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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): expert in cancer genomics, cancer evolution, mutational 

signatures 

Li et al present a pan-can analysis of age related genomic correlates in cancer genomes. The work is 

ambitious in nature, and certainly addresses a topic of high interest to the scientific community. 

However the lack of consistency between gene level results from TCGA and PCAWG datasets creates a 

challenge in drawing definitive conclusions from this work. As suggested below, extending the analysis 

to additional large scale datasets may help resolve this issue and strengthen the impact of the work. 

In addition, there are a number of technical questions not clear from the manuscript, such as the level 

of statistical test inflation (i.e. Q-Q plots) in the gene level CNA analyses. Furthermore, a greater 

distinction in the signature analysis from other recently published PCAWG work would benefit the 

manuscript and allow it to present more novelty. 

Major comments: 

1. In the figure 1 PGA analysis the results are difficult to interpret, given most associations only hold 

true in one dataset. Other than prostate cancer where a consistent signal is detected. Clearly power 

may be lacking in PCAWG, particularly for individual cancer types. Given the wealth of other datasets 

freely available the authors should extend their work to make it adequately powered to answer the 

question at hand. There are ~4000 whole genomes available from the DRUP trial/Hartiwg foundation, 

see first two links below. In addition, copy number segment data is available for ~30,000 cases 

sequenced on the MSK-IMPACT panel (which has a genome wide SNP backbone for CN detection), see 

bottom 2 links. 

https://www.nature.com/articles/s41586-019-1689-y 

https://www.hartwigmedicalfoundation.nl/en/database/ 

https://sagebionetworks.org/research-projects/aacr-project-genie/ 

https://gdc.cancer.gov/about-gdc/contributed-genomic-data-cancer-research/genie 

2. Is the negative association in lung cancer confounded by smoking status? Never smoker disease, 

driven by EGFR, etc, particularly in females, can have younger age of onset. The different biology of 

these tumors may explain the findings, rather than a global age association with PGAs. In tcga (where 

smoking status is annotated), does the trend hold if never smokers are removed? 

3. How does the analysis in figure2 differ from the recently published PCAWG signatures paper: 

https://www.nature.com/articles/s41586-020-1943-3? In that paper the section titled: “Correlations 

with age” appears to already present correlations of age versus the same set of signatures, with the 

same PCAWG data. A more substantially different analysis would be recommended, otherwise the 

previous work can be cited. Again, linked to point 1 above bringing in additional large datasets (e.g. 

Hartwig) beyond the extensively mined TCGA, and PCAWG with a recent dedicated set of papers would 

be helpful. 

4. Can more complete correlation data be presented for copy number CNAs between the two cohorts? 

In Figure Supp 4 only Ovarian cancer appears to be presented. For the pan-cancer cohort (and 

perhaps individual cancer types as thumbnail plots), can correlation of gene level –log10(p-values) (p-

value association with age) for tcga and PCAWG be presented, so the reader can assess what level of 

consistency there is? 

5. The number of significantly associated genes in the CNA analysis seems implausibly high – in TCGA 

8583 genes associated with loss, and 15497 gain (total ~24k genes). In fact, it seems some genes 

must be associated with age dependent gain and loss – is this possible? I.e. can a gene be 

significantly associated with more gains and more losses in older patients. The fig3 results appears 

contradictory to fig1 data, where the association between age and PGA is modest and only prostate 

cancer has a reproducible association. Can the authors provide Q-Q plots and inflation values for these 

sets of tests, to demonstrate there isn’t a global inflation in the test statistic? Also, to help verify the 

large number of associations, a simple simulation may be helpful, where random ages are allocated to 



patients and analysis repeated – does this find thousands of significant results? 

6. In the SNV analysis, is it just CREBBP that replicates in both TCGA and PCAWG? If so this should be 

made clearer in the text and main figure. 

7. How have germline predisposed patients been dealt with in the analysis, e.g. hereditary 

BRCA/Lynch syndrome/ Li-Fraumeni syndrome/VHL disease/etc? Were these removed, on account of 

the bias for earlier age of presentation? 

8. In panel 4D the no SNV group appears to have mRNA difference between young and old patients, 

rather than change in mutated allele. Could the authors provide interpretation of this – is an age 

dependent reduction in wildtype expression that is driving the pattern? 

9. Figure 5 is difficult to understand, and is only mentioned superficially in the text (i.e. in the 

discussion, not in the results section). A complex figure like this should have a detailed results section, 

or otherwise a simplified summary style figure developed as a basis for the discussion. 

Minor comments: 

1. Line 49 – two of the three cancers quoted have screening pathways, and particularly for colorectal 

the CDC guidelines recommend screening from age 50+. Hence the later stage disease may just 

reflect a greater rate of presentation outside of screening - can the authors provide additional 

examples which are not confounded by screening practices. 

2. Line 152 – SVNs – should this be SNVs? 

Reviewer #2 (Remarks to the Author): expert in statistics 

Thank you for the invitation to review the manuscript by Li et al. “Age Influences on the Molecular 

Presentation of Tumours”. 

I consider the investigated hypothesis is very interesting, but the conducted data analyses need major 

substantial revisions. This paper should answer questions like “What is the average increase in 

SNVs/Mb and small indels/Mb per each year of age at cancer diagnosis, and for Admixed Americans 

compared to Europeans?” 

Statistical framework: Rather than Spearman correlations, I strongly recommend the authors to use 

multiple linear regression for continuous response variables (SNVs/Mb) and multiple logistic regression 

for 0/1 outcomes (for example, a particular mutation signature. 

FDRs are not appropriate in the context of the conducted investigation. Setting the FDR threshold to 

10% means that 10% of the reported findings are false discoveries. The authors should use 

appropriate methods for multiplicity correction (FWER, simplest approach, just dividing 0.05 by the 

number of investigated associations in each dataset). 

I strongly recommend using standard density measures (SNVs/Mb, small indels/Mb,…) instead of the 

PGA. 

“Bias” has a very specific meaning in statistics, I would recommend the authors substituting “Age 

biases” by “Age associations” and “Age effects”. 

The abstract is not very informative, some examples: Specific mutational signatures are associated 

with age (which ones?), A subset of known cancer driver genes were mutated (which ones?), With 

clear clinical implications (which ones?). 



Please avoid the use of unnecessary abbreviations like ULR, and BLCA, BRCA, CESc, COADREAD,…. 

The manuscript needs extensive edition by a statistician. For example, alternative formulation for lines 

272-272 -> We next asked whether “CNAs associated with age” perturb… Another example on line 

275: as predictors (and which was the response variable?) 

Line 460: What do you mean with “insufficient variability in ancestry estimation”? 

Fig 1: please add regression lines 

Fig 1 legend: Mutation density and timing are associated with age at diagnosis 

Fig 2: Some kind of interpretation is needed for the mutational signatures 

Fig 5 is difficult to understand, I recommend to prepare separated figures for age, gender and 

ancestry 

Reviewer #3 (Remarks to the Author): expert in ageing 

Li, Haider and Boutros analyzed cancer genomic datasets from TCGA and PCAWG, generating 

substantial new information regarding mutational processes that are altered by the age of the 

individual, including SNV load, CNA, clonality, SNV/indel timing, and various mutational signatures. 

They also identified specific CNAs, and associated some of these changes with mRNA changes, that 

changed with age of the patient. Similarly, they identified some age-associated SNVs that associated 

with mRNA expression. For both these CNAs and SNVs, they demonstrated that these changes 

interacted with age in prognosis for select cancers (for example, it’s interesting that 10q loss is a poor 

prognosis marker for younger patients but not older ones). Notably, their modeling accounted for 

confounding variables including sex and genetic ancestry. As they indicate, previous studies (in colon 

cancers and GBM) have examined age dependent differences in genomic landscapes, but the current 

study is unique in its breadth (pan-cancer) and in its extensive analyses. 

This work is complicated and not “an easy read”. A lot of results are presented. Nonetheless, there are 

some nuggets of important and sometimes intriguing associations with age. For example, lung 

adenocarcinomas exhibit more CNAs and SNVs in younger patients than older, which is the opposite of 

that observed for most other tumors. In most cases, the expected increases in mutational burden are 

observed in cancer in older individuals. It is also interesting that some cancers show increased clonal 

(truncal) SNVs in older individuals, while the opposite is observed for other cancers. While there is 

currently no clear explanation for these results, these analyses will serve to stimulate searches for 

answers. Most importantly, this work should serve as an important resource for understanding how 

age influences mutational processes in cancer genomics for years to come. 

Additional comments: 

1) Page 5, line 129. It is indeed interesting that SNVs and CNAs are more abundant in lung cancers 

from younger individuals, but I’m not sure that I agree with (or understand) how this could relate to 

“smoking exposure”. For one, lung cancers in smokers and never smokers show very similar age 

distributions (if anything, the cancers occur at a bit older ages for smokers and former smokers). 

Moreover, SCCs occur almost exclusively in smokers. Their observation requires further explanation 

(really, speculation). 

2) In Fig 3i, it’s interesting that only younger patients with loss of a piece of chromosome 10q exhibit 

worse prognosis. They then indicate that they “performed survival modeling for 5,251 genes on 

affected by age-biased CNAs in glioblastoma and found 309 1,821 genes showed associations between 

copy number change and prognosis and 142 genes had significant CNA-age interactions.” This 



statement requires more clarification. And how divergent are results from those expected based on 

chance? 

3) Page 11, line 358: They write “mutated IDH1 was associated with a greater mRNA decrease in 

tumours arising in younger patients.” I see the opposite, in that those with the SNV exhibit lower 

expression only in older patients. 

4) The authors need to consider cohort effects – the cancers from older individuals came from people 

born in earlier years than those from younger people, and thus could have experienced differences in 

lifestyle and exposures. 

