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<b>REVIEWER COMMENTS</B> 

Reviewer #1 (Remarks to the Author): 

Review 

The authors make use of PCA (SVD) to predict smoothed gene expression levels from scRNA-seq data. 

They apply a quantile cutoff on the predicted expression level to censor data as true zeros. This is an 

interesting flip on the much-discussed imputation strategy in scRNA-seq. Imputation methods typically 

aim to recover true hidden expression levels, while the aim here is to learn which genes are truly not 

expressed, with potential applications being negative marker identification or inferring suppressive 

regulation. 

They use bulk RNA-seq as evidence that some genes are truly not expressed in some tissues. In 

particular, the authors use a good strategy to generate positive control data by sampling expression 

levels from ImmGen bulk RNA-seq data of sorted cell types. This way they know true and false zeros 

from sampling zeros. 

Using known negative markers such as NCAM1 in B cells is also a clever strategy. However, it is worth 

keeping in mind that most evidence for such negative markers is based on fluorescence (FACS or qPCR) 

or electrophoresis. In these cases there is a positive background signal, and concluding a complete lack 

of a given molecule is difficult. 

The use of the conditional knockout experiment data is a good way to handle this problem. However, in 

the text it is not clear which gene is knocked out and how the effect is reflected in the data. 

It is a challenge to find proper control data for scRNA-seq data. Here CITE-seq counts and smFISH counts 

are used. However, these suffer from similar technical challenges as scRNA-seq (they are simply less 

discussed for cultural reasons). The protein counts in CITE-seq are more deeply sequenced than the RNA 

counts, but suffer from the same shortcomings as scRNA-seq with the addition of background from 

nonspecific antibody binding and inefficiencies (not to mention that that it’s not clear that the two 

modalities should reflect each other on an individual cell level). While smFISH is estimated to be 80% 

efficient compared to the 2%-50% efficiency of scRNA-seq (depending on protocol and implementation), 

it also suffers from challenges with accurately segmenting cells and counting puncta. 

The authors point out that some cells where genes that are typically annotated as unique markers for 

cell types have also been observed in other cell types as an argument for predicted expression in 

unexpected cells (NCAM1 in cytotoxic T cells). Another fundamental issue with this task however is the 

“soup-problem”. In the vast majority of scRNA-seq methods cells are isolated at random with a cell 

suspension. This cell suspension will also contain a solution of mRNA from cells which have been 

damaged. So if cells are isolated in droplets (such as in 10x Chromium) these droplets will also contain 

mRNA from arbitrary cells, similar to a bulk RNA-seq sample. With this in mind, is there any hope that 



true zeros will ever be expected between cell types in the sample? There are some proposed methods 

to filter the background ‘soup’ mRNA, but none of them are convincing. 

When discussing expression levels there is a general lack of units. In particular, it does not appear units 

are comparable between the different methods tested. 

The value of absolutism regarding 0-values being preserved is questionable. An absolute 0 chance of 

seeing a molecule in a cell from an experiment is an extremely strong prior. For example, even though 

DCA doesn’t produce 0-values, since it uses a statistical model for counts, the output (expected counts 

through the ZINB parameters) can be directly converted to a probability of seeing a count > 0 (given 

some sequencing depth). 

Outside of directly investigating if a gene is lacking the preservation of zeros seems unlikely to be useful. 

There are no downstream methods which can properly handle these zeros, which is why so many 

methods attempt to impute zeros to real values. Investigation on how reconstructed expression levels 

affect the various tSNE analysis adds little information of interest: it is highly likely even better 

performance would be achieved if not censoring some values to 0, or even if the tSNEs were applied to 

the principal components from the SVD/PCA rather than first reconstructing the matrix. 

Reviewer #2 (Remarks to the Author): 

In this paper, the authors developed a method called ALRA that imputes single-cell RNA-seq data using 

singular-value decomposition (SVD) plus thresholding. They demonstrated the performance of ALRA 

using three real datasets and three simulation studies (synthetic data), and they downsampled the 

original data to create the data that needed imputation and evaluated the imputation results by the 

original data. 

I believe this method would useful for large-scale scRNA-seq datasets given its good computational 

efficiency, if the validation results were convincing. The authors showed that ALRA has improved 

accuracy measured by the Gini index, which benchmarks imputed scRNA-seq data against FISH data, 

over that of the existing imputation methods. However, I have the following major concerns regarding 

the validity of the results. Most importantly, the authors need to provide more detailed figure captions 

to make the figures understandable. 

1. In the section “ALRA preserves biological zeros in simulated and real datasets,” the authors defined 

biological zeros based on “genes with solid biological knowledge not expressed in a cell population.” 

However, the authors did not provide literature or data evidence to justify their definitions, that is, what 

genes are not expressed in what cell types by what evidence. 

2. In the analysis of “The importance of preserving biological zeros: an example”, SAVER and scImpute 



were no longer compared. The authors should include these two methods to be consistent with other 

results. 

3. It is unclear why ALRA favors diverse cell types. This important phenomenon needs to be justified. 

4. The choice of the p = 0.001 quantile seems arbitrary and unjustified. The choice of this threshold is 

crucial to the performance of ALRA, so the authors need to provide a practical guide for users to make 

the choice a data-driven way. 

5. Many figures have vague captions and labels. For example, Figure S8 is hard to understand because 

the meaning of the y-axes is unclear. The message in Fig. S3 is also unclear. 

6. In the section “ALRA improves separation of cell types,” the authors claimed that “To quantitatively 

confirm that ALRA increases separation, we trained supervised random forests to classify the cells into 

cell types based on expression values”. However, the SAVER paper argued the other way: the cell-types 

labeled in Zeisel et al. were based on cell clusters found from the raw scRNA-seq data and not 

trustworthy, so imputation was needed. In fact, the SAVER paper used the cell clusters found from their 

imputed Zeisel et al. data instead of the cell types for evaluation. Given the argument in the SAVER 

paper, the use of cell types to train a supervised classification algorithm is unconvincing. The authors 

need to justify it. 



RESPONSE TO THE REVIEWERS’ COMMENTS

REVIEWER 1

The authors make use of PCA (SVD) to predict smoothed gene expression levels from scRNA-
seq data. They apply a quantile cutoff on the predicted expression level to censor data as true zeros.
This is an interesting flip on the much-discussed imputation strategy in scRNA-seq. Imputation
methods typically aim to recover true hidden expression levels, while the aim here is to learn which
genes are truly not expressed, with potential applications being negative marker identification or
inferring suppressive regulation.

As the reviewer has pointed out, a major advantage of ALRA over existing methods is the
preservation of biological zeros. In fact, this was our inspiration for developing ALRA: practitioners
reported that they were uncomfortable using existing imputation methods that incorrectly imputed
genes as being expressed in cells where they were known to not be expressed.

However, we emphasize that ALRA’s utility is not restricted to inference of true zeros, such as
in identifying negative markers or inferring suppressive regulation. The thresholding operation at
the heart of ALRA is a well-established strategy for denoising (e.g. landmark papers by David
Donoho and Iain Johnstone on soft thresholding). Of note, even if there were no biological zeros in
the true, underlying expression matrix (i.e. all genes have a small probability of being expressed),
the thresholding strategy would still improve downstream analyses. This is because thresholding is
minimax rate optimal for approximately sparse signals measured with noise. Further, we establish
theoretical guarantees for ALRA’s performance, in stark contrast to the heuristic nature of existing
methods.

The advantages of this denoising operation are reflected in various downstream analyses. For
example, we showed that ALRA improves separation of cell types in six different real-life scRNA-
seq datasets, recovers true cell-to-cell distances as validated using CITE-seq data, and improves
correlation of simulated expression profiles to known references. This is to say that ALRA is not
only superior to existing methods in terms of preserving zeros, but also in recovering true hidden
expression levels.

They use bulk RNA-seq as evidence that some genes are truly not expressed in some tissues. In
particular, the authors use a good strategy to generate positive control data by sampling expression
levels from ImmGen bulk RNA-seq data of sorted cell types. This way they know true and false
zeros from sampling zeros. Using known negative markers such as NCAM1 in B cells is also a
clever strategy. However, it is worth keeping in mind that most evidence for such negative mark-
ers is based on fluorescence (FACS or qPCR) or electrophoresis. In these cases there is a positive
background signal, and concluding a complete lack of a given molecule is difficult.

Every gene may have a non-zero probability—however small—of being expressed in any cell.
However, there is substantial literature, particularly relating to flow cytometry, where cell types
are defined by the presence or absence of certain markers. In this literature, genes expressed at
negligibly low levels are considered to be “not expressed” in a certain cell type. Put differently,
genes that are expressed at levels below the noise level (the positive background signal mentioned
by the reviewer) are considered to be not expressed. Unlike FACS and qPCR that require manual
identification of the noise level, ALRA denoises by automatically thresholding based on an adap-
tive bound for the noise in each cell. After the thresholding operation, the remaining non-zeros
values represent true expression with high probability.
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2 RESPONSE TO THE REVIEWERS’ COMMENTS

The use of the conditional knockout experiment data is a good way to handle this problem.
However, in the text it is not clear which gene is knocked out and how the effect is reflected in the
data.

