as

input tools to InterCellar1–4. This allows straightforward interoperability between InterCellar

and the chosen tool, with no further data preparation required. Here we describe in detail the
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characteristics of the cell-cell interactions dataset (CCI data) that InterCellar expects as

input, depending on the supported tool chosen.

CellChat

Users running the CellChat1 R package to obtain predicted cell-cell interactions should save

the dataframe generated by the CellChat function subsetCommunication as a .csv file (or

.xlsx/.tsv). This can be accomplished by following the steps suggested in the CellChat

tutorial

(https://htmlpreview.github.io/?https://github.com/sqjin/CellChat/blob/master/tutorial/CellChat

-vignette.html). We recommend the R function write.csv (with parameter quote = FALSE) to

save the dataframe into a .csv file that can be loaded by InterCellar. A snippet of the

dataframe generated on the melanoma data can be found as an example in Supplementary

Table 2. InterCellar automatically parses the dataframe and generates preprocessed CCI

data by restructuring the information as follow:

- Int_pair: from column “interaction_name_2”, substituting “-” with “&”;

- geneA, geneB: retrieved from  “interaction_name_2”, split by “-”;

- typeA = L (ligand), typeB = R (receptor);

- clustA = “source”, clustB = “target”;

- Score = “prob”;

- P_value = “pval”;

- Int.type = autocrine (if clustA=clustB) or paracrine (otherwise);

- Pathway_cellchat = “pathway_name”;

- Annotation_cellchat = “annotation”;

- Evidence_cellchat = “evidence”.

CellPhoneDB v2

Users adopting CellPhoneDB v22 (CPDB) as an inference method have the option of running

a statistical analysis that computes p-values of significance for each interaction. CPDB

tutorials can be found at https://github.com/Teichlab/cellphonedb. When the statistical

analysis has been run, the user will find four output .txt files corresponding to

“deconvoluted”, “means”, “pvalues”, and “significant_means”. In this case, InterCellar relies

on the “significant_means” and “pvalues” files, otherwise, on the file “means”. Thus, as input

to InterCellar, the user must specify the output folder generated by CPDB. An example of the

“significant_means” file can be seen in Supplementary Table 3. In order to build the

https://paperpile.com/c/q17tvv/dbqF
https://htmlpreview.github.io/?https://github.com/sqjin/CellChat/blob/master/tutorial/CellChat-vignette.html
https://htmlpreview.github.io/?https://github.com/sqjin/CellChat/blob/master/tutorial/CellChat-vignette.html
https://paperpile.com/c/q17tvv/RTND
https://github.com/Teichlab/cellphonedb


preprocessed CCI data, InterCellar relies on CPDB specific annotation that is either included

in the supplied files (e.g., “significant_means”) or retrieved from CPDB documentation,

namely the gene_input and complex_input tables

(https://www.cellphonedb.org/documentation). Moreover, as CPDB considers also multi

sub-units complexes, InterCellar will retain this information and integrate it with simple

interaction-pairs. Information is mapped as follows:

- Int_pair: gene_a & gene_b, or name of complex;

- geneA = gene_a or list of gene symbols separated by “,” for complexes, retrieved

from complex_input table;

- geneB = gene_b or list of gene symbols separated by “,” for complexes, retrieved

from complex_input table;

- typeA, typeB: depending on “receptor_a” and “receptor_b” columns;

- clustA, clustB: from the col.names of the table, split by “|”;

- Score = “mean_value”;

- P-value: retrieved from the “pvalues” file, when present;

- Annotation_strategy = “annotation_strategy”;

- Int.type = autocrine (if clustA=clustB) or paracrine (otherwise);

Due to the fact that CPDB does not order int-pairs as L-R pairs, InterCellar will reorder all

pairs (and respective cluster-pairs) to comply with an L-R arrangement. Moreover, we

manually updated the annotation to L or R of certain genes that were incorrectly annotated

by CPDB

(https://github.com/martaint/InterCellar-reproducibility/blob/main/preprocessing/checkLL_RR.

R). Importantly, int-pairs collected by CPDB are composed of L-R, L-L, and R-R pairs, thus

providing an explanation as to why the labeling of undirected interactions by InterCellar (L-L

and R-R).

ICELLNET

ICELLNET4 requires the user to select (1) a cell cluster of interest (i.e., central cell) and (2) a

direction of communication (“in” for incoming, “out” for outgoing), from which to compute the

cell-cell interactions. This information must be provided by the user in InterCellar’s upload

section, along with a dataframe generated by ICELLNET’s function icellnet.score (see the

tutorial at https://github.com/soumelis-lab/ICELLNET/blob/master/Exemple2_scRNAseq.md).

