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I. Simulating SARS-CoV-2 outbreaks using CTCmodeler 
 
SARS-CoV-2 outbreaks were simulated using CTCmodeler, a stochastic, individual-based transmission 
model coded in C++. This peer-reviewed1–3 model simulates pathogen transmission along contact 
networks describing inter-individual interactions among patients and 13 types of staff (e.g. nurse, 
physiotherapist) in a 170-bed, five-ward LTCF setting. Model contacts are fit to real high-resolution 
close-proximity interaction data (n=2.67 million distinct person-person interactions). Interaction data 
were recorded by wearable sensors carried by a cumulative 329 patients and 261 members of staff 
over four months in 2009 in a rehabilitation hospital in northern France. These data have been 
described and analyzed in detail elsewhere.4,5 Among other observations, healthcare workers were 
found to contact many distinct patients each day, spending more time with older and higher-needs 
patients. Patients, however, had particularly high rates of contact with other patients, reflecting the 
group meals, art classes and other social activities that took place over the data collection period in 
this pre-pandemic LTCF. 
 
The computer program underlying CTCmodeler is described in detail elsewhere.1 In simulations, 
there were on average 170 patients and 240 members of staff present in the LTCF each week.  
Patient and staff interactions occurred over 30-second intervals, with contact frequencies and 
durations varying across the types of interactions that take place (e.g. patient-patient, patient-
nurse), in which of the facility’s five wards the individuals are found (e.g. geriatrics, nutrition), and at 
what times of day and days of the week interactions occur. Synthetic contact data fit to these 
individual-level data were generated previously, stratified by hour of the day, day of the week, ward, 
and type of individual (see Smith et al.).3 These synthetic data are used in the present work, hence no 
sensitive human data were used in this study. 
 
We previously applied CTCmodeler to simulate SARS-CoV-2 transmission and evaluate efficacy and 
efficiency of RT-PCR testing strategies in the context of limited testing resources (see Smith et al.).3 
Three key modelling assumptions were made to reflect SARS-CoV-2 epidemiology, informed using 
epidemiological data and parameter estimates from the literature. First, SARS-CoV-2 was assumed to 
be introduced into the LTCF through either newly admitted patients or staff members infected in the 
community. Second, infection followed a modified Susceptible-Exposed-Infected-Recovered process, 
including pre-symptomatic and asymptomatic infection, with stochastic progression through 
infection stages. Third, transmission could occur during contacts between infectious and susceptible 
individuals, with transmission probability scaling linearly with contact duration, until saturating for 
contacts exceeding 60 minutes. An Overview, Design concepts, and Details (ODD) protocol for 
individual-based modelling describing this application of CTCmodeler to SARS-CoV-2 is provided in 
Smith et al.3  
 
Here, a range of additional assumptions were integrated into simulations to reflect the evolving 
epidemiology of COVID-19 and present research context. These include:  
 



(i) index cases acquired during a surge in community SARS-CoV-2 circulation,  
(ii) heterogeneous SARS-CoV-2 introductions from the community reflecting local infection 

burden, 
(iii) variable transmissibility according to symptom status, 
(iv) immediate isolation of patients with severe COVID-19 symptoms, 
(v) sick-leave and shift replacement for staff with severe COVID-19 symptoms, 
(vi) a risk of healthcare workers acting as transient SARS-CoV-2 vectors, 
(vii) initialization conditions reflecting an ongoing pandemic context, 
(viii) implementation of public health interventions for SARS-CoV-2 transmission prevention 

(“COVID-19 containment measures”). 
 
These new assumptions are detailed below, with model parameters provided in Supplementary table 
S1. 
 
 

1. Index cases acquired during a surge in community SARS-CoV-2 circulation 
 
We distinguish between SARS-CoV-2 index cases and SARS-CoV-2 introductions. Index cases were 
defined as patients and staff infected with SARS-CoV-2 upon simulation outset, who were thus 
assumed to have acquired infection prior to the simulation period. These infections were 
conceptualized as resulting from inter-generational mixing in the community over festive holidays 
over the week prior to simulation outset, leading to an increase in nosocomial outbreak risk within 
the LTCF. Upon simulation initialization, we assume that 50% of patients (n=85) and 100% of staff 
(n=240) had contacts in the community over the previous week, with a 1.2% probability of acquiring 
SARS-CoV-2. This translated to 1 index patient and 3 index members of staff infected with SARS-CoV-
2 at simulation outset, randomly selected among all patients and staff present in the LTCF. Index 
cases were assumed to be in any infection stage except severe symptomatic. Calibrated using model 
transition parameters (Supplementary table S1), we assumed that 28.0% of index cases were 
exposed, 4.8% pre-asymptomatic, 16.8% asymptomatic, 11.2% pre-symptomatic and 39.2% mild 
symptomatic.  
 