We replicated an analysis by Gupta et al. of mouse embryonic skin cells to demonstrate the
importance of preserving biological zeros. A major finding of this study was that Wnt signalling is
necessary for differentiation of dermal condensate (DC) cells. The authors conditionally knocked
down the Wnt pathway and then showed that only dermal cells retaining Wnt activity were able
to develop into DC cells. A key step in their analysis was quantifying the proportions of cells
which express DC cell markers and Wnt signalling markers. Using other imputation methods that
do not preserve biological zeros, the practitioner would have to manually threshold the expression
values to determine which cells express these markers. Manual thresholding can be arbitrary and
lead to erroneous results. In contrast, ALRA does not require this thresholding step, as cells not
expressing the gene will not be falsely imputed to non-zero values.

In the revised version of the paper, we give more details about the knockout experiment. Specif-
ically, the Wnt pathway was made inoperative by conditionally knocking out exons 2-6 of beta-
catenin (Ctnnb1). While this renders beta-catenin ineffective, it is still detected by scRNA-seq
as the 3’-end is not affected (i.e. the exon adjacent to the 3’-end is not knocked out). Therefore,
the downstream genes Lef1 and Axin2 are used as surrogates for Wnt activity instead of directly
measuring beta-catenin expression.

It is a challenge to find proper control data for scRNA-seq data. Here CITE-seq counts and
smFISH counts are used. However, these suffer from similar technical challenges as scRNA-seq
(they are simply less discussed for cultural reasons). The protein counts in CITE-seq are more
deeply sequenced than the RNA counts, but suffer from the same shortcomings as scRNA-seq with
the addition of background from nonspecific antibody binding and inefficiencies (not to mention
that that it’s not clear that the two modalities should reflect each other on an individual cell level).
While smFISH is estimated to be 80% efficient compared to the 2%-50% efficiency of scRNA-seq
(depending on protocol and implementation), it also suffers from challenges with accurately seg-
menting cells and counting puncta.

We agree with the reviewer that CITE-Seq and smFISH each have their own technical challenges
and can certainly not be considered a “gold standard” for scRNA-seq. However, we believe that
improved consistency of the scRNA-seq expression data with these other methods indicates that
the imputed values are more reflective of biology.

We opted to use CITE-Seq and FISH to validate our results, as done by authors of other scRNA-
seq imputation methods. Specifically, the FISH validation is exactly replicated from the SAVER
paper (Huang et al. 2018, Nature Methods), and CITE-seq was also used by Eraslan et al. (2019,
Nature Communications) to show that DCA increases protein and RNA co-expression. Given this
existing precedent, we included these analyses to show that ALRA not only preserves biological
zeros, but also outperforms other methods on metrics proposed by their original authors.

Finally, we emphasize that our goal was to use a variety of methods to validate ALRA including
simulations, expert knowledge, subsampled scRNA-seq datasets, FISH, bulk RNA-seq, and CITE-
seq datasets. While each validation method has its caveats, by considering these various methods,
we can conclude that ALRA’s consistently superior performance is unlikely to be artefactual as
their uncertainties are complementary.
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The authors point out that some cells where genes that are typically annotated as unique markers
for cell types have also been observed in other cell types as an argument for predicted expression in
unexpected cells (NCAM1 in cytotoxic T cells). Another fundamental issue with this task however
is the “soup-problem”. In the vast majority of scRNA-seq methods cells are isolated at random with
a cell suspension. This cell suspension will also contain a solution of mRNA from cells which have
been damaged. So if cells are isolated in droplets (such as in 10x Chromium) these droplets will
also contain mRNA from arbitrary cells, similar to a bulk RNA-seq sample. With this in mind,
is there any hope that true zeros will ever be expected between cell types in the sample? There are
some proposed methods to filter the background ‘soup’ mRNA, but none of them are convincing.

In a typical scRNA-seq dataset, roughly 95% of entries are zero (and hence not affected by the
soup problem), and roughly 5% are non-zero. Within those 5%, some false non-zero values are
due to contamination by ambient RNA (i.e. the soup problem); correcting this measurement error
is an interesting area of investigation.

We did a simple experiment to quantify the effect of the soup problem in the purified PBMC
datasets where we define true biological zeros using the corresponding bulk RNA-seq data. Only
0.1-0.3% of these biological zeros were non-zero in the original dataset, which is comparable to the
purity of the cell population as measured by FACS. Overall, of the 21,808,779 known biological
zeros across four datasets, at most 30,927 (0.142%) were affected by the soup problem. Given that
the number of entries affected by the soup is so few, erroneous imputation based on these values
is unlikely. Specifically, the effect on leading eigenvectors in the low-rank approximation would be
negligible. For example, a small number of cytotoxic T-cells expressed CD4 in the original data
(possibly due to the soup problem), and after imputation this number remained small (Figure 2B).

When discussing expression levels there is a general lack of units. In particular, it does not
appear units are comparable between the different methods tested.

When using each imputation method, we attempted to follow the same preprocessing steps as
the original authors. For DCA and scImpute, the input and outputs are read counts. In these
cases, we normalize the outputs as usual: log and library normalization. SAVER also outputs
read counts, but for large matrices where SAVER cannot be run on all genes, we only do log
normalization. For MAGIC and ALRA, we use log and library normalization prior to imputation.
As a result, all methods are log and library normalized. We make this clear in the revised version.

We also point out that our goal with showing the distributions of ALRA-imputed values in
Figure 2A is to demonstrate that the negative values after low-rank approximation can be used
to threshold the noise. In this setting, the units are not important; the relative size of the noise
and true expression values is the main point.

The value of absolutism regarding 0-values being preserved is questionable. An absolute 0 chance
of seeing a molecule in a cell from an experiment is an extremely strong prior. For example, even
though DCA doesn’t produce 0-values, since it uses a statistical model for counts, the output (ex-
pected counts through the ZINB parameters) can be directly converted to a probability of seeing a
count > 0 (given some sequencing depth).

The reviewer makes an excellent point: perhaps a cell type that is reported to not express a
given gene actually expresses it at very low levels (or a small subpopulation of cells express it).
In the noiseless setting, assigning a low probability of expression to these values would be ideal.
However, these small values are often unable to be estimated, as they fall below the noise level.
ALRA identifies the size of entries that cannot be due to noise, and sets values below that level
to zero.



4 RESPONSE TO THE REVIEWERS’ COMMENTS

In the manuscript, we demonstrate that DCA’s reports unrealistically high values for these
“biological zeros.” For example, in Figure S3A we see that in CD8+ T-cells, the probability of CD4
expression is about 20% of CD8 expression! While it is possible that some small fraction of CD4
T cells express CD8 as well, this high level of expression is inconsistent with prior knowledge. The
non-zero values which competing methods produce are not small, and hence their interpretation
under a probabilistic model are not realistic.

We note that there are scenarios where absolutism regarding 0-values is well justified. One po-
tential example may arise when analyzing pre- and post-treatment samples from cancer patients.
Suppose a subset of cells in the tumor carry a particular mutation that can be probed by scRNA-
seq technology. After treatment, it may be important to determine the residual tumor burden by
estimating the fraction of cells that carry this mutation. By using an imputation method that
preserves biological zeros, one can make the important clinical distinction between no expression
(no disease) and minimal expression (minimal residual disease). We note that use of scRNA-seq
(as opposed to DNA or bulk RNA sequencing) in this exmaple may be more sensitive in the setting
where tumor burden is low.

Outside of directly investigating if a gene is lacking the preservation of zeros seems unlikely to
be useful. There are no downstream methods which can properly handle these zeros, which is why
so many methods attempt to impute zeros to real values.

In the revised paper, we have added two examples of downstream analyses which are made
possible by ALRA’s strategy of assigning biological zeros by thresholding at the noise level. We
show how ALRA can be used to automatically gate cells, taking advantage of a rich literature on
negative and positive markers for known cell types. We used the markers published in The Human
Blood Atlas (Uhlen et al. 2020) to identify known cell types in the peripheral blood monocytes
(PBMC) scRNA-seq dataset (Zheng et al. 2018), such as identifying CD27+CD19+CD14-CD3G-
cells to be Memory B cells. This is especially useful for identifying known populations of cells that
are not well-separated in clustering or embeddings. For example, Naive B cells and Memory B
cells appear to be a single cluster on the t-SNE, but our gating approach identifies these known
subpopulations. By preserving biological zeros, ALRA does not require the user to make arbitrary
thresholds defining genes to be “expressed” or “not expressed” and hence enables practitioners to
robustly identify known cell populations using positive and negative markers.

As a second example, Lukassen et al (2020) sought to identify cells which are triple positive
for proteins SARS-CoV-2 entry proteins ACE2, TMPRSS2, and FURIN. Due to dropout, only 3
of the 17,521 cells were ACE2+TMPRSS2+FURIN+, which significantly limited their analysis.
Using ALRA, we identify 1,309 of these cells. In contrast, after imputation using methods that
do not preserve biological zeros, such as MAGIC, a straightforward identification of these cells is
not possible. While one could add a post-processing thresholding step to the output of other im-
putation methods, choosing a suitable threshold is far from trivial and in our limited experiments
different thresholds can lead to dramatically different results.

Investigation on how reconstructed expression levels affect the various tSNE analysis adds little
information of interest: it is highly likely even better performance would be achieved if not cen-
soring some values to 0, or even if the tSNEs were applied to the principal components from the
SVD/PCA rather than first reconstructing the matrix.

