YMTHE, Volume 30

Supplemental Information

Targeted replacement of full-length CFTR in

human airway stem cells by CRISPR-Cas9 for

pan-mutation correction in the endogenous locus

Sriram Vaidyanathan, Ron Baik, Lu Chen, Dawn T. Bravo, Carlos J. Suarez, Shayda M. Abazari, Ameen A. Salahudeen, Amanda M. Dudek, Christopher A. Teran, Timothy H. Davis, Ciaran M. Lee, Gang Bao, Scott H. Randell, Steven E. Artandi, Jeffrey J. Wine, Calvin J. Kuo, Tushar J. Desai, Jayakar V. Nayak, Zachary M. Sellers, and Matthew H. Porteus

Supplementary Materials:

Table S1: Predicted off target sites and the associated genes. Cas9 can induce double stranded breaks even if there are a few mismatches exist between the target genomic DNA and sgRNA. As a result, undesired insertions and deletions at off-target (OT) sites may occur. The potential off-target sites are presented along with the genes closest to the off-target sites.

	Sequence Description of the nearest genes							
On	ТТССАСАСССАССТСТССАТСС	cystic fibrosis transmembrane conductance						
Target	IICCAGAGGCGACCICIGCAIGG	regulator						
OT1	C TCCAG GA GCGACCTCTGCATGG	long intergenic non-protein coding RNA 293						
OT2	T C CC T G G GGCGACCTCTGCAGGG	long intergenic non-protein coding RNA 242						
OT3	TT T CAGAGGC C ACCTCTGCATGG	sideroflexin 1						
OT4	G TC A AGA T G T GACCTCTGCATGG	PR/SET domain 7						
OT5	G TC A AGA T G T GACCTCTGCATGG	PR/SET domain 9						
OT6	G T G CAGAGGCG C CCTCTGCAAAG	uncharacterized LOC100506585						
OT7	G T TA AGAGGC T ACCTCTGCAGGG	lysosomal protein transmembrane 5						
OT8	TTCC GC AGGC A ACCTCTGCATGG	sialic acid binding Ig like lectin 16						
OT9	CA CCAGA C GC C ACCTCTGCAAGG	uncharacterized LOC101929217						
OT10	A T T CAGA T GC C ACCTCTGCAGGG	kazrin, periplakin interacting protein						
OT11	CA CCAGAG C C C ACCTCTGCAAGG	single-minded family bHLH transcription factor 2						
OT12	TTCCAG CA GC C ACCTCTGCAAGG	NADPH oxidase 5						
OT13	GC CCAGAGGCGA G CTCTGCACAG	LIM homeobox 3						
OT14	C TCCAG T G C CG T CCTCTGCAGGG	smoothened, frizzled class receptor						
OT15	G TCCAG T GG TC ACCTCTGCACGG	free fatty acid receptor 2						
OT16	TT G CAGAGG A G C CCTCTGCACGG	microRNA 4478						
OT17	A TC T AGAGG A G G CCTCTGCAGGG	zinc finger protein 664						
OT18	C TCCAGAGG A GA T CTCTGCAGAG	p21 protein Cdc42/Rac)-activated kinase 2 pseudogene						
OT19	ATCCAAAGGAGAGCTCTGCAAGG	long intergenic non-protein coding RNA 1037						
OT20	C TCCAGAGGCG GG CTCTGCAGAG	uncoupling protein 3						
OT21	AG CCAGAGGC C A G CTCTGCAGGG	transglutaminase 4						
OT22	C T G CAGAGGC C AGCTCTGCATGG	uncharacterized LOC101927549						
OT23	C TCCAGAGG G GACC C CTGCAGAG	sushi domain containing 2						
OT24	T C CCAGAGGC C ACC A CTGCAGGG	ALG12, alpha-1,6-mannosyltransferase						
OT25	CTGCAGAGGCAACCACTGCACGG	suppressor of cytokine signaling 1						

OT26	A TCCAGAGGC TT C A TCTGCATGG	POC1 centriolar protein A					
OT27	GTCCAGGGGCAACCCCTGCAGGG	uncharacterized LOC100507548					
OT28	AA CCAGAGGCG T CC A CTGCAGGG	long intergenic non-protein coding RNA 2133					
OT29	C TCCAGA T GCG G CC C CTGCAAGG	distal-less homeobox 4					
OT30	TTCCAGAGGC A A GG TCTGCAGGG	microRNA 548z					
OT31	G TCCAGAGG T G T CC C CTGCAGGG	teashirt zinc finger homeobox 3					
OT32	CTCCAGAGGCAGCCCCTGCAGGG	glutamate metabotropic receptor 4					
OT33	TTCCAGAGG GC ACCT T TGCAAGG	anaphase promoting complex subunit 4					
OT34	C TCCAGAGGC TG CCT T TGCAAGG	CCHC-type zinc finger nucleic acid binding protein					
ОТ35	C TCCAGAGGC C AC A T T TGCAGGG	echinoderm microtubule associated protein like 4					
OT36	C TCCAGAGGC TT CCTC A GCAGGG	long intergenic non-protein coding RNA 523					
OT37	CTCCAGGGGAGACCTCTTCAGGG	uncharacterized LOC399715					
OT38	G TCCA C AGGCG G CCTCTTCATGG	kazrin, periplakin interacting protein					
OT39	G TCCAGAGGC CC CCTCT C CAGGG	adenylate cyclase 2					
ОТ40	G TCCAGAGG T GACCTGT C CAAGG	immunoglobulin-like and fibronectin type III domain containing 1					
OT41	CTCCAGAGGCTACATCTGGAGGG	family with sequence similarity 9 member C					
OT42	TTCCAGAGG GA ACCTCTGC C AGG	microRNA 149					
OT43	A TCC G GAGGCGACC A CTGC C TGG	G protein-coupled receptor 52					
OT44	TTCCAGAGG T GACCTCTTAATGG	dihydropyrimidine dehydrogenase					
OT45	C TCCAGAGGCG C CCTCT AG AGGG	cholecystokinin B receptor					
OT46	A TCCAGAGG T GACCTCT C C A GG	proline dehydrogenase 1					
OT47	GTCCAGAGCCGACCTCTGAGGGG	C5orf66 antisense RNA 2					