2. Heterogeneous SARS-CoV-2 introductions from the community reflecting local infection 
burden 

 
Introductions were defined as subsequent cases of SARS-CoV-2 infection introduced into the LTCF 
from the community over the course of simulation time, limited to staff members (assumed to 
contact individuals in the community outside work hours) and newly admitted patients (assumed to 
potentially carry the virus upon LTCF entry). 
 
We assumed that staff introductions were new infections (in the exposed stage) acquired in the 
previous 24 hours. This reflects infection resulting from community contacts since that individual’s 
previous shift. Community SARS-CoV-2 infection incidence was used to calculate the daily probability 
of any working member of staff becoming infected with the virus and introducing it to the LTCF. 
Using French epidemic data from late January 2021 (daily incidence of 26,676 cases among a 
population of 67.1 million individuals), we estimated a daily incidence rate of 0.04%. In a “high 
incidence” sensitivity analysis, we assumed under-reporting of 90.8% (as estimated elsewhere by 
Anand et al.), translating to an incidence rate of 0.37%.6  
 
For patient introductions we assumed that infection is acquired at any time prior to LTCF admission. 
We used community SARS-CoV-2 prevalence to estimate the probability that a new patient entering 
the LTCF is already infected. Using the incidence data above and assuming an infection duration of 
12.5 days (the mean duration under our modelling assumptions), we estimated a community SARS-



CoV-2 infection prevalence of 0.50%, or 4.57% in the “high incidence” sensitivity analysis. Patient 
introductions could be in any infection stage, using the same stage-specific probabilities as for index 
cases (above). 
 
Combining patient and staff introductions, there were a mean 0.08 introductions/day in the baseline 
“low incidence” scenario, and a mean 0.8 introductions/day in a “high incidence” sensitivity analysis. 
 

3. Variable transmissibility according to symptom status 
 
Previously, we estimated a SARS-CoV-2 transmission rate per minute of infectious contact p=0.14% 
(see theoretical discussion in Temime et al. and its application in Smith et al.).3,7 Under our 
assumptions, the probability of SARS-CoV-2 transmission from an infectious individual i to a 
susceptible individual j (Piàj) depends on the duration of their contact in minutes (Di,j), given by  
 

𝑃"→$ = 𝑝 × 𝐷",$ (1) 
 
 
Here, we now assume that SARS-CoV-2 infectivity varies between symptomatic (including pre-
symptomatic) and asymptomatic (including pre-asymptomatic) infections. In a systematic review and 
meta-analysis, Buitrago-Garcia et al. estimated the secondary attack rate among contacts of 
asymptomatic infections to be 35% relative to symptomatic infections, and that approximately 30% 
of all infections remained asymptomatic.8 Using these data, we stratified p to estimate distinct 
transmission rates from symptomatic (psym) and asymptomatic (pasym) individuals as 
 

0.7 × 𝑝-./ + 0.3 × 𝑝2-./ = 0.14% (2) 
 
 
 where 
 

𝑝2-./ = 0.35 × 𝑝-./ (3) 
 
 
Solving these equations, psym = 0.174% and pasym = 0.061%. 
 

4. Patients with severe COVID-19 symptoms: isolation 
 
We assumed that patients with severe COVID-19 symptoms are automatically isolated (independent 
of retrospective surveillance and isolation interventions introduced and evaluated later). We 
assumed a lag from symptom onset to isolation (24 hours), 100% isolation efficacy for transmission 
prevention (psym,isolated = 0, pasym,isolated = 0), and an isolation duration equivalent to the remaining 
duration of infection (i.e. duration of symptoms), drawn from log-normal(7,7) distribution. 
 

5. Staff with severe COVID-19 symptoms: sick-leave and shift replacement 
 
We assumed that staff with severe COVID-19 symptoms immediately go on sick leave, with a 
duration equivalent to symptom duration (drawn from log-normal(7,7) distribution), after which they 
return to the LTCF recovered. During sick-leave, staff were replaced with a temporary member of 
staff who executes the same functions within the LTCF, and hence with no change to the underlying 
contact network. Probability of SARS-CoV-2 infection among newly arrived temporary replacement 
staff is calculated using community prevalence data (as for patient introductions, see above). 
 