The reviewer suggests that the reconstruction and thresholding steps are inconsequential to
the t-SNE visualizations. This is not the case; reconstruction and thresholding step denoises the
matrix and improves the resulting visualization. This is particularly important when restricting
the PCA to variable genes, as described below.

Consider the following two pipelines:

Pipeline A1: PCA → t-SNE applied to first few leading PCs
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Pipeline B1: ALRA (SVD → Low-rank reconstruction → Thresholding) → PCA → t-SNE
applied to first few leading PCs

The reviewer suggests that ALRA’s thresholding step is not necessary, and hence the SVD and
low-rank reconstruction steps are redundant (because PCA is just SVD of the centered matrix).
However, this is not the case. The thresholding step further denoises the matrix, based on the
prior knowledge that a large number of values in the matrix are zero. In this context, we would
like to point out that thresholding of small values to zero is a popular denoising operation that
plays a key role in high dimensional statistics. In particular, for sparse high dimensional signals
corrupted by noise, thresholding enjoys various optimality properties. Given the large sizes of
scRNA-seq matrices, the thresholding step of ALRA should be viewed as a crucial denoising step,
which has deep connections to the high-dimensional statistics literature.

The pipelines above do not include a step present in essentially every analysis: identification of
variable genes. Therefore, as in other imputation methods papers, we include the variable genes
selection step into the pipelines, as follows:

Pipeline A2: Identify variable genes → PCA on variable genes → t-SNE applied to first few
leading PCs

Pipeline B2: ALRA (SVD → Low-rank reconstruction → Thresholding) → Identify variable
genes → PCA on variable genes → t-SNE applied to first few leading PCs

In the paper, we showed that this pipeline B2 results in dramatically improved results over
pipeline A2. This is because the missing values in the variable genes have been imputed using
information from the rest of the genes. Given that the subsequent PCA is restricted to the variable
genes, this reconstruction step is essential to making those variable genes more informative. To
summarize, the thresholding is a form of denoising and the reconstruction is essential because of
the subsequent restriction of the analysis to variable genes.

Altogether, we emphasize that ALRA is a method for denoising scRNA-seq datasets which
enables a wide variety of downstream analyses. ALRA is particularly unique in that it preserves
biological zeros; this can be interpreted as setting to zero all expression values that are indistin-
guishable from noise. This may be viewed as an analog of gating in flow cytometry, where protein
expression below a threshold is identified as noise and called “no expression.” In the supplement,
we provide a theoretical justification of ALRA’s performance, which is the most rigorous analysis
of a denoising method in the scRNA-seq literature (to the best of our knowledge). This theory,
in combination with validation on over 10 real-life datasets, establishes ALRA as a useful tool for
imputation of scRNA-seq datasets.
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REVIEWER 2

In this paper, the authors developed a method called ALRA that imputes single-cell RNA-seq
data using singular-value decomposition (SVD) plus thresholding. They demonstrated the perfor-
mance of ALRA using three real datasets and three simulation studies (synthetic data), and they
downsampled the original data to create the data that needed imputation and evaluated the impu-
tation results by the original data. I believe this method would useful for large-scale scRNA-seq
datasets given its good computational efficiency, if the validation results were convincing. The
authors showed that ALRA has improved accuracy measured by the Gini index, which benchmarks
imputed scRNA-seq data against FISH data, over that of the existing imputation methods.

We would like to clarify that we demonstrate ALRA’s performance on 11 real datasets, and a
single simulation study. We summarize below:

(1) Zheng et al. (2017): We show that ALRA preserves biological zeros more effectively than
other methods. Biological zeros are defined using prior knowledge about marker gene
expression (e.g. PAX5, NCAM1, etc.) and also by bulk RNA-sequencing (Hoeck et al.
2015). This result is in Figure 2a-c.

(2) Stoeckius et al. (2015): ALRA preserves biological zeros, where zeros were defined using
bulk RNA-seq and CITE-seq data

(3) By preserving biological zeros, we are able to quantitatively compare the number of zeros
expression marker genes between knockout and control in Gupta et al. (2019)

(4) Tasic et al. (2018): We showed that ALRA more clearly separates known neocortical cell
types than other methods, Hrvatin et al. (2018): Similarly, ALRA more clearly separates
known mouse visual cortex cell types than other methods.

(5) Torre et al. (2018): Imputation by ALRA results in gene expression distributions that are
more consistent with the FISH of the same cell populations

(6) We showed that ALRA better characterizes the distinct levels of Pdgfra expression known
to exist in lamina propria cells from the colon of Pdgfra(EGFP/+) knock-in mice

(7) Baron et al (2016), Chen et al. (2017), La Manno et al. (2016), Zeisel et al. (2015):
ALRA improves separation of cell types from downsampled data in all four datasets, as
mentioned by the reviewer

(8) Simulation study using bulk RNA-seq from ImmGen, as mentioned by the reviewer

However, I have the following major concerns regarding the validity of the results. Most impor-
tantly, the authors need to provide more detailed figure captions to make the figures understandable.

We have expanded the figure captions to make the results more clear.

1. In the section “ALRA preserves biological zeros in simulated and real datasets,” the authors
defined biological zeros based on “genes with solid biological knowledge not expressed in a cell popu-
lation.” However, the authors did not provide literature or data evidence to justify their definitions,
that is, what genes are not expressed in what cell types by what evidence.

We consider the following three separate approaches to define biological zeros:
(1) Prior knowledge: We appreciate the reviewer pointing out that we did not cite literature

to justify these definitions. We have added citations supporting our assumption that
PAX5, NCAM1, and CD4 are specific to B cells, natural killer cells, and helper T cells
respectively. For example, the Human Blood Atlas (https://www.proteinatlas.org/
humanproteome/blood) is a recent project which determines genes specifically expressed
in different blood cell types.

https://www.proteinatlas.org/humanproteome/blood
https://www.proteinatlas.org/humanproteome/blood


RESPONSE TO THE REVIEWERS’ COMMENTS 7

(2) Bulk RNA-sequencing: We used bulk RNA-sequencing to identify genes which are not
expressed in a cell population of interest. In particular, if a gene has 0 counts in a bulk
RNA-seq sample of a homogenous cell population consisting of a large number of cells,
we conclude that this gene is not expressed by that cell type. In doing so, we identified
several hundred genes which should not be expressed in B cells, monocytes, T cells, and
CD56 NK cells. We then showed that ALRA preserves these biological zeros in two
scRNA-seq datasets of these populations better than competing methods (Figure 2C and
Supplemental Table S2).

(3) Knock-out experiment: In a dataset where the beta-catenin/Wnt pathway was condition-
ally knocked out, we show that ALRA allows for quantification of the proportion of cells
with active Wnt.

2. In the analysis of “The importance of preserving biological zeros: an example”, SAVER and
scImpute were no longer compared. The authors should include these two methods to be consistent
with other results.

The point of this section was not to benchmark methods, but rather to give a general example
of why it is important to preserve biological zeros. Hence we did not include all the methods for
comparison. In the revised version, we included the results for SAVER and scImpute as well.

3. It is unclear why ALRA favors diverse cell types. This important phenomenon needs to be
justified.

In the presence of diverse cell types, there is a large variability in the columns of the matrix.
In turn, this implies that the leading singular values are large. As is well known, and also evident
from our mathematical analysis, the ability to accurately estimate the leading singular vectors
and the rank-r approximation of the matrix depends on how large are the singular values and the
spectral gap from the remaining smaller singular values. In the setting of few, similar cell types,
the leading singular values are smaller. Consequently, the rank-r SVD of the observed matrix with
many zeros is less accurate, which also affects the ability to accurately preserve biological zeros.

4. The choice of the p = 0.001 quantile seems arbitrary and unjustified. The choice of this
threshold is crucial to the performance of ALRA, so the authors need to provide a practical guide
for users to make the choice a data-driven way.

We thank the reviewer for pointing out that sensitivity to the threshold parameter p was not
clear. Actually, the choice of p is almost completely inconsequential. In ALRA’s original formu-
lation, we used a threshold defined by the magnitude of the most negative value in each gene
(i.e. p=0). In this case, there is no free parameter for choosing a threshold. In this later version
we submitted to Nature Communications, we set p = 0.001 out of the theoretical concern that
an outlying expression value could lead to too large of a cut-off, but we never had any empirical
evidence of this occurring. We added a supplemental figure showing that the results of ALRA are
very robust to the choice of threshold.

5. Many figures have vague captions and labels. For example, Figure S8 is hard to understand
because the meaning of the y-axes is unclear. The message in Fig. S3 is also unclear.

We have clarified the captions and labels.
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6. In the section “ALRA improves separation of cell types,” the authors claimed that “To quan-
titatively confirm that ALRA increases separation, we trained supervised random forests to classify
the cells into cell types based on expression values”. However, the SAVER paper argued the other
way: the cell-types labeled in Zeisel et al. were based on cell clusters found from the raw scRNA-seq
data and not trustworthy, so imputation was needed. In fact, the SAVER paper used the cell clus-
ters found from their imputed Zeisel et al. data instead of the cell types for evaluation. Given the
argument in the SAVER paper, the use of cell types to train a supervised classification algorithm
is unconvincing. The authors need to justify it.

