Supporting Information for the Paper Entitled

N=N Bond Cleavage by a Tantalum Hydride Complex: Mechanistic Insights and Reactivity

Elena Álvarez-Ruiz,† Jorge J. Carbó,*‡ Manuel Gómez,† Cristina Hernández-Prieto,† Alberto Hernán-Gómez,† Avelino Martín,† Miguel Mena,† Josep M. Ricart,‡ Antoni Salom-Català‡ and Cristina Santamaría*†.

†Departamento de Química Orgánica y Química Inorgánica. Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, Campus Universitario, E-28805 Alcalá de Henares, Madrid, Spain.

‡Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Campus Sescelades, C/ Marcel.lí Domingo, s/n, 43007 Tarragona (Spain)

Table of Contents

Experimental Section

 General procedures for the synthesis of the bromo derivatives [Ta(η⁵-C₅HMe₄)Br₄] and 1Br-11Br.....S3-S7

Crystallographic Data

•	Table S1 : Experimental data for the X-ray diffraction studies on $[Ta(\eta^5-C_5HMe_4)Br_4]$
	1, 1Br, 2, 2Br, 3Br, 4, 7, 8Br, and 9S8-S9
•	Figure S1: Molecular structure of compound $[Ta(\eta^5-C_5HMe_4)Br_4]$ with selected bond
	distances and anglesS10
•	Figure S2: Molecular structure of compound 1Br
•	Figure S3: Molecular structure of compound 2Br
•	Figure S4: Molecular structure of compound 3Br
•	Figure S5: Molecular structure of compound 4 with selected bond distances and angle
•	Figure S6: Molecular structure of compound 8Br

NMR Spectroscopy

•	NMR	Spectra	for	complexes	1-11Br	(including	bromo	derivatives)	(Figure	S7-
	S60)								S13-	·S39

Theoretical Studies

•	Table S2: X-Ray diffraction vs Calculated geometrical parameters for complex 1 and 2
	and their analogous with Br, 1Br, 2Br and 3Br
•	Figure S61. Frontier Molecular Orbitals of complexes 1, 2 and 3; and HOMO-LUMO
	energy gaps
•	Figure S62. Alternative N=N double bond breaking mechanism for the transformation
	of 1 into 4
•	Figure S63. DFT structures of reactants and product 4
•	Figure S64. DFT structures of different reaction intermediates of the mechanism shown
	in Figure 5

•	Figure S65.	DFT	structures	of the	transition	states	of the	mechanism	shown	in Figure
	5		••••••				•••••		•••••	S43

Synthesis of [Ta(η^5 -CsHMe4)Br4]. To a toluene (20 ml) suspension of TaBr₅ (2.00 g, 3.44 mmol) placed into a Carius tube fitted with a Young's valve was added dropwise C₅HMe4SiMe₃ (670 mg, 3.44 mmol) solved in 10 ml of toluene. The mixture was stirred at 100 °C overnight and then evaporated to dryness. The residue was washed with two portions of hexane (40 mL) and dried in vacuo to give [Ta(η^5 -C₅HMe₄)Br₄] as a red solid (Yield: 1.97 g, 92 %). IR (KBr, cm⁻¹): $\bar{\nu} = 3081$ (m, CH arom.), 2994 (w, CH aliph.), 2965 (w, CH aliph.), 2915 (w, CH aliph.), 1767 (w, CC), 1568 (m, CC), 1498 (m, CC), 1472 (m, CC), 1449 (m, CC), 1423 (m, CC), 1378 (s), 1016 (s), 883 (s), 601 (w), 429 (w) ¹H NMR (300 MHz, C₆D₆): $\delta = 5.64$ (s, 1H, C₅HMe₄), 2.36, 2.12 (s, 6H, C₅HMe₄). ¹³C{¹H} NMR (75 MHz, C₆D₆): $\delta = 133.8$, 132.9 (*C*-Me arom.), 121.5 (*CH*_{arom}), 17.7, 14.9 (C₅HMe₄). Elemental analysis (%) calcd. for C₉H₁₃Br₄Ta (621.76): C, 17.38; H, 2.11; found: C, 17.30; H, 2.18.