6. Healthcare workers as transient SARS-CoV-2 vectors 
 
We allowed members of staff to act as transient vectors for SARS-CoV-2 after contact with infectious 
patients.9 Transient vectors were assumed to physically “carry” SARS-CoV-2, and could transmit the 
virus to subsequent patients visited in quick succession (within 60 minutes), infecting those patients 
without themselves becoming infected. The probability of a member of staff i becoming a vector (Pv) 
was assumed to depend on the duration of their contact with the infectious patient j, Di,j. This is 
given by 
 

𝑃7 = 𝑝8299"2:; × 𝐷",$ × (1 − 𝑃>9?@;8@"?A) (4) 
 
 
and the probability of this transient vector i then infecting a susceptible patient k (Piàk) during a 
subsequent contact relies on transmission rate p (using p to represent either psym or pasym), thus 
taking the same form as standard host-to-host transmission, given by 
 

𝑃"→C = 𝑝 × 𝐷",C (5) 
 
 
but limited to 60 minutes from the end of contact with j, after which time i loses transient carriage 
and is no longer a vector.  
 
Here, pcarriage is the per-minute probability of a member of staff acquiring transient SARS-CoV-2 
carriage. We set a saturation threshold at 80% such that transient carriage is not inevitable 
subsequent to long infectious contacts. Similar to transmission rates psym and pasym (see above), we 
assumed that pcarriage varies between symptomatic and asymptomatic patients, such that pcarriage_asym = 
0.35 × pcarriage_sym. Finally, Pprotection describes the degree to which staff protect themselves during 
interactions with patients. The latter reflects an assumed asymmetry in patient-staff interactions, in 
which staff take measures to protect themselves from perceived risk of acquiring the virus when 
caring for patients, but take less care to protect patients from virus potentially lingering on their 
clothing or equipment. 
 

7. Initialization conditions for pandemic context 
 
In addition to the index cases introduced above, we updated two key initialization conditions for 
outbreak simulation to reflect the ongoing pandemic context of COVID-19. First, we assumed a 
baseline immunizing seroprevalence of 20% among patients and staff. For each individual in each 
outbreak simulation, initial infection status was determined stochastically, with a 20% probability of 
entering the simulation already recovered. Second, we assumed that baseline rates of infection 
prevention and control were improved relative to pre-pandemic baseline. This reflects observed 
increases in compliance to hygiene and infection prevention measures in healthcare institutions 
worldwide since the beginning of the COVID-19 pandemic.10–12 For this, we introduced the parameter 
PIPC, which modifies rates of transmission (Piàj,IPC) and transient carriage acquisition (Pv,IPC) across all 
patients and staff, given by: 
 

𝑃"→$,DEF = 𝑃"→$ × (1 − 𝑃DEF) (6) 
 
 
and 
 

𝑃7,DEF = 𝑃7 × (1 − 𝑃DEF) (7) 



 
 
Using data from a clinical trial across 33 Dutch nursing homes, we assumed a baseline 36% 
compliance to IPC measures in such an intervention context (PIPC = 0.36).13 
 

8. COVID-19 containment measures: public health interventions for SARS-CoV-2 transmission 
prevention 

 
We included three different COVID-19 containment measures in outbreak simulations.  
 
First, we included a patient social distancing intervention, interpreted as cancellation of all social 
activities occurring in the baseline pre-pandemic contact network. This was modelled by removing all 
contacts involving ³3 patients simultaneously. Impacts of this intervention on dynamic contact 
behaviours simulated by CTCmodeler are visualized in Supplementary figure S1. We did not impose 
staff social distancing, under the assumption that staff contacts are necessary for provisioning of 
care. 
 
Second, we considered a mandatory face mask policy among all patients and staff. In a systematic 
review and meta-analysis, Liang et al. estimated an 80% reduction in risk of respiratory virus 
transmission through wearing of face masks.14 This was modelled here by setting PIPC = 0.8, reducing 
rates of transmission and transient carriage acquisition across patients and staff. 
 
Third, we included a partial vaccination intervention, in which we assumed a 50% rate of immunizing 
seroprevalence (relative to 20% baseline). This could be interpreted in different ways, for instance as 
100% vaccine coverage for a vaccine providing 50% protection from infection with the locally 
circulating strain (in the absence of any naturally-acquired immunity), 75% vaccine coverage for a 
vaccine providing 75% protection from infection, etc. 
 