This dataframe should be saved as a .csv file with the R function write.csv (with parameter

row.names = TRUE). An example of ICELLNET’s dataframe is shown in Supplementary

Table 4. In this case, we consider as central cell malignant cells from the melanoma dataset,
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and outgoing communication towards all other clusters. InterCellar parses the dataframe and

generates preprocessed CCI data as follow:

If direction = “out”:

- Int_pair: row.names of the dataframe, substituting “ / “ with “&”;

- geneA, geneB: retrieved from  row.names, split by “ / ”;

- typeA = L (ligand), typeB = R (receptor);

- clustA = name of the central cell, clustB = col.names taken from ICELLNET

dataframe;

- Score = numerical entries of the dataframe;

- Int.type = autocrine (if clustA=clustB) or paracrine (otherwise).

When direction = “in”, clustA would be taken from col.names, while clustB = central cell.

SingleCellSignalR

Instructions on how to run SingleCellSignalR3 (SCSR) to obtain predicted CCI data can be

found at

https://bioconductor.org/packages/release/bioc/vignettes/SingleCellSignalR/inst/doc/UsersG

uide.html. InterCellar expects as input the folder called “cell-signaling” generated by running

the SCSR function cell_signaling. This folder contains multiple .txt files for each cluster-pair

considered. A snippet of an example file can be found in Supplementary Table 5. InterCellar

parses each of these files and combines the information into a single preprocessed CCI

data, as follow:

- Int_pair: from elements in first and second columns of SCSR files, separated by “&”;

- geneA: elements from first column, geneB: elements from second column;

- typeA = L (ligand), typeB = R (receptor);

- clustA = col.name of first column; clustB = col.name of second column;

- Score = “LRscore”;

- Int.type = autocrine (if clustA=clustB) or paracrine (otherwise). As SCSR defines as

“autocrine|paracrine” interactions that are paracrine but are also found as autocrine,

we rename these “paracrine” to be consistent with other tools;

- scSignalR_specific: TRUE for interactions labeled as “specific” by SCSR, when both

ligand and receptor are significantly enriched in their respective clusters.

https://paperpile.com/c/q17tvv/9RpX
https://bioconductor.org/packages/release/bioc/vignettes/SingleCellSignalR/inst/doc/UsersGuide.html
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Supplementary Note 2: Filtering options provided

in the gene-verse
InterCellar’s gene-verse provides the user with filtering options that are specific to the input

tool chosen. As a reminder, these filters have a global impact, subsetting the input data for

further analyses. Here we present in detail which filters are provided, depending on the input

tool.

CellChat

CellChat-specific filters regard the pathway annotation of int-pairs (column

“pathway_cellchat”) and the source of annotation (column “annotation_cellchat”) that are

performed by CellChat. In particular, the user has the option to exclude unwanted pathways

from a drop-down menu and deselect unwanted annotations among “secreted signaling”,

“ECM-receptor”, and “cell-cell contact”.

CellPhoneDB v2

Users that chose to run CPDB to obtain predicted CCI data will have the option to refine

int-pairs by excluding annotation sources used by CPDB to collect int-pairs, which are

available in column “annotation_strategy”. These include multiple sources such as, for

example, “curated”, “IMEx”, “IntAct”, “I2D”, etc.

ICELLNET

Due to the fact that no additional annotation is provided by ICELLNET, no filtering options

are available here.

SingleCellSignalR

As SCSR provides information regarding the specificity of an int-pair (see Supplementary

Note 1), the user has the option to restrict the analysis to only specific interactions.



Supplementary Note 3: Comparison with CellChat

Many tools that perform cell-cell communication inference are available to the scientific

community5. Comparing differences and similarities between InterCellar and existing

applications might help the reader place InterCellar in this landscape. Among the tools that

provide functionalities for downstream analysis, we chose CellChat, whose workflow

appears to have many commonalities with InterCellar. Even though a Shiny implementation

of CellChat exists, we decided to consider the R package which, although requiring

programming skills, provides visualization and analysis options comparable to InterCellar.

The CellChat Shiny app (https://github.com/sqjin/CellChatShiny), instead, only provides a

limited set of analysis options, restricted to an initial choice of signaling pathways of interest.

To run CellChat, we followed the tutorial available at

https://htmlpreview.github.io/?https://github.com/sqjin/CellChat/blob/master/tutorial/CellChat-

vignette.html.