5) In the Discussion, it would be helpful to highlight some of the more interesting and perhaps 

unexpected associations with age uncovered in these studies. 

Minor: 

1) Define ancestry abbreviations in Fig 5. And “density” is misspelled in the figure. 

2) The axes need to be better defined, particularly in Suppl Figures like Suppl Fig 2. 

3) Supplementary tables are not labeled well, and it was hard to even figure out which Suppl Table 

was which. 

4) For Fig 3A, use of log10 scale would allow better visualization of results. 

Signed: James DeGregori



We thank the reviewers for their thoughtful and focused commentary, which has substantially improved 

this study. They key changes made have been: 

• Addition of validation studies in 7,259 AACR GENIE tumours 

• Refinement of our CNA and SNV analyses to focus on driver gene sets 

• Addition of mitochondrial SNV and copy number analysis in PCAWG WGS data 

• Substantial expansions of methodologic and reporting details 

• Focused analysis of tobacco on mutation density using both self-reported and imputed 

mutational signatures tobacco history 

Reviewer #1 
Li et al present a pan-can analysis of age related genomic correlates in cancer genomes. The work is 

ambitious in nature, and certainly addresses a topic of high interest to the scientific community. However 

the lack of consistency between gene level results from TCGA and PCAWG datasets creates a challenge in 

drawing definitive conclusions from this work. As suggested below, extending the analysis to additional 

large scale datasets may help resolve this issue and strengthen the impact of the work. In addition, there 

are a number of technical questions not clear from the manuscript, such as the level of statistical test 

inflation (i.e. Q-Q plots) in the gene level CNA analyses. Furthermore, a greater distinction in the signature 

analysis from other recently published PCAWG work would benefit the manuscript and allow it to present 

more novelty. 

We appreciate the reviewer’s kind words about the study and have taken to address the 

technical concerns as outlined below. 

1. In the figure 1 PGA analysis the results are difficult to interpret, given most associations only hold true 

in one dataset. Other than prostate cancer where a consistent signal is detected. Clearly power may be 

lacking in PCAWG, particularly for individual cancer types. Given the wealth of other datasets freely 

available the authors should extend their work to make it adequately powered to answer the question at 

hand. There are ~4000 whole genomes available from the DRUP trial/Hartiwg foundation, see first two 

links below. In addition, copy number segment data is available for ~30,000 cases sequenced on the MSK-

IMPACT panel (which has a genome wide SNP backbone for CN detection), see bottom 2 links.  

https://www.nature.com/articles/s41586-019-1689-y 

https://www.hartwigmedicalfoundation.nl/en/database/  

https://sagebionetworks.org/research-projects/aacr-project-genie/ 

https://gdc.cancer.gov/about-gdc/contributed-genomic-data-cancer-research/genie 

 

This is an excellent suggestion, and we exploited the fully freely available AACR GENIE dataset, 

leveraging 7,259 with mutation and age data available for validation. These have been added 

systematically through almost every figure of the study. Many results that did not validate in the 

smaller dataset now replicate in the AACR GENIE dataset. However, because of its panel-

sequencing nature there remain a subset of findings (e.g. trinucleotide mutation signatures) that 

could not be assessed. 

 

https://www.nature.com/articles/s41586-019-1689-y
https://www.hartwigmedicalfoundation.nl/en/database/
https://sagebionetworks.org/research-projects/aacr-project-genie/
https://gdc.cancer.gov/about-gdc/contributed-genomic-data-cancer-research/genie


2. Is the negative association in lung cancer confounded by smoking status? Never smoker disease, 

driven by EGFR, etc, particularly in females, can have younger age of onset. The different biology of these 

tumors may explain the findings, rather than a global age association with PGAs. In tcga (where smoking 

status is annotated), does the trend hold if never smokers are removed? 

We closely investigated the negative association of mutation density with age in lung cancer. We 

did not find associations between EGFR or other driver mutations with age and mutation density. 

Nor did we find significant involvement of germline mutations, though this may be due to the 

small number of known germline risk variants in these data.  

We also performed a more in-depth study of tobacco history as described by self-reported 

smoking history, self-reported pack-years, and by genomically calculated mutational signatures. 

We did find some intriguing tobacco-related trends, but the negative associations between age 

and PGA largely remain. We have included additional analysis of smoking history at Lines 156-

174 and Figure 1F-G, and of mutational signatures at Lines 188-205 and Figure 2A-B. 

 

3. How does the analysis in figure2 differ from the recently published PCAWG signatures paper: 

https://www.nature.com/articles/s41586-020-1943-3? In that paper the section titled: “Correlations 

with age” appears to already present correlations of age versus the same set of signatures, with the 

same PCAWG data. A more substantially different analysis would be recommended, otherwise the 

previous work can be cited. Again, linked to point 1 above bringing in additional large datasets (e.g. 

Hartwig) beyond the extensively mined TCGA, and PCAWG with a recent dedicated set of papers would 

be helpful.  

Our mutational signatures analysis examines age at greater detail than in previous studies 

including the PCAWG signatures (https://www.nature.com/articles/s41586-020-1943-3), the 

TCGA signatures (https://www.nature.com/articles/nature12477) and the tobacco smoking 

mutational signatures (https://science.sciencemag.org/content/354/6312/618.abstract) papers. 

Moreover, these studies describe on the associations of age with overall burden of mutations 

attributed to the signature, which is confounded by mutation density. Our analyses instead 

examine signature detection and relative activity and is therefore able to identify differences in 

relative signature activity. We have included additional detail on how our analyses differ from 

prior studies at Lines 224-229:  

Previous studies of mutational signatures describe the correlations between age and signature-

attributed mutations but ignore the other aspects of signature detection and relative activity. For 

example, SBS1 is well-known as being ‘clock-like’ and its number of attributed mutations increase 

with age60,62. However, when analysed as a proportion of total mutations, we find that SBS1 

activity is not correlated with age (Spearman’s correlation p > 0.1).   

4. Can more complete correlation data be presented for copy number CNAs between the two cohorts? In 

Figure Supp 4 only Ovarian cancer appears to be presented. For the pan-cancer cohort (and perhaps 

individual cancer types as thumbnail plots), can correlation of gene level –log10(p-values) (p-value 

association with age) for tcga and PCAWG be presented, so the reader can assess what level of 

consistency there is? 

https://www.nature.com/articles/s41586-020-1943-3?
https://www.nature.com/articles/s41586-020-1943-3
https://www.nature.com/articles/nature12477
https://science.sciencemag.org/content/354/6312/618.abstract


We have changed our CNA analysis to focus on known driver gains and losses, which drastically 

changed our CNA results. We present comparisons between TCGA, PCAWG and AACR-GENIE for 

all our results when possible throughout the revised paper. In particular, Figure 3 now shows CNA 

results across all three datasets for better assessment of consistency. 

 

5. The number of significantly associated genes in the CNA analysis seems implausibly high – in TCGA 

8583 genes associated with loss, and 15497 gain (total ~24k genes). In fact, it seems some genes must be 

associated with age dependent gain and loss – is this possible? I.e. can a gene be significantly associated 

with more gains and more losses in older patients. The fig3 results appears contradictory to fig1 data, 

where the association between age and PGA is modest and only prostate cancer has a reproducible 

association. Can the authors provide Q-Q plots and inflation values for these sets of tests, to 

demonstrate there isn’t a global inflation in the test statistic? Also, to help verify the large number of 

associations, a simple simulation may be helpful, where random ages are allocated to patients and 

analysis repeated – does this find thousands of significant results? 

In our previous submission, we used a segment approach where genes with similar copy number 

profiles were binned together – this likely led to overestimation of age-associated gains and 

losses. As mentioned in our response to point #4, we have adjusted our CNA analysis to focus on 

known cancer drivers. These include 26 driver gains and 61 driver losses. Our CNA results are now 

more balanced between losses and gains.  

 

6. In the SNV analysis, is it just CREBBP that replicates in both TCGA and PCAWG? If so this should be 

made clearer in the text and main figure.  

CREBBP remains the most consistent hit in our updated driver-focused SNV analysis. We have 

revised Figure 4 to show this more clearly, and added at Lines 369-374: 

“CREBBP-frequency was associated with age in both TCGA (marginal log odds change = 0.030, 

95%CI = 0.024 – 0.040, adjusted LGR p = 0.049) and PCAWG (marginal log odds change = 0.027, 

95%CI = 0.0089 – 0.047, adjusted LGR p = 8.7x10-3, Figure 4A, Supplementary Table 6). In AACR 

GENIE, the positive association between CREBBP-status and age was not significant after multiple 

testing correction (marginal log odds change = 0.011, 95%CI = 0.0047 – 0.022, adjusted p > 0.1).” 

 

7. How have germline predisposed patients been dealt with in the analysis, e.g. hereditary BRCA/Lynch 

syndrome/ Li-Fraumeni syndrome/VHL disease/etc? Were these removed, on account of the bias for 

earlier age of presentation? 

Huang et al. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5949147/) analysed pathogenic 

germline variants in TCGA data and found that 4.1% (428) of pan-cancer tumours harboured 

pathogenic variants. We removed these samples and saw no changes in our findings. We have 

added detail in Discussion at Lines 465-467:  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5949147/


“Pathogenic germline variants such as those in BRCA1/2 or TP53 also lead to earlier presentation 

of cancer. While our results remain unchanged on removing tumours with detected known 

pathogenic variants80, it is likely there remains hereditary confounders that we have not 

accounted for.” 

 

8. In panel 4D the no SNV group appears to have mRNA difference between young and old patients, 

rather than change in mutated allele. Could the authors provide interpretation of this – is an age 

dependent reduction in wildtype expression that is driving the pattern? 