Huang et al. identified clusters in the original dataset from Zeisel et al, and then downsampled
the number of reads to produce an “observed” dataset. The clusters in the original dataset were
considered to be “ground truth labels,” as they were determined using all available data. They
then showed that applying SAVER to the downsampled dataset recovered these “ground truth”
cluster labels. Specifically, they compared the clustering of each of the observed and imputed
datasets to the “ground truth” dataset using the Jaccard index.

Similarly, we showed that ALRA recovers the “ground truth” cluster labels computed by Huang
et al. even better than SAVER does. Instead of using Jaccard index, which requires clustering,
we trained a random forest classifier to predict the cluster label and used the “out-of-bag-error” as
a measure of accuracy. The advantage of this method is that it does not depend on re-clustering.
For completeness, we also compared using Jaccard Index (see Table R1 below), and found similar
results: ALRA substantially improves the Jaccard index in all cases, outperforming competing
methods in 3 out of 4 datasets.

Table R1. Jaccard index between clusters on original dataset and clusters after
imputing the downsampled dataset by various methods.

Obs SAVER ALRA DCA MAGIC scImpute
baron 0.50 0.80 0.86 0.84 0.50 0.38
chen 0.35 0.49 0.42 0.65 0.46 0.28
manno 0.36 0.47 0.47 0.47 0.46 0.32
zeisel 0.40 0.60 0.73 0.63 0.38 0.24



<b>REVIEWER COMMENTS</B> 

Reviewer #1 (Remarks to the Author): 

In this revision the authors have written a detailed response to concerns by the reviewers, and added 

some clarifications in the manuscript. The authors have also added some motivational examples for the 

utility of preserving zeros in analysis. 

It is still not convincing the absolute zeros are more meaningful than e.g. multimodal distributions of 

count frequencies obtained by other methods. Yet the method is highly scalable and the underlying 

theoretical work is a substantial effort (though working under assumptions which seem quite divorced 

from the scRNA-seq measurement process). 

Thanks to the clarifications made in the new manuscript it is now clear the authors are working on a 

scale of log(1,000 * x / s + 1), where x is a molecule count and s is a library depth. This is highly relevant 

for the authors method, as different choices in the arbitrary constants ‘1,000’ and ‘1’ in this scaling will 

affect the relation between zero and non-zero values. In particular this will affect how numbers are 

thresholded after performing the SVD reconstruction. The distribution of log(x / s + 1) is very different 

from log(1,000 * x / s + 1) which is very different from (log(10,000 * x / s + 1). Not to mention that zeros 

can be shifted by changing the arbitrary offset ‘+ 1’. This issue is discussed in depth in Lun 2018 

https://www.biorxiv.org/content/10.1101/404962v1.full. 

The authors must demonstrate the effects of changing the scaling factors in the log normalization on the 

number of retained or imputed zeros. This will have substantial effect on e.g. the cell type gating 

analyses the authors use to motivate the method (such as the triple positive SARS receptor cells). If 

results are not robust to these arbitrary scaling factors, they will be difficult to trust. 

Reviewer #2 (Remarks to the Author): 

The authors have addressed most of my previous comments. I only have two remaining comments for 

this version. 

1. In the authors' response to my question about why two methods, SAVER and scImpute, were left out 

in the section "The importance of preserving biological zeros," they added the following sentence: 

"SAVER’s results falsely suggest that the Wnt activity in the knockout and control is identical, whereas 

scImpute falsely suggests that DC differentiation is similar between knockout and control." 

However, there is no evidence to support this statement in Figure S3, where the authors compared 

ALRA with DCA and MAGIC. 



2. I still don't understand the authors' explanation about why ALRA performs better when cell types are 

more diverse. The authors wrote 

“In the presence of diverse cell types, there is a large variability in the columns of the matrix. In turn, 

this implies that the leading singular values are large.” 

To me, there is a gap between the greater diversity of cell types and the larger leading singular values. I 

think the primary reason for my lack of understanding is the mathematical definition of "cell type 

diversity." If the authors can write down the mathematical derivation to support this statement, it will 

clarify my confusion. 



RESPONSE TO THE REVIEWERS’ COMMENTS

REVIEWER 1

In this revision the authors have written a detailed response to concerns by the reviewers, and
added some clarifications in the manuscript. The authors have also added some motivational
examples for the utility of preserving zeros in analysis.

It is still not convincing the absolute zeros are more meaningful than e.g. multimodal distribu-
tions of count frequencies obtained by other methods. Yet the method is highly scalable and the
underlying theoretical work is a substantial effort (though working under assumptions which seem
quite divorced from the scRNA-seq measurement process).

We thank the reviewer for this summary of our changes, and especially for noting the value of
our theoretical work.

Our perturbation analysis was done under both a dropout model as well as a more realistic
multinomial model. We believe the reviewer’s comments about the assumptions being “divorced
from the scRNA-seq measurement process” are referring to the dropout model, which has recently
fallen out of favor in the scRNA-seq community. This set of assumptions has largely been sup-
planted by more realistic models where the excess of zeros are explained by insufficient sampling
of reads from each cell [1], such as the multinomial model in [2].

In the revised supplementary, we added further details, including a new lemma, explaining why
our Theorem is valid under the multinomial model. We also added an introduction section which
frames the analysis and makes it clear that we extend our results to the multinomial setting. We
appreciate that the reviewer helped us see that the analysis under this more realistic model should
be expanded and featured more prominently.

Beyond our assumptions about the measurement process itself, our analysis also requires as-
sumptions about the spectral structure of the expression matrix. Most importantly, we assume
that the unobserved, underlying expression matrix is low-rank. The biological justification for this
assumption is that genes do not act independently, but rather as part of concerted gene modules,
resulting in a low-rank matrix. This is the same assumption that underlies the use of principal
component analysis as a preprocessing step, as is standard in many analysis pipelines. We make
further assumptions that are common in the low-rank matrix completion literature, and we list
them in Section 2 of our theoretical analysis. In this revision, we expand upon why these assump-
tions are reasonable in the specific setting of scRNA-seq data.

Thanks to the clarifications made in the new manuscript it is now clear the authors are working
on a scale of log(1,000 * x / s + 1), where x is a molecule count and s is a library depth. This is
highly relevant for the authors method, as different choices in the arbitrary constants ‘1,000’ and
‘1’ in this scaling will affect the relation between zero and non-zero values. In particular this will
affect how numbers are thresholded after performing the SVD reconstruction. The distribution of
log(x / s + 1) is very different from log(1,000 * x / s + 1) which is very different from (log(10,000
* x / s + 1). Not to mention that zeros can be shifted by changing the arbitrary offset ‘+ 1’. This
issue is discussed in depth in Lun 2018 https://www.biorxiv.org/content/10.1101/404962v1.full.

The authors must demonstrate the effects of changing the scaling factors in the log normaliza-
tion on the number of retained or imputed zeros. This will have substantial effect on e.g. the cell
type gating analyses the authors use to motivate the method (such as the triple positive SARS re-
ceptor cells). If results are not robust to these arbitrary scaling factors, they will be difficult to trust.

1
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We thank the reviewer for pointing out this important literature on the effect of scaling factors
on downstream analysis. The reviewer raises the noteworthy concern that these scaling factors
may also affect ALRA’s imputation results, particularly with respect to preserving zeros. We
added two analyses which show that ALRA is not sensitive to the choice of scaling factors. In
Table S6, we show that the rates of biological zero preservation (ZP) and total zeros completed
(TC) in the peripheral blood mononuclear cells from Figure 2B do not change appreciably with
different choices of scaling factor. In Table S7, we show that different choices of scaling factor do
mildly affect the rank estimation, but still result in generally consistent numbers of triple positive
SARS receptor cells (as in Table S4, ALRA is not sensitive to the estimated rank of the matrix).
In each of these examples, we varied the scaling factor from 1,000 to 20,000. This choice reflects
the two approaches we have seen used most commonly in the literature: 1) to simply use 10,000,
which is the default in packages like Seurat and 2) to use the median UMI count in the dataset,
after filtering. For example, the median UMI counts in three datasets we analyzed in this paper,
Zheng et al, Gupta et al., and Lukassen et al., were 1,426, 8,194, and 4,436—well within our chosen
range.

The ideal approach to normalizing scRNA-seq expression data is an active area of research.
ALRA’s results are based on the most popular approach, which is the log(10,000 x +1) transfor-
mation. As the above examples demonstrate, the choice of this scale factor does not appreciably
change the imputation results.
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REVIEWER 2

The authors have addressed most of my previous comments. I only have two remaining com-
ments for this version.

1. In the authors’ response to my question about why two methods, SAVER and scImpute, were
left out in the section "The importance of preserving biological zeros," they added the following
sentence:

"SAVER’s results falsely suggest that the Wnt activity in the knockout and control is identical,
whereas scImpute falsely suggests that DC differentiation is similar between knockout and control."

However, there is no evidence to support this statement in Figure S3, where the authors com-
pared ALRA with DCA and MAGIC.

We thank the reviewer for pointing out that we had omitted the reference to Table S1 which
supports this statement. In Table S1, we see that the markers for Wnt activity (AXIN2+ &
LEF1+) are essentially identical in the mutant (76%) and wildtype (77%) following SAVER,
when actually the percent should be much smaller in the mutant. We have added a reference to
Table S1 following that statement, and we also added plots for scImpute and SAVER to Figure S3.