General procedure for the synthesis of $[(TaCp^RBr_2)_2(\mu-H)_2]$ (Cp^R = η^5 -C₅Mes, 1Br; Cp^R = η^5 -C₅H4SiMe3, 2Br; Cp^R = η^5 -C₅HMe4 3Br). A toluene (40-45 mL) solution of $[TaCp^RX_4]$ (Cp^R = η^5 -C₅Me₅, η^5 -C₅H₄SiMe₃, η^5 -C₅HMe₄) and SiH₃Ph was placed into a Carius tube fitted with a Young's valve, and under rigorously anhydrous conditions, the reaction mixture was stirred and heated. The resulting dark blue/green solutions were then filtered, and the solvent was removed under reduced pressure to afford microcrystalline dark blue/green solids. Suitable crystals for single crystal x-ray diffraction were obtained by cooling of the reaction mixture to room temperature.

Synthesis of [{Ta(η^5 -C₅Me₅)Br₂}₂(μ -H)₂] (1Br). The thermal treatment at 90 °C for 48 hours of SiH₃Ph (0.340 g, 3.14 mmol) with [Ta(η^5 -C₅Me₅)Br₄] (1.000 g, 1.57 mmol) in toluene afforded the complex 1Br as a microcrystalline dark green solid (Yield: 0.71 g, 95 %). IR (KBr, cm⁻¹): $\bar{\nu} = 2985$ (m, CH aliph), 2962 (m, CH aliph), 2907 (s, CH aliph), 1590 (s, Ta-H), 1483 (s, CC), 1426 (m, CC), 1380 (s, CC), 1023 (s), 804 (w), 733 (m), 696 (m), 421 (w). ¹H NMR (300 MHz, C₆D₆): $\delta = 11.24$ (s, 2H, Ta-*H*), 2.10 (s, 30H, C₅Me₅). ¹³C{¹H} NMR (75 MHz, C₆D₆): $\delta = 122.6$ (C₅Me₅), 14.6 (C₅Me₅). Elemental analysis (%) calcd. for C₂₀Br₄H₃₂Ta₂ (953.98): C, 25.18; H, 3.38; found: C, 24.98; H, 3.30.

[{Ta(η^5 -C₅H₄SiMe₃)Br₂}₂(μ -H)₂] (2Br). The thermal treatment at 70 °C for 48 hours of SiH₃Ph (0.237 g, 2.194 mmol) with [Ta(η^5 -C₅H₄SiMe₃)Br₄] (0.700 g, 1.097 mmol) in toluene afforded the complex 2Br as a microcrystalline dark green solid (Yield: 0.430 g, 82 %). IR

(KBr, cm⁻¹): v = 3102 (w, CH ar) 2954 (m, CH aliph), 2896 (w, CH aliph), 1509 (w, Ta-H), 1397 (m, CC), 1250 (s, SiMe₃), 1169 (m), 904 (m), 838 (vs, SiMe₃), 760 (m, CH ar). ¹H-NMR (300 MHz, C₆D₆): $\delta = 10.79$ (s, 2H, Ta-*H*), 0.24 (s, 18H, C₅H₄Si*Me*₃), not observed (C₅H₄SiMe₃). ¹³C{¹H}-NMR (75 MHz, C₆D₆): $\delta = 0.32$ (C₅H₄Si*Me*₃), not observed (C₅H₄SiMe₃). Elemental analysis (%) calcd. for C₁₆Br₄H₂₈Si₂Ta₂ (958.08): C, 20.06; H, 2.95; found: C, 19.80; H, 2.91.