The reviewer makes an excellent observation. We speculate that the difference in baseline IDH1 

mRNA may be due to aging-related changes in brain metabolism. This may be a feature of the 

normal brain specifically, or of both normal changes and cancer-related changes. We have added 

speculation at Lines 416-421:  

“Interestingly, this difference results from a change in baseline IDH1 mRNA: older patients have 

higher IDH1 mRNA abundance than younger, and mutated IDH1 leads to equalised mRNA levels. 

IDH1 encodes isocitrate dehydrogenase 1, a component of the citric acid cycle: differences in its 

baseline abundance may be due to differences in metabolism in younger and older brains69.” 

 

9. Figure 5 is difficult to understand, and is only mentioned superficially in the text (i.e. in the discussion, 

not in the results section). A complex figure like this should have a detailed results section, or otherwise a 

simplified summary style figure developed as a basis for the discussion. 

We have removed Figure 5 from this submission.  

 

1. Line 49 – two of the three cancers quoted have screening pathways, and particularly for colorectal the 

CDC guidelines recommend screening from age 50+. Hence the later stage disease may just reflect a 

greater rate of presentation outside of screening - can the authors provide additional examples which 

are not confounded by screening practices.  

We have added pancreatic cancer and soft tissue sarcomas as tumour-types that are more aggressive 

in young adults. The sentence at Line 49-52 now reads:  

“Tumours arising in young adults (< 50 years of age) are often more aggressive: early onset tumours 

of the prostate23, breast24, pancreatic25,26,  colorectal27, and soft tissue sarcomas28 are diagnosed at 

higher stages and associated with lower survival.” 

And the added references are:  

Early onset pancreatic cancer: a controlled trial 

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3959307/) 

Early onset pancreatic cancer: Risk factors, presentation and outcome 

(https://www.sciencedirect.com/science/article/abs/pii/S1424390315000290?via%3Dihub)  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3959307/
https://www.sciencedirect.com/science/article/abs/pii/S1424390315000290?via%3Dihub


Biologic and clinical characteristics of adolescent and young adult cancers: Acute lymphoblastic 

leukemia, colorectal cancer, breast cancer, melanoma, and sarcoma 

(https://acsjournals.onlinelibrary.wiley.com/doi/full/10.1002/cncr.29871)  

 

2. Line 152 – SVNs – should this be SNVs? 

Yes, we have corrected this typo, thank you! 

  

https://acsjournals.onlinelibrary.wiley.com/doi/full/10.1002/cncr.29871


Reviewer #2 
Thank you for the invitation to review the manuscript by Li et al. “Age Influences on the Molecular 

Presentation of Tumours”. 

I consider the investigated hypothesis is very interesting, but the conducted data analyses need major 

substantial revisions. This paper should answer questions like “What is the average increase in SNVs/Mb 

and small indels/Mb per each year of age at cancer diagnosis, and for Admixed Americans compared to 

Europeans?” 

Statistical framework: Rather than Spearman correlations, I strongly recommend the authors to use 

multiple linear regression for continuous response variables (SNVs/Mb) and multiple logistic regression for 

0/1 outcomes (for example, a particular mutation signature.  

We very much appreciate the reviewer’s comments on our hypothesis and their careful review. We 

sincerely apologize for the lack of clarity on several aspects of the presentation and analysis noted 

here. Our statistical analysis starts off with a univariate screen, followed by the multiple linear or 

multiple logistic regression to control for confounders on only those results that survive that show 

univariate significance. We use correlations in the initial univariate screen to select candidates of 

interest in a non-parametric manner. In the multivariate stage of our analysis, we do indeed use 

multiple linear and logistic regression for continuous and binary outcomes, respectively. 

The reviewer also raises the fascinating topic of cross-variable analyses. We agree that these questions 

warrant investigation, but are not currently feasible. The key limiting factor to these analyses is the 

lack of representation of non-European ancestry groups in publicly available data. As an example, in 

many cancer types, there are fewer than 20 non-Caucasian individuals. After adjusting for required 

covariates, these analyses are not feasible. To be precise, including interaction terms prevents model 

convergence or generates over-specified models that cannot be fit. We look forward to the emergence 

of larger multi-ancestric cohorts that will facilitate such studies in the coming years. 

 

FDRs are not appropriate in the context of the conducted investigation. Setting the FDR threshold to 10% 

means that 10% of the reported findings are false discoveries. The authors should use appropriate methods 

for multiplicity correction (FWER, simplest approach, just dividing 0.05 by the number of investigated 

associations in each dataset).  

We thank the reviewer for this comment – the use of FDRs in this setting is quite common, we note a 

set of PCAWG and TCGA papers that have done so below. Given the expectation in this field of 

reporting of FDRs we have retained them in the text, but also report unadjusted and p-values 

systematically in our supplementary tables to allow readers to consider alternative versions of the 

statistical analysis. A few examples of studies using the same strategy on PCAWG & TCGA data: 

• Genomic basis for RNA alterations in cancer (https://www.nature.com/articles/s41586-020-

1970-0) 

• Pathway and network analysis of more than 2500 whole cancer genomes 

(https://www.nature.com/articles/s41467-020-14367-0) 

• Analyses of non-coding somatic drivers in 2,658 cancer whole genomes 

(https://www.nature.com/articles/s41586-020-1965-x) 

https://www.nature.com/articles/s41586-020-1970-0
https://www.nature.com/articles/s41586-020-1970-0
https://www.nature.com/articles/s41467-020-14367-0
https://www.nature.com/articles/s41586-020-1965-x


• Pathogenic germline variants in 10,389 adult cancers 

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5949147/) 

• Comprehensive Characterization of Cancer Driver Genes and Mutations  

(https://www.cell.com/cell/pdf/S0092-8674(18)30237-X.pdf) 

 

I strongly recommend using standard density measures (SNVs/Mb, small indels/Mb,…) instead of the 

PGA.  

To our knowledge PGA (sometimes also called FGA) is indeed the standard method of considering 

copy-number density in non-tetraploid tumours. It has been reported by many groups, including our 

own, in prior studies. A few examples of other groups using it: 

• Percent genome alteration and outcomes after radical prostatectomy in African American men. 

(https://ascopubs.org/doi/abs/10.1200/JCO.2019.37.7_suppl.24) 

• The detection and implication of genome instability in cancer 

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3843371/)  

• Tumor copy number alteration burden is a pan-cancer prognostic factor associated with 

recurrence and death (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6145837/)  

As the reviewer recommends, for density of point mutations we use SNVs/Mbp throughout as this is 

the established metric for that mutation density feature. 

 

“Bias” has a very specific meaning in statistics, I would recommend the authors substituting “Age biases” 

by “Age associations” and “Age effects”. 

The reviewer is absolutely correct, we have made this change throughout. 

The abstract is not very informative, some examples: Specific mutational signatures are associated with 

age (which ones?), A subset of known cancer driver genes were mutated (which ones?), With clear clinical 

implications (which ones?). 

Given the very limited space available in the abstract, we are unable to describe more than a cursory 

summary of findings, but we have updated substantially to better provide details. It now reads: 

“Cancer is often called a disease of aging. There are numerous ways in which cancer epidemiology and 

behaviour change with the age of the patient. The molecular bases for these relationships remain 

largely underexplored. To characterize them, we analyzed age-associations in the nuclear and 

mitochondrial somatic mutational landscape of 20,033 tumours across 35 tumour-types. Age 

influences both the number of mutations in a tumour and their evolutionary timing. Specific 

mutational signatures are associated with age, reflecting differences in exogenous and endogenous 

oncogenic processes such as a greater influence of tobacco use in the tumours of younger patients, 

but more activity of DNA damage repair signatures in those of older patients. We find that known 

cancer driver genes are mutated in age-associated frequencies, and these alter the transcriptome and 

predict for clinical outcomes. These effects are most striking in brain cancers where alterations like 

SUFU loss and ATRX mutation are age-dependent prognostic biomarkers. Using three cancer datasets, 

we show that age shapes the somatic mutational landscape of cancer, with clear clinical implications.” 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5949147/
https://www.cell.com/cell/pdf/S0092-8674(18)30237-X.pdf)
https://ascopubs.org/doi/abs/10.1200/JCO.2019.37.7_suppl.24
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3843371/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6145837/


 

Please avoid the use of unnecessary abbreviations like ULR, and BLCA, BRCA, CESc, COADREAD,….  

These abbreviations are the standard tumour-type abbreviations used by TCGA & PCAWG, and so we 

have elected to retain them for consistency with the source data on which these analyses were 

performed. However, we have added reader-friendly labels as well throughout figures and text (eg: 

PRAD, Prost-AdenoCA, and Prostate Cancer) 

 

The manuscript needs extensive edition by a statistician. For example, alternative formulation for lines 

272-272 -> We next asked whether “CNAs associated with age” perturb… Another example on line 275: 

as predictors (and which was the response variable?) 

We greatly appreciate this caution, and our manuscript has now been extensively edited with statistical 

terminology in mind. The specific line in question (Line 325-326) now reads:  

“We next asked whether age-associated CNAs might lead to downstream transcriptomic changes by 

investigating TCGA tumour-matched mRNA abundance data.” 

 

Line 460: What do you mean with “insufficient variability in ancestry estimation”?  

We apologize for the lack of clarity in our writing, this line has been removed from the text and we 

have added additional material to clarify our analysis approach 

 

Fig 1: please add regression lines 

We have added regression lines as suggested. 

 

Fig 1 legend: Mutation density and timing are associated with age at diagnosis 

We have changed the Figure title as suggested. 