2. I still don’t understand the authors’ explanation about why ALRA performs better when cell
types are more diverse. The authors wrote

“In the presence of diverse cell types, there is a large variability in the columns of the matrix.
In turn, this implies that the leading singular values are large.”

To me, there is a gap between the greater diversity of cell types and the larger leading singular
values. I think the primary reason for my lack of understanding is the mathematical definition
of "cell type diversity." If the authors can write down the mathematical derivation to support this
statement, it will clarify my confusion.

We thank the reviewer for this comment. In what follows, we explain the mathematical foun-
dations of this statement. Consider first a data matrix which consists of a single cell type. Denote
by X the underlying expression matrix before the multinomial sampling. As individual cells from
the same type still have some small within-class variability, the matrix X is approximately low
rank but with relatively small spread, hence small singular values. In this context, recall that the
square of the singular values, which are the eigenvalues of the (non-centered) covariance matrix,
capture the variability of the columns of X, which indeed is rather small within a single cell type.
Applying ALRA to the corresponding observed data, the leading eigenvectors attempt to capture
this relatively small within-class variability and are more affected by the noise.

In contrast, consider a dataset consisting of K different cell types. Here, the small within-class
variability characteristic of each cell type is still present, but added to it is a significantly larger
variability in the directions between the mean column vectors of the different cell types. Namely,
in a generic case, the underlying expression matrix X will have K − 1 large singular values, which
would be much larger than those of a matrix discussed previously with a single cell type. In this
case, applying ALRA to the multinomial sampled data, the SVD step will capture the between
class variability, and would be far more resilient to noise. Furthermore, these leading eigenvectors
often capture the marker genes that are specific to the various cell types, thus allowing ALRA to
better impute and preserve them. This argument applies to any type of structure or “signal” in the
data; for simplicity, we used K distinct cell types in this explanation. However, non-clustered data
with large biological variation would similarly have larger singular values compared to a dataset
with only technical noise.
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<b>REVIEWER COMMENTS</B> 

Reviewer #1 (Remarks to the Author): 

Review 

In this revision, Linderman et al have changed some phrasing in the manuscript, and slightly extended 

descriptions in the supplementary notes. The authors have added a comparison of the number of called 

zeros in a couple of their applications depending on scaling factors in their data transformation step. 

This analysis does not address the issues raised in the previous revision. 

In the theoretical supplemental notes the authors have expanded the section on how the theory applies 

to multinomial data. In practice however the authors never apply their algorithm to data following 

either of their two assumed distributions (spike-and-slab normal and multinomial). The authors make 

use of log(1000 * x / s + 1) scaled counts, which does not follow either of those assumed distributions. 

As such, the theoretical work does not apply to the data used in practice. 

As discussed in the previous review, changing the arbitrary scaling factors 1000 and 1 will change the 

distribution properties of the expression matrix. As such these will greatly impact the meaning of the 

width of the distribution around 0 in the reconstruction. It is also not clear how changing the arbitrary 1, 

which moves the untransformed ‘0’ in the transformed distribution. The paper linked in the previous 

review points out how the multiplicative scaling factor interacts with the additive offset, and these need 

to be considered together. 

The brief tests on how results from the PBMC and bronchial epithelial data are changed due to different 

scaling factors does not sufficiently address the underlying issue. How does contracting and expanding 

the distribution around 0 by changing the scaling factor alter the distribution of reconstructed values? 

How does this affect how ‘close’ the non-zero distribution is to the noise distribution symmetrically 

distributed around 0? 

Regarding the extended discussion on the multinomial case, it would be good to show at what threshold 

of probability p_ij the ALRA method will consider it indistinguishable from 0. In practical scRNA-seq 

datasets many genes known to be functionally present, such as transcription factors, have p_ij values as 

low as 1e-5 (roughly corresponding to single digit molecule numbers in individual cells, not even 

considering the ~10% efficiency of scRNA-seq counting). 

Since the authors have investigated the mathematics of the multinomial count distribution, they could 

also demonstrate the method on the multinomial count data, and contrast those results with the 

transformed results. 

In the added supplementary tables the authors state expression is of the form log(alpha * x + 1) where 

alpha is one of 1000, 5000, 10000 etc. But in the methods section the authors write they use log(1000 * 



x / s + 1). These different transformations lead to very different distributions. What was actually 

investigated? 

Reviewer #2 (Remarks to the Author): 

The authors use the singular value decomposition (SVD), a classic matrix method, combined with 

thresholding on the SVD reconstructed values to perform scRNA-seq data imputation. That is, the 

thresholded SVD reconstructed values are the “imputed” values. This method ALRA has a main 

contribution: introducing a new way to identify biological zeros. 

To help convince me the validity of the identification of biological zeros and the quality of the imputed 

value, I would like to see the authors address the following issues: 

1. The theoretical derivation in this paper suggests that biological zeros follow Gaussian distributions 

with mean zero after SVD reconstruction. However, in Figure 2A, for gene CD8A, the distributions of the 

reconstructed gene expressions are quite different in four cell types. Hence, it is not obvious how the 

theoretical results are applicable when the cell types are unknown, because it is likely that non-

biological zeros in one cell type will be thresholded as zeros if the threshold is not cell-type-specific. 

2. Related to 1, the simulation using bulk RNA-seq of five T cell populations from the Imm-Gen 

consortium doesn’t reflect the cell type differences. A more realistic simulation should generate scRNA-

seq data from a mixture of distinct cell types. 

3. Besides, according to the theoretical results, the reconstructed value of each biological zero count is 

sampled from a zero-mean Gaussian distribution by itself. However, it is not guaranteed that the 

reconstructed values of biological zeros are independently and identically distributed as one zero-mean 

Gaussian distribution. 

4. Given that this algorithm will threshold all the values below the set threshold, the authors should 

show the percentage of non-zero values in the original matrix that has been thresholded. The authors 

should also report the ratio between the number of negative and positive reconstructed values that 

were thresholded to zero for every dataset. 

5. Based on the description in page 11, the ALRA algorithm will change all the values after imputation, 

no matter if they are zeros or not. Although a rescaling process has been proposed, the authors should 

also show the correlations between imputed non-zero values and original non-zero values among all the 

genes. 

6. The authors only show the distribution of one gene before and after imputation in S15, S16, S17. They 

need to show the distribution before and after imputation for more genes using ALRA. Besides, the 



authors should show the following three distributions of the same gene. 1. The distribution of this gene 

before imputation. 2. The distribution of this gene after SVD reconstruction before thresholding. 3. The 

distribution of this gene after thresholding and rescaling. 

7. In the real data analysis, the authors run the analysis on UMI data. They do not discuss the 

performance of this method on non-UMI data, such as Smart-seq2 data. 

8. The authors need to explain the low rank assumption and why it is biologically meaningful. If the truth 

is assumed to be low rank, does it mean that cells in the same type/subtype are biologically identical? I 

think this is key for biologists. 



RESPONSE TO THE REVIEWERS’ COMMENTS

We thank the reviewers for their careful reading of our manuscript and the helpful suggestions.
We believe the paper has been substantially improved through this process. Below we provide
point-by-point responses to the comments and suggestions raised in the third round of review.

REVIEWER 1

In this revision, Linderman et al have changed some phrasing in the manuscript, and slightly
extended descriptions in the supplementary notes. The authors have added a comparison of the
number of called zeros in a couple of their applications depending on scaling factors in their data
transformation step. This analysis does not address the issues raised in the previous revision.

In the second round of review, the reviewer expressed concern that ALRA’s performance at
preserving biological zeros would be affected by the choice of scaling factors in the data transfor-
mation step. We showed in two datasets that the scaling factors did not substantially change the
results. In this revision, we show this more extensively (see below).

In the theoretical supplemental notes the authors have expanded the section on how the theory
applies to multinomial data. In practice however the authors never apply their algorithm to data
following either of their two assumed distributions (spike-and-slab normal and multinomial). The
authors make use of log(1000 * x / s + 1) scaled counts, which does not follow either of those
assumed distributions. As such, the theoretical work does not apply to the data used in practice.

4/6 Follow-Up: The authors don’t need to prove mathematically the transformed distributions
satisfy their theorems. While the mathematical supplement is interesting, I give it a fairly low
weight in judging the method, because as the authors point out in their response, the theoretical
models lack a lot of aspects of observed data.

As explained in our inquiry concerning this review (communicated by the editor to this re-
viewer on 4/1), ALRA’s empirical performance in detecting biological zeros is not affected by the
log transform. That is, applying ALRA to the column-normalized data (i.e. dividing the count
data vector of each cell by the sum of its entries, without log transform) and to the log-transformed
data yield similarly high rates of biological zero preservation (Tables 1-3 in the Appendix). How-
ever, pre-processing with the log transform prior to imputation with ALRA substantially improves
the performance of downstream analyses like t-SNE. In this revised version of the paper, we have
added a section titled “Variance Stabilization” to the theoretical analysis explaining the effect of the
log transform and demonstrating why it is helpful in this setting. Finally, we emphasize that the
main contribution of the theoretical analysis is to provide intuition and rationale for the symmetry
of biological zeros–and we consistently observe the same symmetry using the log-transformed data.