 
Supplementary figure S1. Impacts of the patient social distancing intervention on daily contact behaviour. Over 
the course of one day (x-axis), the median hourly number of close-proximity interactions (CPIs, y-axis) is shown. 
Patient-patient contacts vary considerably across (a) the baseline LTCF and (b) the LTCF with the patient social 
distancing intervention in place, while patient-staff and staff-staff contacts are unchanged. 
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Supplementary table S1. Transmission model parameter estimates. COVID-19 infection parameters are 
unchanged since previous publication in Smith et al.3 

Parameter Value [distribution] Source 

COVID-19 infection parameters 

Duration of exposed period (latency) 2-5 days [uniform] Approximated from Lauer et al. 
2020 and Wei et al. 2020 15,16 

Duration of pre-symptomatic or pre-asymptomatic period 1-3 days [uniform] Approximated from Lauer et al. 
2020 and Wei et al. 2020 15,16 

Duration of symptomatic period  (whether asymptomatic, mild 
symptomatic or severe symptomatic) 

7 days [log-normal, σ² = 
7] 

Approximated from He et al. 
2020 17 

Proportion of COVID-19 infections presenting any symptoms  0.7 Buitrago-Garcia et al. 2020 8 

Proportion of symptomatic COVID-19 infections with severe symptoms 0.2 Wu et al. 2020 18 

Daily incidence proportion of non-COVID but COVID-like symptoms 0.011 Estimated from OSCOUR data, 
described in Fouillet et al. 2015 19 

SARS-CoV-2 transmission parameters 

SARS-CoV-2 transmission rate per minute of contact, pre-symptomatic 
and symptomatic infection (psym) 0.001739 

Previous estimate in Smith et al. 
2020 scaled using data from 
Buitrago-Garcia et al. 2020 3,8 

SARS-CoV-2 transmission rate per minute of contact, pre-
asymptomatic and asymptomatic infection (pasym) 0.000609 

Previous estimate in Smith et al. 
2020 scaled using data from 
Buitrago-Garcia et al. 2020 3,8 

Staff SARS-CoV-2 transient carriage acquisition rate per minute of 
contact with symptomatic or pre-symptomatic patients (pcarriage_sym) 0.1 Assumed 

Staff SARS-CoV-2 transient carriage acquisition rate per minute of 
contact with asymptomatic or pre-asymptomatic patients (pcarriage_asym) 0.035 Assumed 

Degree of patient and staff compliance to infection prevention and 
control interventions (PIPC) 

0.36 (0.80 under face 
mask intervention) 

Teesing et al. 2020 (Liang et al. 
2020) 13,14 

Degree to which staff protect themselves (but not patients) from high-
risk contacts potentially leading to SARS-CoV-2 transmission (Pprotection) 0.80 Assumed 

SARS-CoV-2 introductions from the community   

Daily probability of SARS-CoV-2 introduction from staff  0.03976% (0.366% in 
sensitivity analysis) 

Calibrated to incidence in France 
in January 2021 20 

Probability of SARS-CoV-2 introduction per new patient admission  0.497% (4.57% in 
sensitivity analysis) 

Calibrated to incidence in France 
in January 2021 20 

Probability of SARS-CoV-2 introduction per replacement staff  0.497% (4.57% in 
sensitivity analysis) 

Calibrated to incidence in France 
in January 2021 20 

Probability exposed (patient admissions, replacement staff) 0.28 From infection parameters 

Probability pre-asymptomatic (patient admissions, replacement staff) 0.048 From infection parameters 

Probability asymptomatic (patient admissions, replacement staff) 0.168 From infection parameters 

Probability pre-symptomatic (patient admissions, replacement staff) 0.112 From infection parameters 

Probability symptomatic mild (patient admissions, replacement staff) 0.392 From infection parameters 

  



II. Supplementary results: SARS-CoV-2 outbreak simulations  
 

 
Supplementary figure S2. Across LTCFs (columns), the distributions of cumulative SARS-CoV-2 infection 
incidence at two weeks, stratified by (a) location of infection onset, and (b) type of individual infected. Dashed 
vertical lines represent means across 100 outbreak simulations. LTCF = long-term care facility. 
 