 

Fig 2: Some kind of interpretation is needed for the mutational signatures 

We have included additional interpretation to the main text describing Figure 2, including a specific 

example breaking down SBS4 to precede the general discussion of mutational signatures  

 

Fig 5 is difficult to understand, I recommend to prepare separated figures for age, gender and ancestry 

As recommended by multiple reviewers, we have removed Figure 5 from our submission. 

  



Reviewer #3 
Li, Haider and Boutros analyzed cancer genomic datasets from TCGA and PCAWG, generating substantial 

new information regarding mutational processes that are altered by the age of the individual, including 

SNV load, CNA, clonality, SNV/indel timing, and various mutational signatures. They also identified specific 

CNAs, and associated some of these changes with mRNA changes, that changed with age of the patient. 

Similarly, they identified some age-associated SNVs that associated with mRNA expression. For both these 

CNAs and SNVs, they demonstrated that these changes interacted with age in prognosis for select cancers 

(for example, it’s interesting that 10q loss is a poor prognosis marker for younger patients but not older 

ones). Notably, their modeling accounted for confounding variables including sex and genetic ancestry. As 

they indicate, previous studies (in colon cancers and GBM) have examined age dependent differences in 

genomic landscapes, but the current study is unique in its breadth (pan-cancer) and in its extensive 

analyses.  

This work is complicated and not “an easy read”. A lot of results are presented. Nonetheless, there are 

some nuggets of important and sometimes intriguing associations with age. For example, lung 

adenocarcinomas exhibit more CNAs and SNVs in younger patients than older, which is the opposite of 

that observed for most other tumors. In most cases, the expected increases in mutational burden are 

observed in cancer in older individuals. It is also interesting that some cancers show increased clonal 

(truncal) SNVs in older individuals, while the opposite is observed for other cancers. While there is currently 

no clear explanation for these results, these analyses will serve to stimulate searches for answers. Most 

importantly, this work should serve as an important resource for understanding how age influences 

mutational processes in cancer genomics for years to come. 

We thank the reviewer for their careful and kind assessment of our work. We acknowledge that the 

work is complicated and dense, and with their guidance we have tried to de-clutter the analysis and 

present our findings more succinctly. We address specific comments below. 

 

1) Page 5, line 129. It is indeed interesting that SNVs and CNAs are more abundant in lung cancers from 

younger individuals, but I’m not sure that I agree with (or understand) how this could relate to “smoking 

exposure”. For one, lung cancers in smokers and never smokers show very similar age distributions (if 

anything, the cancers occur at a bit older ages for smokers and former smokers). Moreover, SCCs occur 

almost exclusively in smokers. Their observation requires further explanation (really, speculation).  

We have added a focused analysis of smoking in lung cancers and how the age-PGA correlation varies 

by smoking history. We performed this analysis using both self-reported smoking history and tobacco 

exposure as described by mutational signatures data. As Figure 1G now shows, age and PGA remain 

negatively correlated in current and recent reformed smokers (≤15 years); the correlation is not 

significant in never and long-term reformed smokers (>15 years). Tobacco exposure itself is known to 

be associated with high mutation burden, and earlier age of diagnosis – the latter becomes clearer in 

Figure 1F when compared by smoking history group. The combination of these factors may explain 

higher PGA in younger tobacco-exposed lung cancer patients. Of course, smoking is only one factor we 

considered in this analysis, and the causes of age-associated differences are likely multifactorial and 

interacting.  



We have added more detail on this analysis to our main text at Lines 156-174, 188-205, and to our 

Discussion at Lines 472-474:  

“For example, we found that tobacco exposure is closely linked to the negative correlation between 

age and PGA. It is possible that tobacco exposure leads to earlier presentation of mutation-dense lung 

cancers. However, it is also likely that there are other variables and interactions that influence the 

relationship between age and mutation density.” 

 

2) In Fig 3i, it’s interesting that only younger patients with loss of a piece of chromosome 10q exhibit worse 

prognosis. They then indicate that they “performed survival modeling for 5,251 genes on affected by age-

biased CNAs in glioblastoma and found 309 1,821 genes showed associations between copy number 

change and prognosis and 142 genes had significant CNA-age interactions.” This statement requires more 

clarification. And how divergent are results from those expected based on chance? 

Our previous analysis was based on chromosome segments obtained by binning adjacent genes with 

similar CNA profiles. It likely overestimated the number of age-associated gains and losses. We have 

updated our analysis in this submission to focus on known cancer drivers (26 gains and 61 losses), and 

our list of CNA-age interactions has changed accordingly. We now describe at Line 353-355: 

“Genes in these CNAs were associated with altered mRNA abundance in six tumour-types. Five tumour-

types also showed that age-associated CNAs can be prognostic and that the prognostic value can also 

differ based on the age of the individual.” 

 

3) Page 11, line 358: They write “mutated IDH1 was associated with a greater mRNA decrease in tumours 

arising in younger patients.” I see the opposite, in that those with the SNV exhibit lower expression only in 

older patients. 

Yes, this is a great point. We speculate the difference in baseline IDH1 mRNA may be due to aging-

related changes in brain metabolism. This may be a feature of the normal brain specifically, or of 

both normal changes and cancer-related changes. We have pointed out the dynamics of the 

mRNA change and added this speculation at Lines 416-421:  

“Interestingly, this difference results from a change in baseline IDH1 mRNA: older patients have 

higher IDH1 mRNA abundance than younger, and mutated IDH1 leads to equalised mRNA levels. 

IDH1 encodes isocitrate dehydrogenase 1, a component of the citric acid cycle: differences in its 

baseline abundance may be due to differences in metabolism in younger and older brains69.” 

 

4) The authors need to consider cohort effects – the cancers from older individuals came from people 

born in earlier years than those from younger people, and thus could have experienced differences in 

lifestyle and exposures.  

This is also an excellent point. While we control for specific exposures, we do not consider cohort 

effects in this analysis. It is a weakness of our study and we add mention to it in Discussion at Lines 

476-279:  



“Moreover cohort effects, where individuals born in one time period experience different risk 

exposures from those born in another, can greatly influence the somatic profile of tumours. Our 

analyses do not consider such cohort effects, and some described age-associations may instead 

be attributed to differences across time.” 

 

5) In the Discussion, it would be helpful to highlight some of the more interesting and perhaps 

unexpected associations with age uncovered in these studies.  

We have expanded our Discussion on findings of interest and comparisons between datasets. 

 

Minor:  

1) Define ancestry abbreviations in Fig 5. And “density” is misspelled in the figure.  

We have removed Figure 5. Though our paper no longer explicitly address ancestry, we define the 

abbreviations when appropriate in supplementary materials. 

 

2) The axes need to be better defined, particularly in Suppl Figures like Suppl Fig 2.  

We have updated the supplementary figures and adjusted the figure labels. 

 

3) Supplementary tables are not labeled well, and it was hard to even figure out which Suppl Table was 

which. 

We have revised the supplementary tables to be clearer and added better description. 

 

4) For Fig 3A, use of log10 scale would allow better visualization of results. 

This worked nicely, we have revised Figure 3 as suggested! 



REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

The revised manuscript includes additional data and revised analysis. However some of the issues 

have been unaddressed, or explained without sufficient detail, and major issues remain which prevent 

support for publication. Here is a specific review of the points: 

points 1 and 2 - addressed 

point 3 - This is not fully addressed. 

The rebuttal states that "Our mutational signatures analysis examines age at greater detail than in 

previous studies including the PCAWG signatures" however no specifics are given on what the greater 

detail is. From reading the rebuttal, the main difference seems to be prior studies use absolute 

number of mutations, whereas this study uses proportion. For signature 1a clock like mutations, which 

correlate with age based on the assumption of accumulating errors during cell division, it's not clear 

that using proportion actually makes much sense. For example if a tumor bears n=1000 signature 1 

mutations, and n=1000 other, the signature 1 proportion is 0.5. But if this patient now smokes, and 

has n=9000 signature 4 tobacco mutations, the proportion becomes 0.1 and hence the age estimate is 

now 5-fold less, but with no underlying difference in absolute mutations associated with cell division 

errors. This analysis make risk confusion and furthermore, it seems technical rather than biological in 

nature. Overall the data in figure 2 risks confusion, and it's not clear how it's substantially different 

from prior publications of the exact same data. 

point 4&5 - not addressed 

The authors state "We have changed our CNA analysis to focus on known driver gains and losses, 

which drastically 

changed our CNA results" and "In our previous submission, we used a segment approach where genes 

with similar copy number 

profiles were binned together – this likely led to overestimation of age-associated gains and 

losses" 

It's unclear if the methodology is erroneous, the authors themselves suggest it's leading to 

overestimated results. If the method is wrong, then simply applying it to a smaller set of genes is a 

flawed approach. While not as many erroneous results are reported, the results are still 

overestimated. As requested by the reviewer, were QQ plots reviewed to assess for evidence of 

systematic inflation in the test statistic? No QQ are presented in the manuscript, and no further detail 

is given, so it appears data in figure 3 still has major issues. 

Points 6-9 - are addressed 

Reviewer #2 (Remarks to the Author): 

Thank you for the invitation to review the updated version of the manuscript by Li et al. “Age 

Influences on the Molecular Presentation of Tumours”. 

Unfortunately, I consider the authors did not adequately address my suggestions: 

- Despite the title of the article, the following question remains unanswered: “What is the average 

increase in SNVs/Mb and small indels/Mb per each year of age at cancer diagnosis (overall and for 



particular cancer types)? 

- Instead of the estimated effect sizes (SNVs/small indels per Mb and year of diagnosis age) from 

multiple regression models, the authors continue reporting Spearman correlations only. 

- As pointed out in my previous review, FDRs are not appropriate in the context of the conducted 

investigation – even if FDRs are frequently used in other PCAWG and TCGA publications. The FDR 

threshold of 10% means that, on average, 10% of the reported findings are false, which I consider is 

not acceptable. 