As discussed in the previous review, changing the arbitrary scaling factors 1000 and 1 will
change the distribution properties of the expression matrix. As such these will greatly impact the
meaning of the width of the distribution around 0 in the reconstruction. It is also not clear how
changing the arbitrary 1, which moves the untransformed ‘0’ in the transformed distribution. The
paper linked in the previous review points out how the multiplicative scaling factor interacts with
the additive offset, and these need to be considered together.

The brief tests on how results from the PBMC and bronchial epithelial data are changed due to
different scaling factors does not sufficiently address the underlying issue. How does contracting
and expanding the distribution around 0 by changing the scaling factor alter the distribution of
reconstructed values? How does this affect how ‘close’ the non-zero distribution is to the noise
distribution symmetrically distributed around 0?

1
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4/6 Follow-up: I see the authors point that it is common in the field to simply perform log(x +
1) scaling and that is considered a standard. But as have been pointed out by several papers (the Lun
paper linked in an earlier review, and more recently in https://doi.org/10.1093/bioinformatics/btab085),
the arbitrary coefficients used when scaling the data will specifically affect how close zero-values
and non-zero values are to each other on the transformed scale. And this closeness is exactly what
the authors’ method uses to determine ’biological zeros’. I believe that if I use ALRA, and change
log(x / s + 1) to e.g. log(100 * x / s + 0.001), or some other combination of arbitrary scaling
factors, I can make ALRA as many or as few ’biological zeros’ as I want. This is why I want
the authors to demonstrate how data distribution shifts depending on transformation, and how the
reconstructed values are also distributed depending on transform.

We apply the standard pre-processing transformation yij = log(α · xij/s+ c) to the expression
value xij of the ith cell and jth gene, where α is a scaling factor, c is an offset, and s is the library
size. The reviewer raised an important concern: how do choices of α and c affect ALRA’s per-
formance? In particular, will different choices of these parameters affect the number of biological
zeros?

We first note that while α is completely arbitrary, the offset c is not. If we intend to preserve
biological zeros, the only possible choice of c is 1, because log(c) = 0 only for c = 1. Any other
choice would shift all the zeros to a non-zero value and hence would be inconsistent with the goal
of preserving biological zeros.

In contrast, users may reasonably choose different values for the scaling factor α. In this
revision, we show that the number of biological zeros preserved does not substantially change
based on the choice of α in four datasets (Tables S6-S9). We also show how the distribution of
expression values changes with the choice of scaling factor in Supplemental Figure S18. As this
figure shows, the shape of the resulting distribution is very robust to the choice of scaling factor.
In turn, this implies that the preservation of zeros is nearly unaffected by the value of the scaling
factor. We conclude that the scaling factor α does not actually “affect how close the zero-values
and non-zero values are to each other on the transformed scale.”

In summary, these results establish that the reviewer’s concern that “[by changing scaling fac-
tors], I can make ALRA as many or as few ‘biological zeros’ as I want” is not realized.

Regarding the extended discussion on the multinomial case, it would be good to show at what
threshold of probability pij the ALRA method will consider it indistinguishable from 0. In practical
scRNA-seq datasets many genes known to be functionally present, such as transcription factors,
have pij values as low as 1e−5 (roughly corresponding to single digit molecule numbers in individ-
ual cells, not even considering the 10% efficiency of scRNA-seq counting).

We have added a simulation to assess the probability of imputing a technical zero as a function
of pij . We simulated 5,000 cells from the bulk RNA-seq profiles of five T-cell populations using the
multinomial model described in the Online Methods section titled, “Simulated scRNA-seq data.”
The number of reads sampled from each cell was randomly chosen from the read counts in the
purified PBMC dataset, so that the distribution would be realistic. After running ALRA, we then
plotted the probability that each technical zero was completed as a function of the probability of
expression, pij . In this simulation (Supplemental Figure 11), we see that at around pij = 1e−5,
∼ 75% of the technical zeros are imputed, and at around pij = 1e−4, nearly 100% of the technical
zeros are imputed.

Since the authors have investigated the mathematics of the multinomial count distribution, they
could also demonstrate the method on the multinomial count data, and contrast those results with
the transformed results.
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We originally assessed ALRA’s performance on data that was log transformed after it was gen-
erated from a multinomial model. We repeated the simulation without the log transform (i.e. after
dividing the count data vector of each cell by the sum of its entries, without log transform), as
requested by the reviewer. Specifically, ALRA’s performance in preserving biological zeros without
preprocessing by the log-transform is shown using this simulated data and two real-life datasets
in Tables 1-3 of the Appendix (i.e. the theoretical analysis).

In the added supplementary tables the authors state expression is of the form log(alpha * x +
1) where alpha is one of 1000, 5000, 10000 etc. But in the methods section the authors write they
use log(1000 * x / s + 1). These different transformations lead to very different distributions.
What was actually investigated?

4/6 Follow-up: On a related note, the authors responded they use log(x + alpha) in all calcula-
tions. This means all observed expression levels are confounded by library size which is known to be
the largest explaining factor for ’zeros’ in scRNA-seq data. The learned low-rank representations
are likely mostly picking up the signal of library size rather than biological variation, and it would
be hard to interpret the results. If the authors still want to use log(x + alpha) rather than log(beta *
x / s + alpha) they need to demonstrate their inferred biological zeros do not depend on library size.

In our response, we misunderstood the reviewer’s notation and stated we used log(α · x + 1),
when in reality we do divide by library size in all experiments. We do this for the exact reason
stated by the reviewer: to remove the effect of library size in the resulting analysis.

To be perfectly clear, the transformed expression of gene j in cell i is

yij = log(
α∑
j xij

· xij + c).

That is, we divide by the library size, multiply by an arbitrary scaling factor of α = 10, 000,
add the “pseudo-count” of c = 1, and take the log. We have clarified this transformation in the
text as well. As previously mentioned, we also show that the preservation of biological zeros does
not substantially change with different values of α.
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REVIEWER 2

The authors use the singular value decomposition (SVD), a classic matrix method, combined
with thresholding on the SVD reconstructed values to perform scRNA-seq data imputation. That
is, the thresholded SVD reconstructed values are the “imputed” values. This method ALRA has a
main contribution: introducing a new way to identify biological zeros.

To help convince me the validity of the identification of biological zeros and the quality of the
imputed value, I would like to see the authors address the following issues:

1. The theoretical derivation in this paper suggests that biological zeros follow Gaussian distri-
butions with mean zero after SVD reconstruction. However, in Figure 2A, for gene CD8A, the
distributions of the reconstructed gene expressions are quite different in four cell types. Hence, it
is not obvious how the theoretical results are applicable when the cell types are unknown, because
it is likely that non-biological zeros in one cell type will be thresholded as zeros if the threshold is
not cell-type-specific.

The reviewer makes the important point that the threshold is not cell-type specific. We do not
require the user to pre-specify cell types, which is especially important as cell-type identification
is very much an open problem in scRNA-seq data analysis. In this respect, ALRA’s simplicity is
a strength, allowing it to be applied to datasets with and without clearly defined cell-types.

The gene-specific threshold which we use to restore the biological zeros is derived from the most
negative imputed values for each gene. As the reviewer points out in Figure 2A, the threshold
for CD8A is determined by the CD4 cells, which have a wider distribution, resulting in a larger
threshold. This will indeed result in imputing fewer technical zeros, as they cannot be distinguished
from the biological zeros using our approach.

This example nicely demonstrates why we make no claims about imputing technical zeros. Some
will inevitably be below the threshold, and hence kept as zeros. This is why we consider ALRA
to be a conservative method for imputation: zeros are only imputed if we have strong evidence
that they are not biological zeros. In spite of this, we do find that ALRA also correctly imputes
a large proportion of technical zeros, as demonstrated throughout the paper. Furthermore, based
on the reviewer’s suggestion below, we added a measure of “excess zeros,” which estimates the
number of technical zeros that were not completed in each gene (section “Excess Zeros” under
Online Methods).

Finally, we note that a more refined imputation (e.g. based on cell types or some other more
“local” approach to thresholding) is an interesting topic for further research, but beyond the scope
of this manuscript.

2. Related to 1, the simulation using bulk RNA-seq of five T cell populations from the Imm-Gen
consortium doesn’t reflect the cell type differences. A more realistic simulation should generate
scRNA-seq data from a mixture of distinct cell types.

We thank the referee for this comment. We agree that a more realistic simulation would contain
different cell types. In the 11 real-world (i.e. non-simulated) datasets used to benchmark ALRA
throughout the paper, many of them are extremely diverse. For example, the Zheng et al. and
Stoeckius et al. datasets contain celltypes as distinct as B cells, monocytes, and T cells. However,
in this specific simulation, our goal is to demonstrate ALRA’s ability to preserve biological zeros
in a challenging setting. To this end, we designed the simulation with sub-populations of T cells
because it is more difficult to preserve biological zeros in datasets with relatively small differences
between clusters (i.e. subpopulations of T cells) than if the clusters are dramatically different (i.e.
distinct cell types, like B cells and T cells). Any imputation is effectively a type of smoothing,
and imputation methods tend to oversmooth subtle differences between cell types. By using cell
populations with more subtle differences in this simulation, we show that ALRA does not over-
smooth. In contrast, other methods falsely impute biological zeros for genes in a given population
that does not express them, simply because a similar population expresses them strongly.
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As noted by the reviewer above, there is a trade-off between preservation of biological zeros
and imputation of technical zeros. With highly distinct cell types, in general the preservation of
biological zeros is easier, at the expense of a lower completion rate for technical zeros. In Table
1 of this response we expanded the simulation to include 8 cell types, including dendritic cells,
neutrophils, B cells, and T cells. ALRA was run on the data matrix combining all these cell types.
Compared to the simulation including 5 cell types, the rates of preserving biological zeros were
higher, while the technical zero completion rates were lower.