The main focus of our comparison are visualization options provided by each tool and,

specifically, how these can improve the interpretation of complex results in cell-cell

communication analysis.

As a first overview of the communication patterns, the number of interactions occurring

between each pair of clusters is generally considered. In InterCellar, this can be achieved in

the cluster-verse (Figure 2a): when comparing the network visualization generated by

InterCellar with the circle plot output of CellChat (Supplementary Figure 6a), we can

appreciate how, even though an analogous output is produced, InterCellar’s added value is

an interactive network that can be dynamically remodeled by the user with a simple

drag-and-drop. Moreover, clicking on a cell cluster will highlight all the connected edges,

facilitating the inspection of large networks (these features are visible in the video tutorial at

https://youtu.be/X5gUqzps4E4). Finally, both InterCellar and CellChat provide the option to

show either the total or the weighted number of interactions.

A second step in the analysis could focus on the occurrence of int-pairs of interest, shown

typically in a dot (or bubble) plot. Thus, we compare here InterCellar’s dot plot available in

the gene-verse (Figure 2b), with CellChat’s bubble plot (Supplementary Figure 6b), both

generated by considering all int-pairs annotated by CellChat as belonging to the “TGFb”

signaling pathway. InterCellar and CellChat perform comparably well and offer customization

options to the user (e.g., choice of color scheme, selection of cell clusters).

Lastly, we investigate visualization options based on annotated pathways, thus comparing

InterCellar’s sunburst plot (available in the function-verse, Figure 2c) with the closest kind of

https://paperpile.com/c/q17tvv/zlFF
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visualization available in CellChat (Supplementary Figure 6c). InterCellar’s sunburst plot is

generated by selecting the functional term “tgf-beta signaling pathway” (annotated from

KEGG and Panther) and, upon closer inspection of the enriched int-pairs, includes CellChat

pathways corresponding to “TGFb”, “BMP”, “GDF” and “ACTIVIN”. With regards to

interpretation, the sunburst plot offers the advantage of condensing many sources of

information in one place. Thus, cluster-pairs enriched by the selected functional term are

visible and organized in such a way as to convey information regarding cluster importance.

Detailed information on the (total/weighted) number of interactions as well as int-pairs

occurring in each cluster-pair are available upon mouse hovering on the sunburst sections.

As for the CellChat chord plot, even though the overall contribution of each cell cluster is

clearly visible, the user must consider a second complementary visualization to discern

enriched int-pairs (Supplementary Figure 6d). Moreover, the lack of a dynamic output for the

CellChat chord plots can hinder an effective interpretation of the results in overcrowded

plots.

In the end, we extend our comparative analysis on the concept of functional similarity, which

is considered by both InterCellar and CellChat, albeit from two different points of view.

Specifically, InterCellar calculates functional similarity among int-pairs, in contrast to the

strategy adopted by CellChat where groups of pathways are defined to be functionally

similar. Considering two different “similarity objects”, thus leads to parallel and rather

complementary analyses. This can be specifically appreciated by comparing InterCellar’s

UMAP of int-pairs clustered by functional similarity (Figure 3a), and CellChat’s embedding of

pathways clustered by functional similarity (Supplementary Figure 7). While InterCellar

defines modules of int-pairs as groups of int-pairs that share a similar functional profile

(Supplementary Figure 2), CellChat groups functional pathways by a shared pattern of

sender and receiver clusters.



Supplementary Figures





Supplementary Figure 1. Screenshot of InterCellar’s data upload module. The top

panel (Analysis setup) allows the selection of an output folder in which InterCellar will save

all downloaded figures and tables in an intuitive folder structure. The lower panel (from

supported tools) provides functionalities to upload up to three CCI data generated by

InterCellar’s supported input methods. Here, we upload CellChat-predicted CCI data for the

melanoma dataset6 by specifying an ID, an output folder tag, and the file containing

predicted CCI. The bottom inset shows the panel “from custom analysis”. Here, a CCI input

table is displayed as an example, alongside the description of required and additional

columns. Once again, up to three custom CCI data can be uploaded by the user.