- The authors state that “As the reviewer recommends, for density of point mutations we use 

SNVs/Mbp throughout”. Unfortunately, I only see Spearman correlations with the corresponding 

probability values. 

- I still consider the abstract is not very informative. The relationship between mutation density and 

age at diagnosis remains unquantified, the specific mutational signatures/mutated cancer driver genes 

associated with age are not listed, the clinical implications are not specified. An appropriate 

multiplicity correction (FWER) would allow the authors to tighten the results. 

- Fig 2: Please add the proposed aetiology for mutations with this information: for example APOBEC 

activity, defective HR DNA / DNA mismatch repair, UV light exposure,… 

Reviewer #3 (Remarks to the Author): 

The authors fully addressed my previous concerns, and the major points of the manuscript are now 

easier to follow. The authors also appear to have addressed concerns of the other reviewers (although 

some of the points on statistical analyses were outside my sphere of expertise). 

signed - James DeGregori



We thank the reviewers again for their continued time and comments. In addition to correcting or 
updating several minor issues as recommended, we have made two major additions to the paper: 

- Q-Q plots for the p-value distributions for our CNA results to Supplementary Figures 
- Bonferroni-adjusted p-values in supplementary materials 

Reviewer #1: 
The rebuttal states that "Our mutational signatures analysis examines age at greater detail than in 
previous studies including the PCAWG signatures" however no specifics are given on what the greater 
detail is. From reading the rebuttal, the main difference seems to be prior studies use absolute number 
of mutations, whereas this study uses proportion. For signature 1a clock like mutations, which correlate 
with age based on the assumption of accumulating errors during cell division, it's not clear that using 
proportion actually makes much sense. For example if a tumor bears n=1000 signature 1 mutations, and 
n=1000 other, the signature 1 proportion is 0.5. But if this patient now smokes, and has n=9000 
signature 4 tobacco mutations, the proportion becomes 0.1 and hence the age estimate is now 5-fold 
less, but with no underlying difference in absolute mutations associated with cell division errors. This 
analysis make risk confusion and furthermore, it seems technical rather than biological in nature. Overall 
the data in figure 2 risks confusion, and it's not clear how it's substantially different from prior 
publications of the exact same data. 

The reviewer’s example illustrates the value in analyzing absolute signature-attributed mutation 
numbers. These analyses allow us to compare the intensity of mutational processes and have 
been described by previous groups. We assert that our proportional approach adds information 
on other aspects of mutational signatures and do have biological meaning. We compare the 
binary metric of whether a signature is detected or not, to identify signatures that are more likely 
to affect younger vs. older patients. We pair this with analyses of proportional mutation activity 
to add context of how active each signature is in a tumour relative to other detected signatures. 
In the reviewer’s example, the patient in both scenarios has 1000 signature 1 mutations, but 
significantly more smoking mutations in the second scenario. Our analysis would pick up on that 
greater activity of the smoking signature. In a cohort, higher proportions of smoking signatures in 
younger patients suggests that smoking plays a greater mutagenic role in their tumours than in 
the tumours of older patients. To our knowledge, this is the first time mutational signatures data 
has been analysed in this way with respect to age. We have added Lines 240-251 in the main text 
to clarify the interpretations of our analyses: 

“Previous studies of mutational signatures describe the correlations between age and 
signature-attributed mutations but ignore the other aspects of signature detection and 
relative activity. By comparing signature detection rates, we identify mutational 
processes that are more likely to be active in younger vs older patients and vice versa. 
By analyzing signature-attributed mutations as a proportion of total mutations per 
tumour, we can derive information about that signature’s contribution to the overall 
mutational spectrum. For example, SBS1 is well-known as being ‘clock-like’ and its 
number of attributed mutations increase with age60,62. However, because SBS1 is 
detected almost universally, it is equally likely to occur in tumours of younger vs older 
patients; when analysed as a proportion of total mutations, we find that the proportion 



of SBS1 mutations does not change with age, suggesting that its relative activity is stable 
with age (Spearman’s correlation p > 0.1).” 

 

point 4&5 - not addressed 

The authors state "We have changed our CNA analysis to focus on known driver gains and losses, which 
drastically changed our CNA results" and "In our previous submission, we used a segment approach 
where genes with similar copy number profiles were binned together – this likely led to overestimation 
of age-associated gains and losses" 

It's unclear if the methodology is erroneous, the authors themselves suggest it's leading to 
overestimated results. If the method is wrong, then simply applying it to a smaller set of genes is a 
flawed approach. While not as many erroneous results are reported, the results are still overestimated. 
As requested by the reviewer, were QQ plots reviewed to assess for evidence of systematic inflation in 
the test statistic? No QQ are presented in the manuscript, and no further detail is given, so it appears 
data in figure 3 still has major issues. 

To clarify, our previous assertion, "In our previous submission, we used a segment approach 
where genes with similar copy number profiles were binned together – this likely led to 
overestimation of age-associated gains and losses" referred to the large number of genes 
contained in each CNA bin. Each bin contained tens to hundreds of genes, and since our CNA 
analysis methods were bin-based, all genes within each bin shared the same statistical result 
(same p-value, effect-size, etc.). If there were 100 bins, all but one bin containing 200 genes and 
the hundredth containing 10,000 genes (purely illustrative example), then if the hundredth bin 
had an age-associated CNA profile, we would see an inflation in the number of significant hits.  

Copy number alterations are large, structural events that alter cancer driver genes, but also the 
genes around them. Because we are most interested in the age-associations of cancer drivers, 
we revised our analysis to focus on a pre-defined set of CNA drivers and avoid the issue of 
picking up spurious CNA passengers. The CNA drivers are more evenly distributed over the 
genome and are more likely to have independent CNA profiles from each other.  

We have prepared Q-Q plots as originally requested by the reviewer and apologize for the 
omission. They are presented in Supplementary Figure 4 and reproduced below. They show that 
the p-values of both univariate and multivariate tests largely follow a uniform distribution with a 
tail, as desired. There are tumour-types where one dataset shows an un-ideal distribution, but 
the other two show good results: these cases demonstrate the importance of using multiple 
independent cohorts. Also, some multivariate Q-Q plots have un-ideal distributions (and fewer 
points), and these factors may be due in part to the filtering performed in the univariate stage. 
We agree with the reviewer that the Q-Q plots are important in diagnosing the appropriateness 
of our statistical approach and have included these plots in our submission for transparency so 
that readers can better assess our results. We attach Supplementary Figure 4 below: 



  

 
 
Supplementary Figure 4. Q-Q plots of CNA-age p-values vs. expected uniform 
distribution.  



Comparison of -log10(p-value) distributions for univariate (UV) and multivariate (MV) CNA-age 
association tests against expected univariate distributions. Only tumour-types with significant 
multivariate results shown (as seen in Figure 3A-C). 

Reviewer #2: 
Thank you for the invitation to review the updated version of the manuscript by Li et al. “Age Influences 
on the Molecular Presentation of Tumours”. 

Unfortunately, I consider the authors did not adequately address my suggestions:  
- Despite the title of the article, the following question remains unanswered: “What is the average 
increase in SNVs/Mb and small indels/Mb per each year of age at cancer diagnosis (overall and for 
particular cancer types)?  

- Instead of the estimated effect sizes (SNVs/small indels per Mb and year of diagnosis age) from 
multiple regression models, the authors continue reporting Spearman correlations only.  

As requested we have added estimates of the per year increase in SNV density and PGA by 
merging datasets with evidence of age associations. We used linear regression models with 
formulae SNV density ~ age + project, and PGA ~ age + project where the project term accounts 
for differences between datasets. These estimates and 95% confidence intervals are 
accumulated for all cancer types in Table 2. We have added the following passages to the text: 

Lines 113-115:  

“Using TCGA and PCAWG data, we estimate that SNV density increases at a rate of 0.077 
mutations per megabase pair per year (Table 2, Methods).” 

Lines 115-122: 

“We also identified positive associations in 11 TCGA, 14 PCAWG, and six AACR GENIE 
tumour-types (Figure 1A). Of these, nine tumour-types showed consistent results in two 
of three datasets (Supplementary Figure 1, Supplementary Table 2) including prostate 
cancer (TCGA: ρ = 0.25, FDR-adjusted LNR p = 0.015, Bonferroni-adjusted LNR p = 0.13; 
PCAWG: ρ = 0.48, FDR-adjusted LNR p = 1.2x10-4, Bonferroni-adjusted LNR p = 8.7x10-4; 
Figure 1B). Estimates for per year increase in mutation density are given in Table 2 for 
the nine tumour-types with consistent evidence in at least two datasets..” 

Lines 153-157: 

“We found that in pan-cancer analysis, PGA increased with age in PCAWG (ρ = 0.19, 
FDR-adjusted LNR p = 0.022, Bonferroni-adjusted LNR p = 0.068) and AACR GENIE (ρ = 
0.041, FDR-adjusted LNR p = 0.050, Bonferroni-adjusted LNR p = 0.16) (Figure 1D) and 
estimate that PGA increases at 0.010% per year (Table 2).” 

Lines 170-171: 

“Estimates for per year increase in PGA are given in Table 2 for the five tumour-types 
with consistent evidence in at least two datasets.” 



And in Methods at lines 638-642: 

“Per year increase in SNV density was estimated by combining TCGA, PCAWG and AACR 
GENIE data: for tumour-types with evidence of age-associated SNV density in at least 
two datasets, we merged those datasets with evidence of age-associations. We fit a 
linear regression model with formula SNV density ~ age + project and took the 
coefficient estimate for age as the per year increase in SNV density value.” 

