### **Supplementary Methods**

### Donor Selection

When both parents (and eventually a HLA-haploidentical sibling > 18 year-old) were eligible for donation, the donor was chosen according to CMV and adenovirus serostatus (i.e., privileging donors with positive serology), as well as to immunological criteria [including, in hierarchical order: i) NK alloreactivity, evaluated according to the killer immunoglobulin-like receptor (KIR)/KIR-Ligand model; ii) KIR B haplotype, iii) higher B-content score and iv) size of NK alloreactive subset].<sup>1-3</sup>

## Donor mobilization and graft manipulation.

Donor hematopoietic progenitors were mobilized through subcutaneous administration of 10-12  $\mu$ g/kg/day granulocyte colony-stimulating factor in 2-3 divided doses from day -5 until day -1 (i.e., the day of leukapheresis). Plerixafor (Mozobil®, Genzyme) was given at a dose of 0.24 mg/kg in case of failure to achieve the cutoff of ≥40 CD34+ cells/ $\mu$ L and/or with a predicted apheresis yield ≤12x10<sup>6</sup> CD34+ cells/kg of recipient's body weight.<sup>4</sup> Apheresis was performed with the Spectra Optia® Cell Separator (Terumo BCT, Leuven, Belgium). Graft manipulation procedures were performed with the fully automated CliniMACS<sup>®</sup> device (Miltenyi Biotec, Bergisch Gladbach, Germany) as already described.<sup>5</sup> Clinical grade reagents, disposable kits, and instrumentation were also from Miltenyi Biotec.

## Supportive therapy

All patients received antiviral prophylaxis with acyclovir, antifungal prophylaxis with agents active on both yeast and molds (i.e., liposomal amphotericin B or caspofungin) and prophylaxis against Pneumocystis jirovecii pneumonia with cotrimoxazole. G-CSF was not routinely used; it was administered during aplasia only in case of life-threatening bacterial or fungal infections.

## AAUC<sub>180</sub>

Time-averaged area-under-the-curve for the first 180 days ( $AAUC_{180}$ ) was used to better report the overall exposure of patients to the viral burden over time and the time of positivity (thus indirectly reflecting the burden of medical care required).  $AAUC_{180}$  (expressed as log10 copies\*week/ml whole blood) was calculated for each patient with viremia > 500 (2.69 log10) copies/ml whole blood and divided per the number of weeks at risk (i.e., 26 weeks or time to last follow-up or death).

#### Statistical analysis

Engraftment was defined as time from HSCT to the first of 3 consecutive days with an absolute neutrophil count  $\ge 0.5 \times 10^9$ /L and reported as median and range; platelet recovery was defined as the first of 7 consecutive days with an unsupported platelet count  $\ge 20 \times 10^9$ /L, and reported as median and range.

Competing risks for calculation of cumulative incidences were as follows: i) for GF, death without engraftment; for GVHD (acute and chronic), GF and death without GVHD.

### References

1. Moretta L, Locatelli F, Pende D, Marcenaro E, Mingari MC, Moretta A. Killer Ig-like receptormediated control of natural killer cell alloreactivity in haploidentical hematopoietic stem cell transplantation. *Blood*. 2011;117(3):764-771.

2. Pende D, Marcenaro S, Falco M, et al. Anti-leukemia activity of alloreactive NK cells in KIR ligandmismatched haploidentical HSCT for pediatric patients: evaluation of the functional role of activating KIR and redefinition of inhibitory KIR specificity. *Blood*. 2009;113(13):3119-3129.

3. Meazza R, Falco M, Loiacono F, et al. Phenotypic and Functional Characterization of NK Cells in alphabetaT-Cell and B-Cell Depleted Haplo-HSCT to Cure Pediatric Patients with Acute Leukemia. *Cancers (Basel)*. 2020;12(8).

4. Merli P, Biagini S, Girolami E, et al. A new BSA-based Threshold Predicts Optimal PBSC Collection in T-cell Depleted HLA-haploidentical Stem Cell Transplantation. *Bone Marrow Transplantation*. 2020;55(SUPPL 1):681-681.

5. Li Pira G, Malaspina D, Girolami E, et al. Selective Depletion of alphabeta T Cells and B Cells for Human Leukocyte Antigen-Haploidentical Hematopoietic Stem Cell Transplantation. A Three-Year Follow-Up of Procedure Efficiency. *Biol Blood Marrow Transplant*. 2016;22(11):2056-2064.