 
Supplementary figure S3. Impact of super-spreading on nosocomial SARS-CoV-2 outbreaks. (a) Contribution of 
super-spreading to nosocomial transmission: across simulated outbreaks, the distribution of the proportions of 
individuals that were super-spreaders (transmitted to ³3 individuals, pink), low-spreaders (1-2 individuals, 
orange), and non-spreaders (0 individuals, grey). The proportion of infected individuals who never transmitted 
was higher in LTCF 3 (mean 77.7%) than in LTCFs 1 (69.4%) or 2 (67.0%). (b) Contribution of super-spreading to 
nosocomial acquisition: across outbreaks, the distribution of the proportions of acquisitions that resulted from 
super-spreaders (pink) versus low-spreaders (orange). LTCF = long-term care facility. 
 



 
Supplementary figure S4. The mean (range) of the number of secondary nosocomial infections caused by index 
cases (for simplicity, R0), stratified by (a) patient index cases and (b) staff index cases. Control measures for 
each LTCF are the same as presented in Figure 1, except for vaccination: here, the proportion of patients 
immunized at simulation outset is varied along the x-axis, and the proportion of staff along the y-axis. LTCF = 
long-term care facility. 
 
  



III. Simulating surveillance interventions using counterfactual analysis 
 
Surveillance interventions 
 
Final outputs from CTCmodeler simulations included a list of SARS-CoV-2 introductions from the 
community, a list of nosocomial transmission events (including donor and recipient IDs and mode of 
transmission, i.e. from an infected individual or transient vector), and the daily infection status of 
each unique individual in the LTCF. This information was used to inform a surveillance algorithm, 
which over simulation time identified which individuals were (i) newly admitted from the 
community, (ii) infected with SARS-CoV-2, and (iii) experiencing COVID-19 symptoms. Using these 
data, tests were allocated according to the different surveillance interventions listed in 
Supplementary table S2. To account for intervention heterogeneity, we varied screening targets 
(patients & staff, only patients, only staff), the type of test used for screening (Ag-RDT A, Ag-RDT B, 
RT-PCR), and the shape of diagnostic sensitivity curves (time-varying, uniform, perfect) (italicized 
items represent baseline assumptions used in the main analysis, unless stated otherwise). 
 
Counterfactual scenarios 
 
Surveillance interventions were applied retrospectively to daily outbreak data for precise estimation 
of intervention effects, using methods adapted from single-world counterfactual analysis (see 
Kaminsky et al.).21 Each stochastic “run” of the surveillance algorithm was conducted in five steps. 
First, the algorithm was applied to each outbreak to determine who to test for SARS-CoV-2 infection 
and when, and using which type of test, according to the surveillance interventions described in 
Supplementary table S2. Second, test results were determined stochastically, with probability of 
SARS-CoV-2 detection depending on test sensitivity s(t) (sensitivity functions are introduced below). 
Third, individuals were retrospectively “isolated” upon SARS-CoV-2 diagnosis (positive test result), 
assuming immediate isolation for Ag-RDT but a 24-hour lag for RT-PCR (reflecting a lag between 
sample and result). Fourth, counterfactual scenarios were simulated by pruning transmission events 
occurring subsequent to isolation, i.e. removing all transmission chains originating from isolated 
individuals. Fifth, nosocomial incidence was re-calculated subsequent to transmission pruning, and 
surveillance outcomes were calculated as described in the main text. This process was repeated 
n=100 times for each outbreak. 
 
With these methods, in each run of surveillance “uncontrolled” epidemics with no surveillance were 
matched to “controlled” counterfactual scenarios with surveillance, facilitating single-world 
comparison of intervention efficacy across stochastic outbreak simulations (illustrated in Figure 3). 
This methodology was particularly important for interventions #11 to #27, which introduced 
screening against a backdrop of a facility already conducting routine testing. This resulted in 
counterfactual scenarios with multiple “levels” of surveillance, in which the efficacy and efficiency of 
screening is interpreted as relative to counterfactual scenarios with routine testing already in place 
(and not relative to baseline uncontrolled epidemics). For these calculations, routine testing was 
always simulated first, with downstream transmission chains pruned as described above; second, 
screening was applied, with potential only to prune remaining transmission chains not already 
pruned by routine RT-PCR; and third, if conducting a second round of screening, the only chains 
potentially pruned were those not already pruned by routine testing and the first round of screening. 
In this way, infections averted by subsequent levels of surveillance did not double-count infections 
already averted by previous levels.  
 
 
 
 
 



Supplementary table S2. List of surveillance interventions considered. Italicized text indicates distinct 
stratification of columns across routine testing and screening interventions, and alternative stratifications in 
sensitivity analysis. 