And lines 654-658: 

“Per year increase in PGA was estimated similarly to the estimation for SNV density: we 
fit a linear regression model with formula PGA ~ age + project and took the coefficient 
estimate for age as the per year increase in PGA. We provide this estimate for tumour-
types with evidence of age-associated PGA in at least two datasets.” 

 

 

- As pointed out in my previous review, FDRs are not appropriate in the context of the conducted 
investigation – even if FDRs are frequently used in other PCAWG and TCGA publications. The FDR 
threshold of 10% means that, on average, 10% of the reported findings are false, which I consider is not 
acceptable.  

We respectfully note that literally hundreds of PCAWG and TCGA publications have reported 
both FDR-adjusted p-values, and it is unclear to us the justification for why FDRs are not 
appropriate in the context of this study. Indeed a co-submitted manuscript on similar topics has 
now been accepted at this journal using FDR throughout without issue 
(https://www.nature.com/articles/s41467-021-22560-y), further highlighting our reservations. 
Nevertheless, given the reviewer’s strong insistence on this topic we now provide Bonferroni-
adjusted p-values. Our key findings in SNV density and PGA, smoking- and homologous repair-
associated mutational signatures, and prognostic SUFU loss and ATRX mutation all remain 
statistically significant with this much more rigorous correction. Further, we have made available 
all unadjusted and adjusted p-values for full transparency to Nature Communications 
readership, and in case readers wish to calculate FDRs themselves for comparison with other 
studies in the TCGA and PCAWG literature. We trust that these changes now address the 
concern. 

We add at Lines 92-97: 

“We perform multiple testing adjustment at both stages using the Benjamini-Hochberg 
false discovery rate (FDR) procedure and these adjusted p-values are used throughout. 
Bonferroni-adjusted p-values provide similar support for our findings. FDR-adjusted p-
values are reported unless otherwise noted. Both Benjamini-Hochberg and Bonferroni, 
as well as unadjusted p-values are provided in supplementary materials.” 

And have similarly updated Supplementary Tables 2-6. 

 



 

 

- The authors state that “As the reviewer recommends, for density of point mutations we use SNVs/Mbp 
throughout”. Unfortunately, I only see Spearman correlations with the corresponding probability values. 

The original reviewer comment recommended using SNVs/Mbp rather than PGA. Our initial 
submission already did so, and of course SNVs/Mbp and PGA reflect different aspects of tumour 
biology (point variants and copy number aberrations, respectively). This remark appears unrelated to 
that reviewer comment, and appears to be a reiteration of the request above for indicating per-year 
changes in SNVs/Mbp. Those changes are outlined above. 

 

 

- I still consider the abstract is not very informative. The relationship between mutation density and age 
at diagnosis remains unquantified, the specific mutational signatures/mutated cancer driver genes 
associated with age are not listed, the clinical implications are not specified. An appropriate multiplicity 
correction (FWER) would allow the authors to tighten the results.  

We are a little confused by this comment. The Abstract does indeed directly refer to two specific 
mutational signatures (smoking and DNA damage repair) and two specific cancer drivers (SUFU 
and ATRX) with prognostic implications in brain cancers. We now describe age-associations with 
mutation density in the manuscript, but not in the abstract as we believe the mutational process 
and prognostic gene associations are more important given the space constraints of an Abstract. 
We are happy to take our lead from the Editor on this issue and will gladly update the abstract 
as they recommend. We reproduce our abstract below: 

“Cancer is often called a disease of aging. There are numerous ways in which cancer 
epidemiology and behaviour change with the age of the patient. The molecular bases 
for these relationships remain largely underexplored. To characterize them, we analyzed 
age-associations in the nuclear and mitochondrial somatic mutational landscape of 
20,033 tumours across 35 tumour-types. Age influences both the number of mutations 
in a tumour and their evolutionary timing. Specific mutational signatures are associated 
with age, reflecting differences in exogenous and endogenous oncogenic processes such 
as a greater influence of tobacco use in the tumours of younger patients, but more 
activity of DNA damage repair signatures in those of older patients. We find that known 
cancer driver genes are mutated in age-associated frequencies, and these alter the 
transcriptome and predict for clinical outcomes. These effects are most striking in brain 
cancers where alterations like SUFU loss and ATRX mutation are age-dependent 
prognostic biomarkers. Using three cancer datasets, we show that age shapes the 
somatic mutational landscape of cancer, with clinical implications.” 

 

 



- Fig 2: Please add the proposed aetiology for mutations with this information: for example APOBEC 
activity, defective HR DNA / DNA mismatch repair, UV light exposure,… 

 
We have added SBS signature aetiologies in the figure (Figure 2E). Due to space constraints, we 
have added DBS and ID signature aetiologies in the figure legend. 



REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

Li et al have submitted a further revised manuscript, with additional explanation and analysis added. 

Of the two points that were unresolved: 

- The point on mutational signatures is now at least clearly explained. Personally, I still struggle to 

understand if the difference between proportion and absolute signature measures is biological or 

technical in nature. However the authors have answered my question, and so I would leave this now 

as an editorial matter. As highlighted in previous review, the analysis presented is very similar to prior 

published work (in a nature group journal), in the same PACAWG samples. If the editors are happy 

analysing proportion rather than absolute count vs age is significantly different then the matter should 

be closed. 

- The last point (on copy number analysis, points 4 & 5 from the original rebuttal) is more concerning 

however - as the author acknowledges, the Q-Q plots have some "un-ideal distributions". The y=x line 

is missing from the plots (and should be added), but from looking at the data the observed p-values 

are highly inflated compared to what would be expected. This is a concern as it suggests that nearly 

any gene could come up as a hit in this analysis, which was also an issue from the first rebuttal where 

thousands of genes were shown to be significantly associated with aging. This is coupled with the 

concerns of the other reviewer (who is unsure about multiplicity correction). In the latest reply the 

authors have provided helpful insight into the root cause of the issue, ie that individual SCNA 

segments span tens or even hundreds/thousands of genes. This is indeed a challenging issue, and in 

other major studies (eg TCGA) used specialised analysis tools such as GISTIC were used for SCNA 

gene level analysis (eg see here for a recent example https://pubmed.ncbi.nlm.nih.gov/32203465/). I 

appreciate it's late in the review process to undertake new primary analysis, but if the key findings 

from figure 3 could be validated using an orthogonal statistical approach that would reassure greatly 

the readership. For example, if FANCA loss is identified as a significant GISTIC peak in older 

individuals, but not (or less markedly less strongly) associated in younger individuals, that would show 

the key findings are valid, despite issues in the Q-q plots. Or if the findings don't validate using 

GISTIC this will help avoid spurious findings entering the literature, and the manuscript could proceed 

with the figure 3 data omitted. Overall the manuscript covers an important topic, so it will be of strong 

interest to the community even without fig3 data. 

Reviewer #2 (Remarks to the Author): 

Thank you for the invitation to review the newly updated version of the manuscript by Li et al. “Age 

Influences on the Molecular Presentation of Tumours”. 

I still consider the authors did not adequately address my suggestions. I will try to make clearer 

suggestions: 

a. In an article entitled “Age Influences on the Molecular Presentation of Tumours”, I would appreciate 

to read in the abstract something like “Age influences the number of tumor mutations (0.077 per Mb 

and year) and their evolutionary timing”. 

b. Please report effect sizes (SNVs/Mb and CNVs/Mb) instead of Spearman correlations. For example: 

“We also identified positive associations in 11 TCGA, 14 PCAWG, and six AACR GENIE tumour-types 

(Figure 1A). Of these, nine tumour-types showed consistent results in two of three datasets 



(Supplementary Figure 1, Supplementary Table 2) including prostate cancer (TCGA: ρ = 0.25 -> 

please show here the estimated increase in SNVs/Mb per year instead of ρ 

c. The correct interpretation of a FDR is “the rate of false discoveries”. FDR=0.05 translates into “5% 

of the reported findings are false”, which is not acceptable. Please review the complete manuscript 

highlighting associations with a Bonferroni-corrected p value (or other FWER) smaller than 0.05. 

Results with FDR<0.05 can be provided as supplementary material, and associations with FDR<0.05 

can be briefly described in the article as “potential associations”. This major correction would allow the 

authors to tighten the abstract, as indicated below. 

d. - The abstract is not very informative. 

Specific mutational signatures (which ones?) are associated with age, reflecting differences in 

exogenous and endogenous oncogenic processes such as a greater influence of tobacco use in the 

tumours of younger patients, but more activity of DNA damage repair signatures in those of older 

patients. 

We find that known cancer driver genes (which ones?) are mutated in age-associated frequencies, and 

these alter the transcriptome and predict for clinical outcomes (which ones?).



We thank the reviewers again for their time and comments. We have made multiple additions and 

adjustments to the paper, clarified statistical methodology further and: 

- Added Pearson’s Χ2 tests as an orthogonal approach to verify age-associated CNAs 

- Added Supplementary Table 2 containing only significant results  

Reviewer #1 

- The last point (on copy number analysis, points 4 & 5 from the original rebuttal) is more concerning 

however - as the author acknowledges, the Q-Q plots have some "un-ideal distributions". The y=x line is 

missing from the plots (and should be added), but from looking at the data the observed p-values are 

highly inflated compared to what would be expected. This is a concern as it suggests that nearly any gene 

could come up as a hit in this analysis, which was also an issue from the first rebuttal where thousands of 

genes were shown to be significantly associated with aging. This is coupled with the concerns of the other 

reviewer (who is unsure about multiplicity correction). In the latest reply the authors have provided helpful 

insight into the root cause of the issue, ie that individual SCNA segments span tens or even 

hundreds/thousands of genes. This is indeed a challenging issue, and in other major studies (eg TCGA) used 

specialised analysis tools such as GISTIC were used for SCNA gene level analysis (eg see here for a recent 

example https://pubmed.ncbi.nlm.nih.gov/32203465/). I appreciate it's late in the review process to 

undertake new primary analysis, but if the key findings from figure 3 could be validated using an 

orthogonal statistical approach that would reassure greatly the readership. For example, if FANCA loss is 

identified as a significant GISTIC peak in older individuals, but not (or less markedly less strongly) 

associated in younger individuals, that would show the key findings are valid, despite issues in the Q-q 

plots. Or if the findings don't validate using GISTIC this will help avoid spurious findings entering the 

literature, and the manuscript could proceed with the figure 3 data omitted. Overall the manuscript covers 

an important topic, so it will be of strong interest to the community even without fig3 data.  