# Supplementary Table.

# Supplementary Table 1. Multivariable analysis on factors influencing GF.

| Variable             | Hazard ratio | Lower 95%CI | Upper 95%Cl | p-value |
|----------------------|--------------|-------------|-------------|---------|
| CD34+/kg>20x10E6     | 4.1620       | 0.09699     | 178.6000    | 0.4600  |
| Gender               | 0.7909       | 0.28980     | 2.1590      | 0.6500  |
| Gender mismatch      | 0.2227       | 0.05121     | 0.9682      | 0.0450  |
| Infections pre-HSCT  | 2.76500      | 0.68990     | 11.080      | 0.1500  |
| Disease at high-risk |              |             |             |         |
| for GF               | 5.6320       | 1.91900     | 16.5300     | 0.0017  |

# Supplementary Table 2. Characteristics of second HSCT.

| Patients                                        | (n = 18)            | %    |
|-------------------------------------------------|---------------------|------|
| Sex                                             |                     |      |
| Male                                            | 11                  | 61   |
| Female                                          | 7                   | 39   |
|                                                 |                     |      |
| Donor characteristics                           |                     |      |
| Age (years)*, median (range)                    | 40.5 (24-52)        |      |
| Type of donor                                   |                     |      |
| Mother                                          | 13                  | 72   |
| Father                                          | 3                   | 17   |
| mismatched UCBT                                 | 2                   | 11   |
|                                                 |                     |      |
| Conditioning regimen used#                      |                     |      |
| Cyclophosphamide+Fludarabine (±TBI§)            | 10                  | 55.5 |
| Cytarabine+Fludarabine                          | 5                   | 27.5 |
| Treosulfan+Fludarabine                          | 3                   | 17   |
|                                                 |                     |      |
| Cell dose infused*, median (range)              |                     |      |
| CD34+ cells × 10 <sup>6</sup> /kg               | 22.1 (15.8-37.4)    |      |
| $\alpha\beta$ + T cells × 10 <sup>6</sup> /kg   | 0.022 (0.002-0.066) |      |
| $\gamma \delta$ + T cells × 10 <sup>6</sup> /kg | 12.8 (4.0-38.9)     |      |
| NK cells × 10 <sup>6</sup> /kg                  | 44.2 (16.2-116.5)   |      |
| CD20+ cells × 10 <sup>6</sup> /kg               | 0.035 (0.003-0.12)  |      |
|                                                 |                     |      |
| Engraftment                                     | 16                  | 89   |
| Time to engraftment (days), median (range)      | 14 (11-21)          |      |
| Infections                                      |                     |      |
| CMV                                             | 6                   | 33.5 |
| ADV                                             | 5                   | 27   |

| 1                     | 5.5                                       |
|-----------------------|-------------------------------------------|
| 1                     | 5.5                                       |
|                       |                                           |
| 3(/16)                | 18.7                                      |
|                       |                                           |
|                       |                                           |
| b 200 mg/sm on day -1 |                                           |
|                       |                                           |
|                       | 1<br>1<br>3(/16)<br>b 200 mg/sm on day -1 |

#### **Figure legends**

**Supplementary Figure 1. Engraftment. A.** Kinetics of recovery of neutrophils (green line) and platelets (purple line). **B.** Cumulative incidence of platelet recovery for patients who received a dose of CD34+ cells in the first quartile (i.e.,  $8.5-18 \times 10^6$ /kg; blue line) or in the 2<sup>nd</sup>-4<sup>th</sup> quartiles.

**Supplementary Figure 2. Graft failure.** Cumulative incidence of GF according to the presence (red line) or absence (blue line) of gender mismatch.

**Supplementary Figure 3. Chimerism analysis. A.** Pie chart representing chimerism of patients at 1 year after HSCT. **B.** Details on patients with mixed chimerism (percentage of donor chimerism is reported).

Supplementary Figure 4. Transplant-related mortality. TRM according to the infectious state at time of transplant. "Recent" infection was defined as having an infection within the month preceding TCR $\alpha\beta$ +/CD19-depleted haploHSCT. Recent/active infection, red line; no infection at time of HSCT, blue line.

**Supplementary Figure 5. Survival: Subgroup analysis on patients with PIDs.** OS according to the type of primary immunodeficiency (i.e., SCID patients versus non-SCID patients).

Supplementary Figure 1



Supplementary Figure 2



Supplementary Figure 3



### Supplementary Figure 4



Supplementary Figure 5