# Surveillance 
category 

Screening 
timing Test used Test target 

1 Routine testing / RT-PCR Individuals with COVID-like symptoms 
and new patient admissions 

2 

1-round screening 

Day 1 

Ag-RDT (A)  
 
In sensitivity analysis: 
Ag-RDT (B), RT-PCR 

Patients & staff  
 
In sensitivity analysis:  
only patients, only staff 

3 Day 2 
4 Day 3 
5 Day 4 
6 Day 5 
7 Day 6 
8 Day 7 
9 Day 8 
10 Day 9 
11 

Routine testing +  
1-round screening 

Day 1 For routine testing:  
RT-PCR 
 
For screening:  
Ag-RDT (A)  
 
For screening in 
sensitivity analysis:  
Ag-RDT (B), RT-PCR 

For routine testing:  
individuals with COVID-like symptoms 
and new patient admissions 
 
For screening:  
patients & staff  
 
For screening in sensitivity analysis: 
only patients, only staff 

12 Day 2 
13 Day 3 
14 Day 4 
15 Day 5 
16 Day 6 
17 Day 7 
18 Day 8 
19 Day 9 
20 

Routine testing +  
2-round screening 

Days 1 & 2 For routine testing:  
RT-PCR 
 
For screening:  
Ag-RDT (A)  
 
For screening in 
sensitivity analysis:  
Ag-RDT (B), RT-PCR 

For routine testing:  
individuals with COVID-like symptoms 
and new patient admissions 
 
For screening:  
patients & staff  
 
For screening in sensitivity analysis: 
only patients, only staff 

21 Days 1 & 3 
22 Days 1 & 4 
23 Days 1 & 5 
24 Days 1 & 6 
25 Days 1 & 7 
26 Days 1 & 8 
27 Days 1 & 9 

 
 
 
Diagnostic sensitivity of RT-PCR and Ag-RDT 
 
Test sensitivity, the probability of positive diagnosis for a true infection, was assumed to depend on 
infection age t, i.e. time since SARS-CoV-2 exposure. For nosocomial infections, infection age was 
calculated directly from transmission chains (model outputs). For community-onset infections, 
infection age upon LTCF introduction was generated stochastically depending on the stage of 
infection: 𝑡 = 1 if exposed, 𝑡~𝑈(2,5) + 1 if pre-symptomatic infectious, and 𝑡~𝑈(2,5) + 𝑈(1,3) + 1 
if symptomatic or asymptomatic infectious.  
 
Test sensitivity as a function of infection age is expressed as 𝑠EFL(𝑡) for RT-PCR and 𝑠LMN(𝑡) for Ag-
RDT. For RT-PCR, sensitivity estimates for 1 ≤ 𝑡 ≤ 20 were taken directly from a meta-analysis by 
Kucirka et al.,22 with maximum sensitivity 𝑠EFL = 80.9% at 𝑡 = 8 days from SARS-CoV-2 exposure. 
We extrapolated beyond 𝑡 = 20 days using a negative exponential function fit to days 11-20 (pink 
line in Supplementary figure S5). Consistent with findings from the literature, we assumed no 
difference in diagnostic sensitivity for symptomatic (including pre-symptomatic) and asymptomatic 
(including pre-asymptomatic) infections.23–25 
 
Literature estimates for Ag-RDT sensitivity (𝛼) are typically expressed as relative to RT-PCR 
sensitivity, given here by 𝑠LMN(𝑡) = 𝛼 × 𝑠EFL(𝑡), such that absolute Ag-RDT sensitivity 𝑠LMN(𝑡) 
varies in time with 𝑠EFL(𝑡). In a meta-analysis of 73 clinical data sets and 31,202 samples, Brümmer 
et al. estimated Ag-RDT to be 𝛼 = 73.8% as sensitive as RT-PCR,26 which when crossed with the data 



from Kucirka et al. corresponds to a peak absolute Ag-RDT sensitivity of 𝑠LMN = 59.7% at 𝑡 = 8 days. 
They found no statistical difference in Ag-RDT sensitivity between symptomatic and asymptomatic 
patients. However, they estimated greater relative Ag-RDT sensitivity up to one week from symptom 
onset (𝛼 = 87.5%) and lower relative sensitivity thereafter (𝛼 = 64.1%). We adjusted relative Ag-
RDT sensitivity accordingly using two shape parameters 𝛾 and	𝛽, and depending on time since peak 
RT-PCR sensitivity (𝜏 = 𝑡 − 8), such that: 
 