We fully appreciate the reviewer’s concerns that the p-values for a subset of our comparisons show 

signs of inflation. We note that our methodology here remains quite common in TCGA and PCAWG 

studies, as an example from the PCAWG bucket of papers, published in this journal: 

https://pubmed.ncbi.nlm.nih.gov/32024823/ 

In that study and many others, no assessment is made of Q-Q plots for CNAs because of the 

challenges raised here. That being said, we definitely appreciate the concern and only note this to 

reflect that there is no standard in our field for the statistical analysis or presentation of data like 

this, despite their wide-analysis. The idea of using GISTIC is an interesting one, and as the reviewer 

recognizes GISTIC is really a univariate driver discovery tool. That is a little distinct from what we 

are doing here: we are not looking at recurrence, but rather associations adjusted for multiple 

covariates. 

To get at the core idea, we have taken an orthogonal, non-parametric statistical approach on 

discretized age-data. We median-dichotomized age for each tumour type, and tested its association 

with copy number gains and losses separately using Pearson’s Χ2 test. We again applied a 10% FDR 

threshold. Our full statistical procedure is now: 

1) Univariate assessment with a continuous univariate parametric model (10% FDR) 

2) Univariate assessment with a discrete univariate non-parametric model (10% FDR) 

3) The intersection of 1) and 2) are tested with a continuous multivariate model (10% FDR) 

https://urldefense.com/v3/__https:/pubmed.ncbi.nlm.nih.gov/32203465/__;!!F9wkZZsI-LA!XrcaMVXl2V6-8wlnS-NQCwygCijBkHB5ac68KE5OlfkTq-TeBmg4RZOUAiC_1kW280nh2Q$
https://pubmed.ncbi.nlm.nih.gov/32024823/


We note that the joint statistical stringency here is quite high since we require the intersection of 

two 10% FDR models, followed by validation of that pool with a third model. When applying this 

framework, we find 43 tumour-type-specific age-associated CNA drivers (from 58 previously) and 

29 pan-cancer CNA drivers (from 32 previously). The major mRNA and survival findings following 

our analysis of age-associated CNA drivers were all unaffected. 

We have made changes to Figure 2, Supplementary tables 5-6, and added Supplementary Table 2. 

Changes in the text related to this updated analysis are throughout the copy number section “CNA 

Differences Associated with Transcriptomic Changes” (Lines 315-391) and in particular at:  

Lines 324-327 

“We further used Pearson’s Χ2 tests to evaluate all driver CNAs as an orthogonal measure 

to minimize false positive hits: we take only results that pass the two stacked 10% FDR 

thresholds from our statistical framework and the 10% threshold on FDR-adjusted Chi-

squared p-values to be significant.” 

And in Methods at 704-708 

“We also used Chi-squared tests to evaluate all driver CNAs in all tumour-types. We tested 

the association of gains/losses with median dichotomized age. Significant age-

associations must pass the two 10% FDR thresholds from our statistical framework and 

the 10% threshold on FDR-adjusted Chi-squared p-values. Bonferroni adjusted p-values 

are also presented in Supplementary Tables 1, 5-6.” 

 

Reviewer #2 

Thank you for the invitation to review the newly updated version of the manuscript by Li et al. “Age 

Influences on the Molecular Presentation of Tumours”. I still consider the authors did not adequately 

address my suggestions. I will try to make clearer suggestions: 

We thank the reviewer for their ongoing suggestions and review of this manuscript. 

 

a. In an article entitled “Age Influences on the Molecular Presentation of Tumours”, I would appreciate to 

read in the abstract something like “Age influences the number of tumor mutations (0.077 per Mb and 

year) and their evolutionary timing”. 

We have added this to the abstract. 

 

b. Please report effect sizes (SNVs/Mb and CNVs/Mb) instead of Spearman correlations. For example:  

“We also identified positive associations in 11 TCGA, 14 PCAWG, and six AACR GENIE tumour-types (Figure 

1A). Of these, nine tumour-types showed consistent results in two of three datasets (Supplementary Figure 

1, Supplementary Table 2) including prostate cancer (TCGA: ρ = 0.25 -> please show here the estimated 

increase in SNVs/Mb per year instead of ρ 



In addition to the description of all significant estimates of per year increase in SNV density and 

PGA in Table 2 (reproduced below), we have included estimates in text where appropriate 

(underlined):  

Lines 115-128: 

“There were pan-cancer positive correlations between age and SNV density in TCGA (pan-

TCGA: ρ = 0.31, FDR-adjusted LNR p = 4.1 x 10-57, Bonferroni-adjusted LNR p = 4.1x10-57) and 

PCAWG (ρ = 0.43, FDR-adjusted LNR p = 1.6 x 10-26, Bonferroni-adjusted LNR p = 4.1x10-57) 

data. Using TCGA and PCAWG data, we estimate that SNV density increases at a rate of 0.077 

mutations per megabase pair per year (Table 2, Methods). We also identified positive 

associations in 11 TCGA, 14 PCAWG, and six AACR GENIE tumour-types (Figure 1A). Of these, 

nine tumour-types showed consistent results in two of three datasets (Supplementary Figure 

1, Supplementary Table 2, Supplementary Table 3) including prostate cancer (TCGA: ρ = 

0.25, FDR-adjusted LNR p = 0.015, Bonferroni-adjusted LNR p = 0.13; PCAWG: ρ = 0.48, FDR-

adjusted LNR p = 1.2x10-4, Bonferroni-adjusted LNR p = 8.7x10-4
, estimated 0.12 

mut/Mbp/year; Figure 1B). Estimates for per year increase in mutation density are given in 

Table 2 for the nine tumour-types with consistent evidence in at least two datasets.” 

Lines 159-178: 

“We found that in pan-cancer analysis, PGA increased with age in PCAWG (ρ = 0.19, FDR-

adjusted LNR p = 0.022, Bonferroni-adjusted LNR p = 0.068) and AACR GENIE (ρ = 0.041, FDR-

adjusted LNR p = 0.050, Bonferroni-adjusted LNR p = 0.16) (Figure 1D) and estimate that PGA 

increases at 0.010% per year (Table 2). We also identified positive correlations in six TCGA, 

three PCAWG, and three AACR GENIE tumour-types. Again, prostate cancer showed 

consistent age-PGA associations, this time in all three datasets (TCGA: ρ = 0.17, FDR-adjusted 

LNR p = 6.7x10-5, Bonferroni-adjusted LNR p = 1.8x10-4; PCAWG: ρ = 0.27, FDR-adjusted LNR 

p = 3.0x10-3, Bonferroni-adjusted LNR p = 4.4x10-3; AACR GENIE: ρ = 0.11, FDR-adjusted LNR 

p = 0.050, Bonferroni-adjusted LNR p = 0.20, increase of 0.2%/year; Figure 1E). Age was 

associated with PGA in stomach cancer data in TCGA with an estimated increase of 0.19% per 

year (ρ = 0.11, FDR-adjusted LNR p = 0.011, Bonferroni-adjusted LNR p = 0.011) and AACR 

GENIE (ρ = 0.38, FDR-adjusted LNR p = 0.041, Bonferroni-adjusted LNR p = 0.083), and while 

other age-PGA correlations were not statistically significant across multiple datasets, they 

showed similar effect sizes (Supplementary Figure 1). Intriguingly, we detected negative age-

PGA associations in TCGA lung adenocarcinomas (Figure 1D), and correspondingly negative 

associations in PCAWG (ρ = -0.13) and AACR GENIE lung tumours (ρ = -0.099) (Supplementary 

Figure 1). Estimates for per year increase in PGA are given in Table 2 for the five tumour-

types with consistent evidence in at least two datasets.” 

  



Table 2: 

Tumour-type  
ΔMut/Mbp per year (95% 
CI) 

ΔPGA per year (95% 
CI) 

Breast Carcinoma 0.064 (0.029-0.95) - 

Glioblastoma 0.018 (-0.020-0.056) - 

Head and Neck Carcinoma 0.14 (0.071-0.21) - 

Clear Cell Renal Cell Carcinoma 0.018 (0.0084-0.027) - 

Lung Adenocarcinoma - -0.17 (-0.24--0.10) 

Hepatocellular Carcinoma 0.069 (0.032-0.11) - 

Ovarian Cancer - 0.61 (0.41-0.81) 

Prostate Cancer 0.12 (0.034-0.20) 0.2 (0.13-0.27) 

Sarcoma 0.044 (-0.0091-0.098) - 

Stomach Adenocarcinoma 0.31 (0.14-0.49) 0.19 (0.064-0.31) 

Thyroid Cancer 0.0082 (0.0066-0.0097) 0.067 (0.036-0.098) 

Pan-cancer 0.077 (0.049-0.10) 0.010 (-0.01-0.030) 
 

c. The correct interpretation of a FDR is “the rate of false discoveries”. FDR=0.05 translates into “5% of the 

reported findings are false”, which is not acceptable. Please review the complete manuscript highlighting 

associations with a Bonferroni-corrected p value (or other FWER) smaller than 0.05. Results with FDR<0.05 

can be provided as supplementary material, and associations with FDR<0.05 can be briefly described in 

the article as “potential associations”. This major correction would allow the authors to tighten the 

abstract, as indicated below.  