Table S2: Mutations in 130 genes associated with solid tumors were assessed using the STAMP panel. The table lists mutations observed with a variable allele frequency greater (VAF) than 5%. The patients were heterozygous for the listed mutations and the VAF was same between control and edited cells that were FACS enriched.

								Edited and
							Control	oprichod
								enriched
Cell	Patient ID	Chu	Desition	Cara	CDS	AA		
type	(Table 1)	Cnr	Position	Gene	Change	Change	VAF%	VAF%
UABC	2	chr16	2112558	TSC2	c.1318G>A	p.G440S	48	45.18
		chr3	89259122	EPHA3	c.266G>A	p.R89K	51.6	50.07
HBEC	7	chr1	16464805	EPHA2	c.944G>A	p.R315Q	48.92	48.84
		chr7	55249005	EGFR	c.2303G>A	p.S768N	46.7	48.36
HBEC	9	chr22	23634790	BCR	2845G>A	V949I	50.67	49.47
		chr17	37883638	ERBB2	3250G>T	D1084Y	48.42	49.46

Fig. S1. Characterization of edited and enriched UABCs. (**A**) HR templates of different homology arm lengths coding for GFP were inserted into the *CFTR* locus of UABCs. Percentage of GFP⁺ UABCs was ~10% for HAs under 100 bp and reached ~20% for 150 bp HA and did not increase

further with a longer HA of 400 bp. (B) The junction spanning the two HR templates corresponding to the two halves of the CFTR cDNA was amplified using PCR and analyzed by Sanger sequencing. The genomic sequence shows the presence of the sequence right up to the end of the first half of the CFTR cDNA highlighted in red and the absence of the sgRNA sequence and the stuffer sequence present in the HR template. (C) Genomic sequence from the same donor shows the seamless integration of the second half of the CFTR cDNA with the first half. (D) Allelic correction rates of the corrected UABCs were compared with the percent of cells that were tCD19⁺. Each symbol represents cells from a separate donor. The error bars represent the technical variation observed in duplicate runs of the ddPCR assay. The percentage of modified alleles is ~50% of the percentage of tCD19⁺ cells suggesting monoallelic integration of the CFTR cDNA. (E) UABCs and HBECs from donors with CF were edited to insert the CFTR cDNA and the tCD19 expression cassette. 4 \pm 2% UABCs were tCD19⁺ and 10 \pm 5% HBECs were tCD19⁺. (F) Number of UBACs at each step in the correction process. Starting from 0.5-1 million cells, UABCs were edited and expanded to obtain 10-40 million for FACS enrichment. Only 3-5 million cells out of the 10-40 million cells were enriched using FACS and we obtained ~1 million UABCs one passage after FACS enrichment. The estimated yield that could have been obtained if all the edited cells were enriched using FACS and then expanded are also provided. These columns are labeled as adjusted FACS and adjusted expansion after FACS.

Fig. S2. Sequential insertion of the *CFTR* cDNA by two homologous recombination events. (A) The Cas9 RNP/sgRNA complex first induces a break in exon 1. The first HR template contains left and right homology arms (HA) of 400 bp length that resemble the 5' UTR region of the CFTR locus and part of exon 1 and intron 1 respectively. The first HR template also contains a stuffer sequence that will act as a HA for the second HR event. After the first HR event, a modified locus will consist of the first half of the *CFTR* cDNA and stuffer sequence. The second HR template contains the second half of the *CFTR* cDNA followed by a BGH poly A tail and a tCD19

expression cassette consisting of the PGK promoter, tCD19 and SV40 polyA tail. The LHA and RHA consist of the last 400 bp of the first HR template and the stuffer respectively. (**B**) A fully corrected allele will contain the full *CFTR* cDNA, a BGH polyA, followed by a PGK promoter, truncated CD19 and an SV40 poly A tail. It is likely most of the enriched cells contain this modification in only one allele. The other allele is likely to contain other possible outcomes including the first half of the insert (with or without INDELs in the end), INDELs in the beginning of Exon 1 (no HR) or an unmodified allele. The sgRNA was screened to induce INDELs in over 90% of alleles in the absence of an HR template. It is therefore likely that the presence of an unmodified locus in the second allele is extremely rare. INDELs are indicated by three black lines in the figure.

Fig. S3. Off-target activity of the sgRNA. (**A**) The sgRNA targeting the exon 1 of *CFTR* locus shows OT activity in one locus (OT-3) when airway basal stem cells are edited using wild-type (WT) Cas9. The use of high-fidelity (HiFi) Cas9 reduced the OT activity significantly in OT-3.

The percent of alleles with INDELs was reduced from ~50% when using WT-Cas9 to ~1% when using HiFi Cas9 while the percent INDELs in the on-target site remained the same (>85%).