3. Besides, according to the theoretical results, the reconstructed value of each biological zero
count is sampled from a zero-mean Gaussian distribution by itself. However, it is not guaranteed
that the reconstructed values of biological zeros are independently and identically distributed as one
zero-mean Gaussian distribution.

We showed that under the stated assumptions, the reconstructed value of each biological zeros is
symmetric around zero. To justify ALRA’s procedure, we do not need the values to be identically
distributed, as mentioned by the reviewer—this symmetry is sufficient. However, the reviewer is
correct that we do require that the values not be strongly dependent. This is difficult to show
theoretically, but we demonstrate using simulations that the values are nearly independent. We
discuss this issue at length in Remark 1 following the theorem and the section titled Simulation
at the end of the theoretical analysis.

4. Given that this algorithm will threshold all the values below the set threshold, the authors
should show the percentage of non-zero values in the original matrix that has been thresholded.

In the ALRA algorithm, originally non-zero values are restored to their original value following
the thresholding. That is, no entry that was non-zero prior to ALRA will be set to zero after
ALRA. This is an important point that we have made clear in the revised manuscript.

The authors should also report the ratio between the number of negative and positive recon-
structed values that were thresholded to zero for every dataset.

We thank the reviewer for suggesting we investigate this ratio—it is an informative measure that
we had not previously considered. Given that the biological zeros are symmetrically distributed
around zero, asymmetry in this distribution could be due to technical zeros. After experimenting
with this idea, we propose a similar measure that is essentially the same as the ratio proposed by
the reviewer, but which we believe may be slightly more interpretable.

For a gene i with threshold τi, define the number of excess zeros as

ψi = |{j : 0 < yij < τi and xij = 0}| − |{j : yij < 0 and xij = 0}|,
where xij and yij denote the expression values before and after low-rank approximation, respec-
tively, for the ith gene and jth cell. That is, the number of positive values set to zero in excess
of the number of negative values set to zero. If there are no technical zeros below the threshold,
then the number of positive values below the threshold (first term) will be nearly the same as
the number of negative values (second term), and hence ψi will be close to zero. Conversely, if
there are more positive values below the threshold than negative values, this suggests that a large
number of technical zeros are also below the threshold will be set back to zero, as they cannot be
distinguished from the biological zeros. To demonstrate this measure, we plot 6 genes with low ψ
and 6 genes with high ψ (Supplemental Figure 20 and 21).

Of note, the average ψi across all genes in the Hrvatin et al. dataset is 11,563 (about 17% of
the number of cells), but we believe it is more useful to use on a gene-by-gene basis. We have now
implemented this measure as a function in the ALRA package, and we encourage users to check
the number of excess zeros in genes of interest post-ALRA. We again thank the reviewer for this
suggestion, which we believe ALRA users will find it to be an informative measure of how many
technical zeros were not completed in specific genes of interest.
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5. Based on the description in page 11, the ALRA algorithm will change all the values after
imputation, no matter if they are zeros or not. Although a rescaling process has been proposed, the
authors should also show the correlations between imputed non-zero values and original non-zero
values among all the genes.

The heart of the ALRA procedure is singular value decomposition (SVD), which can be viewed
as a denoising method [2–5]. Hence, ALRA not only imputes technical zeros, but the rank-r
approximation can also yield estimates of the non-zero values.

For example, under the assumption that the observed matrix is low-rank corrupted by additive
noise, the values obtained from the low-rank approximation are closer to the truth. From this
perspective, we would like to emphasize that neither a high nor low correlation value would reflect
ALRA’s performance. However, we recognize that users may want to know how much the non-
zero values have changed. The correlation may be an intuitive measure of how much the non-zero
values were denoised. For example, in the Hrvatin et al dataset this value is 0.23, whereas in the
purified PBMCs from Zheng et al. the correlation is 0.56.

We have updated the manuscript to emphasize that the non-zero values are also denoised, and
we include the correlations for these two datasets as examples.

6. The authors only show the distribution of one gene before and after imputation in S15,
S16, S17. They need to show the distribution before and after imputation for more genes us-
ing ALRA. Besides, the authors should show the following three distributions of the same gene.
1. The distribution of this gene before imputation. 2. The distribution of this gene after SVD
reconstruction before thresholding. 3. The distribution of this gene after thresholding and rescaling.

We have added these three distributions requested by the reviewer for 12 genes from the Hrvatin
et al. dataset. We chose genes that demonstrate the excess zeros measure that was inspired by
this reviewer’s comments in (4) above. Specifically, we chose (at random) six of the most variable
genes that were in the top quartile of excess zeros, and six of the most variable genes that were in
the bottom quartile of excess zeros (Supplemental Figures 20 and 21).

7. In the real data analysis, the authors run the analysis on UMI data. They do not discuss
the performance of this method on non-UMI data, such as Smart-seq2 data.

We have revised the manuscript to clarify that ALRA is intended for use with UMI data. This
is consistent with other imputation methods, such as SAVER. We thank the reviewer for pointing
out that this was not clear in the original manuscript.

8. The authors need to explain the low rank assumption and why it is biologically meaningful. If
the truth is assumed to be low rank, does it mean that cells in the same type/subtype are biologically
identical? I think this is key for biologists.

The low-rank assumption is at the heart of our proposed algorithm, and we thank the reviewer
for the opportunity to explain it in greater detail. The biological justification for this assumption is
that the genes do not act independently, but rather in concert, forming groups of highly correlated
genes referred to as gene modules. Correlation between the features (genes) necessarily means
that the eigenvalues of the covariance matrix will decay rapidly, making it possible to model the
true expression matrix as a low-rank matrix. This is the reason why principal component analysis
is so effective that it is used in nearly every scRNA-seq pipeline.

Crucially, this assumption does not require that the cells in each type/subtype are identical.
We call the true expression matrix A consisting of m cells (rows) vs. n genes (columns) low-rank
if we can write it as

A =

k∑
i=1

uiσiv
T
i ,
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where ui are length m vectors, vi are length n vectors, σi are real numbers, and k is much smaller
than m and n. We think of each vi as representing a “gene module,” and each ui representing the
contribution of each gene module to each cell. That is, the cth cell can be written as

k∑
i=1

ui[c]σiv
T
i ,

where ui[c] denotes the cth index of the vector ui. This means that each cell is a weighted
combination of the gene programs. Cells of the same type may have a similar combination of
gene programs, but they are not at all assumed to be identical. Put differently, the entries of ui
corresponding to cells of the same type are not assumed to be identical, as the strength of each
gene program will vary across cells, even within the same cell type.

In addition to the biological justification of genes functioning in correlated gene modules, there
is also a practical reason why low-rank approximation is appropriate. For simplicity, suppose the
true matrix A is corrupted by a noise matrix E,

Â = A+ E.

The only singular values/vectors of A that can be recovered are those that are larger than the
largest singular value of E, i.e. the operator norm of E. Even if the true expression matrix was
not low-rank, the only signal that can be recovered from Â is actually a low-rank matrix. The
“rank-estimation” procedure we proposed in this paper seeks to estimate exactly this threshold
where signal ends and noise begins. In that sense, taking the low-rank approximation is justified
even when the true matrix is not exactly low rank, as removing singular vectors/values below the
noise threshold yields a better estimate of the true matrix. We refer the reviewer to recent work
by our group characterizing the noise threshold in count data, including scRNA-seq [6].

In summary, the low-rank assumption is biologically justified by the intricate correlation struc-
ture of gene expression. Furthermore, even if the true rank is much higher, recovery of a low-rank
matrix is the best one can do in the presence of noise.
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Table R1. Proportion of biological zeros preserved (ZP) and technical zeros
completed (TC) after running ALRA on a simulated scRNA-seq dataset with 8
distinct cell types.

ZP TC
Dendritic Cells 0.99 0.63
Neutrophils 1.00 0.50
T-reg Cells 0.99 0.57

CD4 TConv Cells 0.98 0.59
CD8 T Cells 0.99 0.58

B Cells 0.99 0.59
gdT Cells 0.98 0.71
NK T Cells 0.99 0.65
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<b>REVIEWER COMMENTS</B> 

Reviewer #1 (Remarks to the Author): 

With this revision the authors have clarified important details from the previous revision. The authors 

have added figures which demonstrate how results are affected by user choices in and data 

characteristics for several genes. 

No further issues. 

Reviewer #2 (Remarks to the Author): 

The authors have addressed some of the two reviewers’ previous comments. However, the authors did 

not highlight the corresponding changes in the manuscript; hence, I could not tell whether the authors 

revised the manuscript or not. I felt that both reviewers’ comments are critical issues that readers may 

raise, so it is necessary for the authors to revise the manuscript accordingly. Regarding this revised 

manuscript, I still have the following major concerns about the reproducibility of results and the quality 

of the imputed values by ALRA. 