We would first like to continue to gently disagree the statement that “5% of reported findings are 

false... is not acceptable”. To the contrary, this is absolutely standard in this field and as we have 

noted is reflected in >100 papers from TCGA and ICGC projects. In fact, interpretation of our work 

in the context of the prior literature will actually be more challenging by applying statistical 

thresholds that are out of line with the convention in this field. 

We also note that our statistical threshold estimates are perhaps more stringent than the reviewer 

recognizes. All reported hits in our study now have met our threshold in three distinct statistical 

tests: a univariate continuous parametric test, a univariate discrete non-parametric test and a 

multivariate continuous parametric test. This is again more stringent than the standard threshold 

that is typically used in the majority of hypothesis-testing statistical analyses. We are reporting raw 

p-values to allow readers to interpret the unadjusted results, and Bonferroni-significant values are 

highlighted in the text as requested. 

We appreciate that our description of our statistical methods may have been unclear and have 

added description at Lines 93-98 

“We perform two rounds of multiple testing adjustment: once at the first univariate stage, 

and again at the second multivariate stage, both using the Benjamini-Hochberg false 

discovery rate (FDR) procedure. Our findings must pass stacked FDR thresholds of 10% on 

top of 10% after both stages of analysis, representing a stringent combined threshold of 

1%. These FDR-adjusted p-values are used throughout.” 



And in Methods at Lines 629-632: 

“FDR adjustment was performed for p-values for the age variable significance estimate 

and an FDR threshold of 10% was used to determine statistical significance. Statistically 

significant findings must therefore pass two rounds of FDR-adjustment, one at the 

univariate stage and the second at the multivariate stage. 

 

d. - The abstract is not very informative. 

Specific mutational signatures (which ones?) are associated with age, reflecting differences in exogenous 

and endogenous oncogenic processes such as a greater influence of tobacco use in the tumours of younger 

patients, but more activity of DNA damage repair signatures in those of older patients.  

We find that known cancer driver genes (which ones?) are mutated in age-associated frequencies, and 

these alter the transcriptome and predict for clinical outcomes (which ones?). 

Our abstract now incorporates many of these comments, although of course the word-count limits 

adding extensive detail in some areas. It now reads (with some of the key concerns raised by the 

reviewer emphasized. 

“Cancer is often called a disease of aging. There are numerous ways in which cancer 

epidemiology and behaviour change with the age of the patient. The molecular bases for 

these relationships remain largely underexplored. To characterize them, we analyzed age-

associations in the nuclear and mitochondrial somatic mutational landscape of 20,033 

tumours across 35 tumour-types. Age influences both the number of mutations in a 

tumour (0.077 mutations/Mbp per year) and their evolutionary timing. Specific 

mutational signatures are associated with age, reflecting differences in exogenous and 

endogenous oncogenic processes such as a greater influence of tobacco use in the 

tumours of younger patients, but more activity of DNA damage repair signatures in those 

of older patients. We find that known cancer driver genes such as CDKN2A and CREBBP 

are mutated in age-associated frequencies, and these alter the transcriptome and predict 

for clinical outcomes. These effects are most striking in brain cancers where alterations 

like SUFU loss and ATRX mutation are age-dependent prognostic biomarkers. Using three 

cancer datasets, we show that age shapes the somatic mutational landscape of cancer, 

with clinical implications.” 



REVIEWERS' COMMENTS 

Reviewer #1 (Remarks to the Author): 

I have re-reviewed this latest set of comments, and while I would really like to support this paper for 

publication (the topic is of high interest), the remaining issue is still unfortunately not adequately 

addressed. In summary: 

• The remaining issue relates to copy number analysis (original points 4 & 5). In the latest rebuttal 

the authors have implemented extra rounds of testing, i.e. performed 3 rounds of significance testing, 

to bring down the number of significant associations. But really the underlying issue with incorrect 

statistical methods has not been addressed, and hence there is a strong risk they have just filtered 

down the results so it’s less extreme, but still the results are incorrect. I agree with the authors that 

there is no standard approach for this type of analysis in the field, but I have never seen other papers 

where thousands of genes are reported as significant (as it was presented in the first draft of the 

paper). So reapplying methods from other papers is not really appropriate, if in your particular 

research question they generate thousands of potential false-positives. It’s good this number has been 

reduced, but still it’s not clear if the results are correct or not. Also, the level of validation looks very 

poor, e.g. in figure 3A, 20 significant events are identified in the discovery series, of which only 1 

validates (FANCA). Regarding the authors comments on GISTIC, it is not correct that confounders 

cannot be controlled for, please see methods in the previously highlighted paper 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136154/: “In order to identify brain metastatic 

drivers, we performed a case-control analysis on the frequencies of copy-number aberrations 

(Extended Data Fig. 5). Total copy-number segments produced by ABSOLUTE (v1.4)48 from the case 

and control cohorts were independently analyzed by GISTIC51. To account for confounding covariates, 

the segment profiles of control samples were multiplied by the matching weights (see “Control cohort 

and matching”).” So GISTIC could be implemented with covariates, using the above method and the 

discretized groups the authors have already defined – e.g. an analysis of young vs old individuals. I 

understand however that implementing a new method at this late stage is not likely what the authors 

want to do, and I feel bad that so much discussion has ensued on this work, but my comment are just 

purely out of concern for the correctness of the results. 

In terms of next steps, either i) the above GISTIC method should be implemented, which is probably 

the most appropriate state of the art method for this question, or ii) the copy number results could be 

scaled right back (e.g. take out fig.3, or put it all in supplementary, except results which validate). 

Reviewer #2 (Remarks to the Author): 

I have no further comments. 

Reviewer #4 (Remarks to the Author): 

No comments to authors



Reviewer #1 

I have re-reviewed this latest set of comments, and while I would really like to support this paper for 

publication (the topic is of high interest), the remaining issue is still unfortunately not adequately 

addressed. In summary: 

• The remaining issue relates to copy number analysis (original points 4 & 5). In the latest rebuttal the 

authors have implemented extra rounds of testing, i.e. performed 3 rounds of significance testing, to bring 

down the number of significant associations. But really the underlying issue with incorrect statistical 

methods has not been addressed, and hence there is a strong risk they have just filtered down the results 

so it’s less extreme, but still the results are incorrect. I agree with the authors that there is no standard 

approach for this type of analysis in the field, but I have never seen other papers where thousands of 

genes are reported as significant (as it was presented in the first draft of the paper). So reapplying 

methods from other papers is not really appropriate, if in your particular research question they generate 

thousands of potential false-positives. It’s good this number has been reduced, but still it’s not clear if the 

results are correct or not. 

Also, the level of validation looks very poor, e.g. in figure 3A, 20 significant events are identified in the 

discovery series, of which only 1 validates (FANCA). Regarding the authors comments on GISTIC, it is not 

correct that confounders cannot be controlled for, please see methods in the previously highlighted paper 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136154/: “In order to identify brain metastatic drivers, 

we performed a case-control analysis on the frequencies of copy-number aberrations (Extended Data Fig. 

5). Total copy-number segments produced by ABSOLUTE (v1.4)48 from the case and control cohorts were 

independently analyzed by GISTIC51. To account for confounding covariates, the segment profiles of 

control samples were multiplied by the matching weights (see “Control cohort and matching”).” So GISTIC 

could be implemented with covariates, using the above method and the discretized groups the authors 

have already defined – e.g. an analysis of young vs old individuals. I understand however that 

implementing a new method at this late stage is not likely what the authors want to do, and I feel bad 

that so much discussion has ensued on this work, but my comment are just purely out of concern for the 

correctness of the results.  

In terms of next steps, either i) the above GISTIC method should be implemented, which is probably the 

most appropriate state of the art method for this question, or ii) the copy number results could be scaled 

right back (e.g. take out fig.3, or put it all in supplementary, except results which validate). 

 

We thank the reviewer for their time and comments. We appreciate the reviewer’s concerns on 

our CNA analysis and believe the changes we have made with the reviewer’s guidance have 

strengthened the section. The core change from our first submission is moving from a genome-

wide CNA analysis to focus on CNA drivers. CNAs are large structural events affecting hundreds or 

thousands of genes simultaneously, leading to highly similar CNA profiles for adjacent genes: this 

contributed to the large number of results we presented in our first submission. As they 

recommend, we have significantly scaled-back the copy number results as suggested. We have 

reduced the text in the CNA section to focus on key findings, and modified Figure 3 to five panels 

from six. Our CNA-related supplementary materials are unchanged from the last submission and 

present the full results of all relevant analyses.   

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136154/


Shifting our analysis to driver CNAs allowed us to focus on those genes that are thought to be 

targeted by these CNAs. Driver CNAs confer a selective advantage to tumour cells, compared with 

the hundreds of passenger alterations that do not. However, we did not perform driver discovery 

in this study. Instead, we leveraged existing knowledge and databases compiled by the genomics 

community through the application of tools such as GISTIC2.0 to curate a list of driver losses and 

gains. We analysed this subset of driver CNAs using univariable and multivariable analysis to control 

for confounding variables, and performed multiple testing adjustment at each stage. Applying 

GISTIC2.0 in the manner described in https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136154/ 

may allow us to perform differential driver discovery by age, but we believe the methods in our 

study are comparable and equally valid. We have significantly scaled back our CNA section to focus 

only on the key findings. We have also condensed Figure 3, and it includes only findings that are 

significant in at least one dataset and supported by similar effect sizes in at least one other, as 

recommended. In addition, all CNA results are presented in Supplementary Data. We sincerely 

thank the reviewer for their thoughtful suggestions. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136154/
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