𝛼(𝑡, 𝛽, 𝛾) = (1 − 𝛾) × 𝑒YZ	×	[\  (8) 
 
 
where sensitivity of Ag-RDT relative to RT-PCR varies with time, decreasing exponentially with 
increasing t. Values of 𝛾 and	𝛽 were estimated by minimizing the sum of three squared distance 
functions 
 

argmin((𝑑d)e + (𝑑e)e + (𝑑f)e) (9) 
 
 
using the R function optim. Assuming a 5-day incubation period, these correspond to distances of the 
target sensitivity function to estimates from Brümmer et al. for, respectively, sensitivity over all 𝑡 
(d1), up to 𝑡 ≤ 11 days from SARS-CoV-2 exposure (d2), and 𝑡 > 11 days from SARS-CoV-2 exposure 
(d3). These are given by: 
 

𝑑d = 0.738 − h
𝛼(𝑡, 𝛽, 𝛾)
𝑠LMN(𝑡)

@ijk

@ld

 (10)  

 

𝑑e = 0.875 −h
𝛼(𝑡, 𝛽, 𝛾)
𝑠LMN(𝑡)

dd

@ld

 (11) 

 

𝑑f = 0.641 − h
𝛼(𝑡, 𝛽, 𝛾)
𝑠LMN(𝑡)

@ijk

@lde

 (12) 

 
 
Solving 𝛼(𝑡, 𝛽, 𝛾) over all 𝑡 using the shape parameters estimated from the minimized sum of 
squared distances (𝛽 = 0.001998, 𝛾 = 0.1172) reproduced summary estimates from Brümmer et al. 
to within 0.3%: 𝛼@mdd = 87.5%, 𝛼@ndd = 64.1%, and 𝛼@od = 73.5%. This function was used to 
determine the probability of a positive test result for Ag-RDT testing as conducted in the main 
analysis (black line in Supplementary figure S5).  
 
Alternative assumptions for RT-PCR and Ag-RDT diagnostic sensitivity considered in sensitivity 
analyses were: (i) uniform Ag-RDT sensitivity relative to time-varying RT-PCR (𝛼 = 73.8%, green line 
in Supplementary figure S5), (ii) uniform absolute sensitivity regardless of time since exposure for 
both RT-PCR (𝑠EFL = 70%) and Ag-RDT (𝑠LMN = 54%), and (iii) perfect absolute sensitivity for both 
(𝑠EFL = 𝑠LMN = 100%).  
 



 
Supplementary figure S5. Test sensitivity as a function of time since infection, estimated by crossing data from 
meta-analyses by Kucirka et al. for RT-PCR (pink) and Brümmer et al. for Ag-RDT, considering time-varying Ag-
RDT sensitivity relative to RT-PCR (black, for baseline analysis) and uniform relative sensitivity (green, for 
sensitivity analysis). RT-PCR = reverse transcriptase polymerase chain reaction; Ag-RDT = antigen rapid diagnostic 
testing. 
 
 

 
Supplementary figure S6. Temporal dynamics of RT-PCR test sensitivity among all individuals infected with 
SARS-CoV-2, in a hypothetical scenario of testing every infected individual every day. Test sensitivity is 
stratified by individuals who acquired infection in the community (blue) versus within the LTCF (red). Thin lines 
represent means for each outbreak simulation; thick lines represent means across all simulations. Sensitivity 
dynamics are shown for (a) the baseline low community incidence scenario, and (b) the high community 
incidence scenario. RT-PCR = reverse transcriptase polymerase chain reaction; LTCF = long-term care facility. 
  



 
IV. Supplementary results: surveillance efficacy and efficiency 

 

 
Supplementary figure S7. Compared to a scenario with no surveillance (blue), a counterfactual scenario with 
routine RT-PCR testing (brown) led to reduced cumulative nosocomial incidence (x-axis, with means as vertical 
dashed lines) due to pruning of transmission chains. For each LTCF (panels), relative efficacy (% reduction in 
incidence) was similar whether in (a) the baseline scenario of low community SARS-CoV-2 incidence, with a 
mean 1.1 new community-onset infections over two weeks subsequent to the initial surge; and (b) the high 
community incidence scenario, with a mean 10.6 new community-onset infections over two weeks. RT-PCR = 
reverse transcriptase polymerase chain reaction; LTCF = long-term care facility. 
 