Supplementary Figure 2. InterCellar’s definition of int-pair modules based on
functional similarity. A representative binary (boolean domain {0,1}) annotation matrix is

shown in a), where black dots indicate “1s” and thus an existing annotation of the functional

https://paperpile.com/c/q17tvv/ypPu


term “f-” to an int-pair “ip-”. InterCellar uses this binary matrix as input to a dimensionality

reduction method (UMAP in b), using cosine similarity as metric to compute distances

between data points), which provides a 2-dimensional embedding of int-pairs reflecting the

functional similarity. Using the UMAP coordinates, hierarchical clustering is computed to

define modules of int-pairs that share similar functional profiles (with euclidean distance and

ward.D2 clustering algorithm), as shown in c). Colors represent the module identity in both

b), UMAP and c), dendrogram.



Supplementary Figure 3. InterCellar generates comprehensive insights on the number
of interactions per cell cluster. Relative differences in the number of interactions are



shown using radar plots, in the comparison between COVID-19 moderate and critical cases7.

Each plot displays the number of interactions between a specific cell type and all other cell

types participating in the communication. All interaction flows are considered. A subset of

cell types belonging to the immune group is reported in a), while a subset of

epithelial-related cell types is shown in b). Radar plots are generated automatically in

InterCellar’s multiple conditions section.

Cell types are abbreviated as: -diff - differentiating; CTL - cytotoxic T cell; FOXN4 - FOXN4+

epithelial cells; IRC - IFNG responsive cell; MC - mast cell; moDC - monocyte-derived

dendritic cell; MoMa - monocyte-derived macrophage; Neu - neutrophil; NK - natural killer

cell; NKT - NK T cell; NKT-p - proliferating NKT; nrMa - non-resident macrophage; pDC -

plasmacytoid dendritic cell; rMa - resident macrophage; Treg - regulatory T cell.

https://paperpile.com/c/q17tvv/4wT7




Supplementary Figure 4. InterCellar allows in-depth analysis of interaction pairs and
their enriched cell clusters. a) Int-pairs belonging to the CXC-chemokine subfamily are

evaluated in immune cell clusters. The dot plot represents only unique occurrences of

int-pair/cluster-pair couplets, for each phenotype (control, moderate, critical). The overall

contribution of each phenotype is summarized in a pie chart. b) Int-pairs belonging to the

CC-chemokine subfamily are evaluated in NK, NKT, and NKT-p cell clusters. As in a), only

unique couplets are represented in the dot plot and overall contributions by phenotype are

summarized in a pie chart. c) As in b), but focusing on T cells (CTL and Tregs). Both dot

plots and pie charts are generated in InterCellar’s multiple conditions section.

Supplementary Figure 5. Feature comparison between InterCellar and other related

tools. Seven main categories evaluate InterCellar’s functionalities against other open-source

software allowing the analysis of cell-cell communication. For this comparison, only tools that

do not require programming skills were considered. Visualization options are divided into

three sub-categories to account for specific features implemented with regards to cell

clusters, genes, and functional pathways. Automatic download of figures and tables is

considered separately.



Supplementary Figure 6. Visualization options provided by the CellChat R package for
data exploration. a) Network-like visualization generated by CellChat is presented

alongside the R code used to obtain the output. Edges show the total number of interactions

occurring between two cell clusters. b) CellChat’s bubble plot is shown alongside the R code

necessary to generate it. All interaction pairs annotated to the “TGFb” signaling pathway are

selected. c) CellChat’s chord plot and the relative R code, for the selected pathways

(“TGFb”, “BMP”, “GDF”, and “ACTIVIN”). Cell clusters are represented in the outer circle,

with colored links indicating the presence of interactions between the connected clusters. d)
R code and visualization of CellChat’s chord plot relative to the interaction pairs enriched in

the selected pathways (“TGFb”, “BMP”, “GDF”, and “ACTIVIN”). Ligands and receptors are



shown in the outer circle, with colored links representing the interactions between two

clusters (color-coded).

Supplementary Figure 7. CellChat embedding of pathways based on functional
similarity. UMAP of CellChat-annotated pathways shows the results of the functional

similarity analysis, with R code available in the gray panel. Each dot represents a pathway,

color-coded by the group identity. Pathways that are found to be functionally similar share a

common pattern of sender and receiver clusters and can be interpreted as signaling

pathways that exhibit similar and/or redundant roles.
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scTensor R NO N/A scRNA-seq 10.1101/566
182

