OMTN, Volume 27

Supplemental information

Circular RNA circSmoc1-2 regulates vascular

calcification by acting as a miR-874-3p

sponge in vascular smooth muscle cells

Juhee Ryu, Nakwon Choe, Duk-Hwa Kwon, Sera Shin, Yeong-Hwan Lim, Gwangho Yoon, Ji Hye Kim, Hyung Seok Kim, In-Kyu Lee, Youngkeun Ahn, Woo Jin Park, Hyun Kook, and Young-Kook Kim

Supplementary Table 1.

Expression of circSmoc1-2 in various cell types

circBase was searched to find the expression of circSmoc1-2 in other cell types.

Organism	Position	circRNA	Samples	Best transcript	Gene symbol	circRNA
		ID				study
Human	chr14:	hsa_circ_	Hepg2, A549,	NM_001034852	SMOC1	Rybak2015,
	70442431-	0032358	diencephalon,			Salzman2013
	70461197		cerebellum,			
			occipital_lobe,			
			frontal_cortex,			
			parietal_lobe,			
			temporal_lobe			
Mouse	chr12:	mmu_circ_	forebrain,	ENSMUST0000	Smoc1	Rybak2015
	82236762-	0004229	hindbrain,	0110347		
	82253740		PN_D07,			
			PN_D21			

Supplementary Table 2.

Protein coding potential of circSmoc1-2

circRNADb was utilized to assess the protein-coding potential of circSmoc1-2. Abesence of open reading frame or R score<1.6 denotes poor protein-coding potential.

circRNADb				
Circ ID	hsa_circ_21776 (Transcipt ID: NM_001034582)			
Location (hg19)	chr14 : 70442431-70461197			
Gene Symbol	Smoc1			
	Parameter Index			
IRES Elements	Position (startend)	R Score	With Pseudoknot (Y/N)	
	34170	1.608008	Y	
	21172	1.364798	Y	
Open Reading Frame	None (Protein length less than 100aa)			
Protein Features	The possibility of encoding protein is relatively low			

Supplementary Table 3.

Name of Primer	Sequence $(5' \rightarrow 3')$		
circSmoc1-2_rat_Fwd	CTG CAC GGA CGA GCC ACT GAT G		
circSmoc1-2_rat_Rev	CAC AGC CCC TAC CTT ATG GAT TAA GC		
circSmoc1-2_mouse_Fwd	CTG CAC GGA AGA ACC ACT GAT G		
circSmoc1-2_mouse_Rev	CAC AGC CCC CAC CTT ATG GAT TA		
circSmoc1-2_human_Fwd	CTG CAC AGA AGA GCC ACT GAT G		
circSmoc1-2_human_Rev	CAC AGC CCC AAC TCT ATG GAT TAA AC		
Smoc1_mRNA_rat_Fwd	GTG CAG TGT CAT ACG TAC AC		
Smoc1_mRNA_rat_Rev	CTG AAT TTC TTA CAT TGG TGT TAT TC		
Adam19_rat_Fwd	GGC AAA GGC TTG AAT GGC AA		
Adam19_rat_Rev	ATA GCA CCA GGA CTG CCA AC		
Adam19_mouse_Fwd	AGG ACT GGG CCC TTC AGT TT		
Adam19_mouse_Rev	AGC CAC CAG GTA AAG CTC CA		
Adam19_human_Fwd	ATG GGC CAC AAC TTT GGC AT		
Adam19_human_Rev	ATG ATG CAC CCA CCA TCA GC		
Runx2_mouse_Fwd	TGG GAC TGT GGT TAC CGT CA		
Runx2_mouse_Rev	CTC CGG CCC ACA AAT CTC AG		
Alpl_mouse_Fwd	CAA CCT GAC TGA CCC TTC GC		
Alpl_mouse_Rev	CAG AGC CTG CTT GGC CTT AC		
Pre-Gapdh_ rat_Fwd	CCA TGG TGC AGC GAT GCT TT		
Pre-Gapdh_ rat_Rev	ACG GCC AAA TCT GAG GCA AG		
Gapdh_ rat_Fwd	GTA TCG GAC GCC TGG TTA C		
Gapdh_ rat_Rev	CTT GCC GTG GGT AGA GTC AT		
ActinB_mouse_Fwd	CTG TAT TCC CCT CCA TCG TG		
ActinB_ mouse_Rev	AGC TCA TTG TAG AAG GTG TGG		

PCR primer The PCR primer sequences for circRNA and mRNA.