 

 
Supplementary figure S8. The total number of nosocomial SARS-CoV-2 infections averted by testing and 
screening interventions. This contrasts to relative reductions in incidence, as in Figure 2 in the main text. Points 
and error bars (solid horizontal lines and dashed lines, respectively, for routine RT-PCR testing) correspond to 
means and 95% confidence intervals estimated by bootstrap resampling (n=10,000). RT-PCR = reverse 
transcriptase polymerase chain reaction; Ag-RDT = antigen rapid diagnostic testing; LTCF = long-term care 
facility. 
 



 
Supplementary figure S9. Sensitivity analyses: impacts of various model assumptions on efficacy of screening 
interventions. Points and error bars correspond to means and 95% confidence intervals estimated by bootstrap 
resampling (n=10,000). For all panels, black asterisks represent the assumption used in baseline analyses 



presented in the main text, unless specified otherwise. (a) Comparison of targeting patients and/or staff in 
screening interventions. (b) Comparison of using Ag-RDT or RT-PCR for screening, assuming immediate results 
for Ag-RDT and a 24-hour delay for RT-PCR. Two sensitivity curves for Ag-RDT are considered (see 
Supplementary figure S5). (c) Comparison of screening efficacy in the baseline low incidence scenario, and the 
alternative high incidence scenario. In LTCFs 2 and 3, optimal timing of second-round screening was delayed 
compared to baseline in the high incidence scenario. (d) Comparison of alternative sensitivity curves for both 
RT-PCR and Ag-RDT. When assuming uniform diagnostic sensitivity over the course of infection (70% for RT-
PCR, 54% for Ag-RDT; turquoise points), the second round of screening was more effective the sooner it was 
conducted. Alternatively, assuming 100% diagnostic sensitivity for both RT-PCR and Ag-RDT (brown points), 
longer delays were more effective, with nosocomial incidence reduced by up to 98.6-99.2% with follow-up 
screening 8 days after the first round, the longest interval considered. Time-varying test sensitivity thus drives 
optimal efficacy of two-round screening at an intermediate screening lag. RT-PCR = reverse transcriptase 
polymerase chain reaction; Ag-RDT = antigen rapid diagnostic testing; LTCF = long-term care facility. 
 

 
Supplementary figure S10. Performance of routine RT-PCR testing across LTCFs (y-axis, colours) and various 
surveillance outcomes (panels). Points and error bars correspond to means and 95% confidence intervals 
estimated by bootstrap resampling (n=10,000). RT-PCR = reverse transcriptase polymerase chain reaction; LTCF 
= long-term care facility. 
 



 
Supplementary figure S11. Performance of Ag-RDT screening interventions paired with routine RT-PCR testing 
(interventions #11 and #20 to #27 from Supplementary table S2) across various surveillance outcomes (rows). 
For (f), note that efficacy reflects marginal cases averted: cases averted by Ag-RDT screening exclude cases 
already averted by routine RT-PCR testing. Points and error bars correspond to means and 95% confidence 



intervals estimated by bootstrap resampling (n=10,000). Ag-RDT = antigen rapid diagnostic testing; LTCF = long-
term care facility. 
 

 
Supplementary figure S12. Cost-effectiveness ratios of four surveillance interventions (colours), estimated as 
surveillance unit costs per case averted. Cost-effectiveness was estimated while varying either (a) the unit cost 
per Ag-RDT test (at a fixed €50/RT-PCR test), or (b) the unit cost per RT-PCR test (at a fixed €5/Ag-RDT test). 
One-round screening was conducted on day 1 (interventions #2 and #11 in Supplementary table S2), and 2-
round screening on days 1 and 5 (intervention #23). Baseline assumptions underlying simulations include: 
“low” community SARS-CoV-2 incidence; time-varying Ag-RDT sensitivity relative to RT-PCR (Ag-RDT A); and 
screening interventions that target all patients and staff in the LTCF. Bar heights and error bars correspond to 
means and 95% confidence intervals estimated by bootstrap resampling (n=10,000). RT-PCR = reverse 
transcriptase polymerase chain reaction; Ag-RDT = antigen rapid diagnostic testing; LTCF = long-term care 
facility. 
 
 



 
Supplementary figure S13. Cost-effectiveness ratios for routine RT-PCR (left, intervention #1 from 
Supplementary table S2) and 1-round Ag-RDT screening  on day 1 (right, intervention #2 from Supplementary 
table S2) as a function of testing unit costs. Lines and shaded intervals correspond to means and 95% 
confidence intervals estimated by bootstrap resampling (n=10,000). RT-PCR = reverse transcriptase polymerase 
chain reaction; Ag-RDT = antigen rapid diagnostic testing; LTCF = long-term care facility. 
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