https://github
.com/rikenbit/

scTensor

SingleCellSi
gnalR R NO N/A scRNA-seq 10.1093/nar/

gkaa183

https://github
.com/SCA-IR
CM/SingleCe
llSignalR_v1

SoptSC R/MATLAB NO N/A scRNA-seq 10.1093/nar/
gkz204

https://mkarik
om.github.io/

RSoptSC/

SpaOTsc Python NO N/A scRNA-seq
10.1038/s41
467-020-159

68-5

https://github
.com/zcang/

SpaOTsc

talklr R YES
https://yulian
gwang.shiny
apps.io/talklr/

scRNA-seq
10.1101/202
0.02.01.9306

02

https://github
.com/yuliang
wang/talklr

Supplementary Table 1. Collection of methods to predict and analyze cell-cell
communication. The table contains 18 methods retrieved as of April 2021. All methods

concern cell-cell communication prediction and/or analysis. The following information was

collected: (a) programming language used for implementation; (b) whether the method is

available as a standalone application (thus, not requiring programming skills to conduct the

analysis); (c) corresponding web address of the application; (d) data type required for the

prediction of cell-cell interactions; (e) DOI of the corresponding manuscript; and (f) web

address of the source code. Five methods that do not require programming skills (shown

with colored background) were compared to InterCellar.
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Supplementary Table 2. Example of CellChat CCI data as input to InterCellar. Example

of CCI data as generated by CellChat, automatically parsed by InterCellar as input data.

id_cp_i
nteract
ion

interac
ting_p
air

partner
_a

partner
_b

gene_a gene_
b

secret
ed

recept
or_a

recept
or_b

...

CPI-SC
05F111
D21

COL27
A1_a11
b1
comple
x

simple:
Q8IZC
6

comple
x:a11b
1
comple
x

COL27
A1

TRUE FALSE FALSE ...

CPI-SS
016EE
0084

PDCD1
_CD27
4

simple:
Q1511
6

simple:
Q9NZQ
7

PDCD1 CD274 FALSE TRUE TRUE ...

CPI-SS KIR2D simple: simple: KIR2D CXCL9 TRUE TRUE FALSE ...



0D26F
639E

L3_CX
CL9

P43628 Q0732
5

L3

CPI-CS
0AC51
42FA

IL1
recepto
r
inhibito
r_IL1A

comple
x:IL1
recepto
r
inhibito
r

simple:
P01583

IL1A TRUE TRUE FALSE ...

... ... ... ... ... ... ... ... ... ...

... annota
tion_st
rategy

is_inte
grin

rank B_cell|
B_cell

B_cell|
CAF

B_cell|
Endo

B_cell|
Macro

B_cell|
NK

...

... curated TRUE 0.02 0.034 ...

... curated FALSE 0.02 0.816 ...

... IMEx,In
tAct

FALSE 0.02 ...

... curated FALSE 0.02 1.055 ...

Supplementary Table 3. Example of CellPhoneDB v2 “significant_means” table as
input to InterCellar. Four example rows are taken from the significant_means.txt file saved

by CPDB statistical analysis. The table is split after the ninth column for easier interpretation.

Not all columns are shown, as they are comprised of all possible cluster-pairs in the dataset.

CAF Macro T_cell B_cell Endo NK

AMH /
BMPR1A
+ AMHR2

0 0 1.1798661
38

0.6372378
69

0 0

AMH /
ACVR1 +
AMHR2

0 3.8524267
1

1.2179649
23

0.4518519
26

0 0

AREG /
EGFR

2.3749667
97

0.0093092
6

0.0172557
23

0.0423897
32

0.1712594
44

0.1636024
13

BMP10 / 3.7620708 2.1915530 0.9590051 0.6822325 5.4375626 1.0956195



ACVRL1
+
ACVR2A

48 94 28 33 23

BMP10 /
ACVRL1
+
ACVR2B

1.9240095
52

1.2200742 0.9223253
68

0.9033256
95

4.4625826
79

0

Supplementary Table 4. Example of ICELLNET CCI data as input to InterCellar.
Example of CCI data as generated by ICELLNET, when considering malignant cells as

central cell and outgoing communication. Row names represent the interaction pairs while

column names represent the cell clusters considered in the analysis, communicating with

malignant cells.

CAF malignant_cell interaction.type LRscore

TIMP1 CD63 autocrine|paracrine 0.943270962296891

VIM CD44 autocrine|paracrine 0.930737459594635

COL1A2 CD44 autocrine|paracrine 0.928081880647428

Supplementary Table 5. Example of SingleCellSignalR text file as input to InterCellar.
SingleCellSignalR generates a text file for each cluster-pair and interaction type

(autocrine/paracrine) considered and saves it in the “cell-signaling” folder, which is expected

as input to InterCellar. Here, the interactions between CAF and malignant cells are

computed.
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