Cloning primer The PCR primer sequences for cloning to construct circSmoc1-2 overexpression vector. Uppercase letters denote nucleotide sequence of circSmoc1-2, while lowercase letters indicate vector sequence and enzyme sites. Restriction enzyme sites are underlined.

Name of Primer	Sequence $(5' \rightarrow 3')$
Smoc1-2_rat_Fwd	tttatgcagaaattaattaa GTGCAGTGTCATACGTAC
Smoc1-2_rat_Rev	gaatacttacgctccgcgg CTGAATTTCTTACATTGG
Smoc1-2_human_Fwd	tttatgcagaaattaattaa GTGCAGTGCCATACTTACAC
Smoc1-2_human_Rev	gaatacttacgctccgcgg CTGAATTTCTTATGTTGGTGTTGTTC

siRNA sequence The siRNA sequences to inhibit circSmoc1-2 and Adam19, respectively.

Name of siRNA	Sequence $(5' \rightarrow 3')$
sicircSmoc1-2_1_rat_sense	AAAUUCAGGUGCAGUGUCUUU
sicircSmoc1-2_1_rat_antisense	UGACACUGCACCUGAAUUUUU
sicircSmoc1-2_2_rat_sense	AGAAAUUCAGGUGCAGUUUUU
sicircSmoc1-2_2_rat_antisense	ACACUGCACCUGAAUUUCUUU
sicircSmoc1-2_1_human_sense	AAAUUCAGGUGCAGUGCCUUU
sicircSmoc1-2_1_human_antisense	UGGCACUGCACCUGAAUUUUU
siAdam19_ 1_human_sense	GGAGGGAGCUGGACAGGUAUU
siAdam19_ 1_human_antisense	UACCUGUCCAGCUCCCUU

B Ca²⁺ content after inhibiting Adam19

C Verification of circSmoc1-2/miR-874-3p/Adam19 axis in CVD model

Supplementary Figure 1. Verification of circSmoc1-2/miR-874-3p/Adam19 regulatory axis in human coronary artery vascular smooth muscle cells (HCASMCs) and vascular calcification (VC) *in vivo* model. (A) Calcium concentrations (mg Ca/mg protein) after addition of miR-874-3p in HCASMCs (n=3) (B) Calcium concentration (mg Ca/mg protein) after Adam19 inhibition in HCASMCs (n=3). Cells were treated with 2 mM Pi and then cultured for an additional three days post transfection. NC indicates negative control siRNA, while MV means mock Laccase2 vector without insert. (C) Expression levels of calcification

markers and circSmoc1-2/miR-874-3p/Adam19 axis in an VC *in vivo* model (n=3). High fat/calcium diet was fed to *ApoE* KO mice for 8 weeks to induce VC. Then total RNA was isolated from mouse aorta and was used for quantitative real time PCR. Calcification markers, Runx2 and Alpl, were upregulated in *ApoE* KO mice with high fat/calcium diet. CircSmoc1-2 and Adam19 was downregulated, while miR-874-3p was upregulated in the *in vivo* VC model. Expression of calcification markers, circSmoc1-2, and Adam19 were normalized against β -actin, while expression of miR-874-3p was normalized against U6. Data represent the mean \pm SEM. Statistical significance was determined using the Student's t-test. *: $p \leq 0.05$, **: $p \leq 0.01$.

Supplementary Figure 2. Confirmation of protein levels of Adam19, smooth muscle actin, and collagen marker after inhibition of circSmoc1-2. A10 cells were transfected with negative control siRNA or sicircSmoc1-2_1. Then cells were treated with 2 mM Pi and cultured for an additional three days post transfection. Alpl, a calcification marker, was evaluated to assess VC induction. Col1a1 was used as a collagen marker. Protein expression levels were normalized against β -tubulin (n=3). Data represent the mean ± SEM. Statistical significance was determined using the Student's t-test. **: $p \le 0.01$.

B Verification of circSmoc1-2 in human coronary artery smooth muscle cells

	and the second se	
		200 6.0
		-000 00
		(10)(1) bb
		- 21 11 1 111
		4001
		100 66

Supplementary Figure 3. Conservation of circSmoc1-2 in humans and mice (A) The circSmoc1-2 locus in the human, mouse, and rat genomes is depicted in a screenshot modified from the UCSC genome browser (http://genome.ucsc.edu/) (B) Confirmation of circSmoc1-2 expression using RT-PCR in human coronary artery smooth muscle cells. The red asterisk (*) indicates the expected size for circSmoc1-2, which was verified by Sanger sequencing.