1. In Figure 3A, the authors compared ALRA with several other imputation methods. However, the 

authors did not list the parameters used for the other imputation methods, and neither did they release 

the code for reproducing the results (the GitHub code available at https://github.com/KlugerLab/ALRA-

paper was from three years ago and outdated). The code must be up-to-date so that all the results in 

the paper are reproducible. 

2. The authors showed that ALRA is better at preserving biological zeros in a dataset with only four cell 

types (Figure 2). In another analysis, they showed that ALRA is better at separating cell types when there 

are diverse cell types (Figure 3). The two conclusions are somehow contradictory: does ALRA work 

better with fewer cell types or more cell types? The authors need to make comparisons using the same 

metrics under the two settings (few cell types vs. multiple cell types). 

3. The distributions the authors plotted in Fig. S20 / S21 are worrisome, suggesting that ALRA cannot 

preserve the dynamic range of non-zero expression values before imputation. For example, among the 

three plots in the fourth row in Fig. S21, the leftmost plot shows a range of 1-2, but after imputation, the 

range expands to 1-5. Can authors justify these results? 

4. The correlations between the non-zero values before and imputation are very low: 0.23 - 0.56. This 

low correlation may indicate that ALRA’s model assumption is not valid. Also, given that the non-zero 

expression values are altered greatly by ALRA, how should users interpret or use the imputed expression 

values output by ALRA? 



5. Regarding the low-rank assumption, can the authors show some of the “gene modules” they have 

described in the response? For example, does a gene module (genes with large weights in a vector v_i) 

correspond to a set of genes that are highly correlated in a certain cell type? Why is this gene module 

biologically meaningful? 
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We thank the reviewers for their careful reading of our manuscript and the helpful suggestions.
We believe the paper has been substantially improved through this process. Below we provide
point-by-point responses to the comments and suggestions raised in this fourth round of review.

REVIEWER 1

With this revision the authors have clarified important details from the previous revision. The
authors have added figures which demonstrate how results are affected by user choices in and data
characteristics for several genes.

No further issues.

REVIEWER 2

The authors have addressed some of the two reviewers’ previous comments. However, the au-
thors did not highlight the corresponding changes in the manuscript; hence, I could not tell whether
the authors revised the manuscript or not. I felt that both reviewers’ comments are critical issues
that readers may raise, so it is necessary for the authors to revise the manuscript accordingly. Re-
garding this revised manuscript, I still have the following major concerns about the reproducibility
of results and the quality of the imputed values by ALRA.

In the previously submitted version, we included a version with changes highlighted. We feel
it is unfortunate that the reviewer did not see this file, as it demonstrates the large number of
improvements made to the manuscript in response to the comments made by all the reviewers.
For this resubmission, we have attached a version which highlights changes from this round and
the previous one, since these were missed by the reviewer.

1. In Figure 3A, the authors compared ALRA with several other imputation methods. How-
ever, the authors did not list the parameters used for the other imputation methods, and nei-
ther did they release the code for reproducing the results (the GitHub code available at https:
// github. com/ KlugerLab/ ALRA-paper was from three years ago and outdated). The code must
be up-to-date so that all the results in the paper are reproducible.

All details relating to the the benchmarks reported in the paper are provided in the Online
Methods section of the manuscript. In particular, when using other imputation methods, we used
the default parameters. Regarding the code, we added a branch to our GitHub repository called
“revisions” which contains the updated code. The following hypertext links directly to that branch:
https://github.com/KlugerLab/ALRA-paper.

2. The authors showed that ALRA is better at preserving biological zeros in a dataset with only
four cell types (Figure 2). In another analysis, they showed that ALRA is better at separating cell
types when there are diverse cell types (Figure 3). The two conclusions are somehow contradic-
tory: does ALRA work better with fewer cell types or more cell types? The authors need to make
comparisons using the same metrics under the two settings (few cell types vs. multiple cell types).

1

https://github.com/KlugerLab/ALRA-paper
https://github.com/KlugerLab/ALRA-paper
https://github.com/KlugerLab/ALRA-paper
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In general, there is no contradiction. We showed that ALRA improves separation of cell types
in six different datasets: Hrvatin et al., Tasic et al., Zeisel et al., Baron et al., Chen et al., and
La Manno et al.. Some of these have many cell types and cell subtypes (e.g. Hrvatin et al. with
36 cell types/subtypes), whereas others have few (Baron et al. with 7). Thus, it is not clear why
the reviewer suggests that ALRA is better at separating diverse cell types: in all of these settings,
ALRA improves the separation compared to the original data.

As noted in the previous response, the numbers of zeros imputed may be affected by the number
of different cell types. Suppose we have two datasets, A and B, which have different types of cells in
each. In general, ALRA will preserve more biological zeros when A and B are imputed separately
in contrast to when applied to the union of the two sets, A ∪ B. The reason is that on the enlarged
dataset, the negative zeros at each gene will in general be larger and hence more entries will be
imputed to zero.

Finally, in practice users collect data for which the number of cell types and their diversity are
often a priori unknown. In our manuscript, we have chosen a broad set of single-cell RNA-seq
datasets, representative of how practitioners will use ALRA in their own analyses. Our manuscript
showcases the ability of ALRA to preserve biological zeros and improve separation of cell types
under a wide range of scenarios.

3. The distributions the authors plotted in Fig. S20 / S21 are worrisome, suggesting that ALRA
cannot preserve the dynamic range of non-zero expression values before imputation. For example,
among the three plots in the fourth row in Fig. S21, the leftmost plot shows a range of 1-2, but
after imputation, the range expands to 1-5. Can authors justify these results?

In the previous submission, the leftmost plots showed the raw data, whereas ALRA takes the
normalized data as input. In this revision, we modified the leftmost plots to be the normalized
data. The dynamic range is now demonstrated to be nearly identical pre- and post-ALRA. We
thank the reviewer for making this excellent point.

As an aside, note that the dynamic range may change slightly after imputation. Consider an
extreme case, where two genes are highly correlated, but one is dramatically undersampled. After
imputation, the maximum value of the undersampled gene may increase, as the largest values may
not have been sampled in the original data. This can explain the small changes in dynamic range
that are now reported in the updated Figures S20-21.

4. The correlations between the non-zero values before and imputation are very low: 0.23 -
0.56. This low correlation may indicate that ALRA’s model assumption is not valid. Also, given
that the non-zero expression values are altered greatly by ALRA, how should users interpret or use
the imputed expression values output by ALRA?

The correlations of 0.23-0.56 were added following the reviewer’s request in the previous round
of review. We emphasize that correlation is not a good measure for accuracy or validity of ALRA.
Let us illustrate this with two extreme examples: Suppose method “A” does nothing to the ob-
served entries. In this case, the correlation between non-zero values before and after imputation is
1. In contrast, consider a method “B” that replaces each non-zero method with its true, underlying
value (i.e. each gene’s actual count of RNA molecules corresponding to each cell). Because of noise
in the observed data, the correlation for this “oracle” method B would be considerably lower than 1.

ALRA denoises the non-zero values, bringing observed values closer to their true values. This
is evidenced by improved performance of downstream analyses when compared to the observed
measurements in 12 different datasets. Thus, we argue that the “low correlations” with the raw
data are likely due to successful denoising of the data.
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5. Regarding the low-rank assumption, can the authors show some of the “gene modules” they
have described in the response? For example, does a gene module (genes with large weights in a
vector vi) correspond to a set of genes that are highly correlated in a certain cell type? Why is this
gene module biologically meaningful?

We would like to clarify that this question is in fact not directly related to ALRA, but rather
to the use of the leading eigenvectors of large matrices in biological data analysis, in particular in
scRNA-seq studies.

Indeed, the low-rank assumption is ubiquitous in the analysis of genomics data and scRNA-
seq in general. It is inherent in the utilization of principal component analysis (PCA) to reduce
dimensionality of data, which is a key step in essentially every published analysis of scRNA-seq
datasets. PCA represents the data using the top k principal components, for some number k.
This is equivalent to taking a rank-k approximation to the data, as we do with ALRA. The only
difference is that PCA typically requires centering of the columns (genes) before computing the
singular value decomposition (SVD), whereas we apply SVD to the uncentered data.

This connection with PCA is a strength of ALRA. The use of ALRA’s imputed values as input
to downstream analysis is essentially equivalent to using the PCs for downstream analysis, as is
standard. In contrast to other methods that impute with complex statistical models, ALRA simply
“imputes with PCA.” In fact, the additional step of restoring biological zeros by thresholding makes
ALRA even more conservative than PCA.

In our previous response, we referenced the idea of “gene modules” as an intuitive explanation
of the low-rank assumption. A gene module is a set of genes that are correlated in the dataset. In
some cases, these may be controlled by the same transcription factor. In others, they may simply
be markers of a cell type (i.e. they always co-appear in the same types of cells). For a dataset to
be low-rank, it is only necessary for many variables (genes) to be correlated.

For example, consider the tutorial for Seurat, a widely popular software package for single cell
data analysis. Under the section, “Perform linear dimensional reduction,” the authors show which
genes loaded most strongly (positively or negatively) on the first five principal components. For
example, the positively correlated genes CD79A, MS4A1, and CD79B are all markers of B cells,
and these load strongly on the second principal component. These correlations result in a low-rank
structure, which we take advantage of to impute technical zeros in the dataset.



<b>REVIEWERS' COMMENTS</b> 

Reviewer #2 (Remarks to the Author): 

The authors have successfully addressed my comments. 
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