Synthesis of [{Ta(η^5 -C₅HMe₄)Br₂}₂(μ -H)₂] (3Br). The thermal treatment at 100 °C for 24 hours of SiH₃Ph (0.348 g, 3.217 mmol) with [Ta(η^5 -C₅HMe₄)Br₄] (1.000 g, 1.608 mmol) in toluene afforded the complex **3Br** (0.700 g, 94 %) as a microcrystalline dark solid. IR (KBr, cm⁻¹): $\bar{\nu} = 2984$ (w, CH aliph.), 2961 (w, CH aliph.), 2915 (m, CH aliph.), 2855 (w, CH aliph.), 1513 (s, Ta-H), 1480 (s, CC), 1380 (s, CC), 1319 (w, CC), 1149 (w), 1021 (m), 855 (m), 802 (m). ¹H NMR (300 MHz, C₆D₆): $\delta = 10.97$ (s, 2H, Ta-H), 7.42 (s, 2H, C₅HMe₄), 2.16 (bs, 6H, C₅HMe₄), 1.79 (s, 6H, C₅HMe₄). ¹³C{¹H} NMR (75 MHz, C₆D₆): $\delta = 126.3$ (CH), not detected, 98.7 (C₅HMe₄), 14.5 (bs, C₅HMe₄), 12.3 (C₅HMe₄). Elemental analysis (%) calcd. for C₁₈H₂₈Br₄Ta₂ (925.93): C, 23.35; H, 3.05; found: C, 23.40; H, 3.23.

General procedure for the synthesis of $[TaCp^{R}Br_{2}(NPh)]$ ($Cp^{R} = \eta^{5}$ -C₅Mes 4Br; η^{5} -C₅H4SiMe₃ 5Br; η^{5} -C₅HMe₄ 6Br). Ph₂N₂ was added to a toluene solution (30-40 mL) of $[(TaCp^{R}Br_{2})_{2}(\mu$ -H)₂] ($Cp^{R} = \eta^{5}$ -C₅Me₅, η^{5} -C₅H4SiMe₃; η^{5} -C₅HMe₄) placed into a Carius tube (100 mL) with a Young's valve. The argon pressure was reduced, and the reaction mixture was stirred, was heated for 24-48 hours, and then filtered. The solvent was removed under reduced pressure to afford microcrystalline orange solids (4Br, 6Br) or a dark orange oil (5Br).

Synthesis of $[Ta(\eta^5-C_5Me_5)Br_2(NPh)]$ (4Br). The thermal treatment at 50 °C for 24 hours of Ph₂N₂ (0.076 g, 0.419 mmol) with $[{Ta(\eta^5-C_5Me_5)Br_2}_2(\mu-H)_2]$ (1Br) (0.400 g, 0.419 mmol) in toluene rendered the compound 4Br as an orange solid (Yield: 0.404 g, 85 %). METHOD B: A 100 mL Schlenk vessel was charged in the glovebox with Ph₂N₂ (0.043 g, 0.236 mmol), $[Ta(\eta^5-C_5Me_5)Br_4]$ (0.300 g, 0.472 mmol), Mg (0.011 g, 0.472 mmol), and thf (30-40 mL). After stirring for 24 hours at room temperature, the reaction mixture was dried in vacuum, the product was extracted with toluene and filtered through a medium porosity glass frit, and the solvent was then removed in vacuum to yield 4Br (0.193 g, 72 %) as an orange solid. IR (KBr, cm⁻¹): v = 3066 (w, CH arom), 2960 (w, CH aliph), 2914 (w, CH aliph), 1584 (m, CC), 1481 (s, CC), 1349 (s, =NR), 1067 (m), 982 (m), 768 (s), 693 (m). ¹H NMR (300 MHz,

 C_6D_6): $\delta = 7.09$ (t, 2H, J = 9 Hz, H_p NPh), 6.88 (d, 2H, J = 9 Hz, H_o NPh), 6.73 (t, 1H, J = 9 Hz, H_m NPh), 1.88 (s, 15H, C_5Me_5). ¹³C{¹H}-NMR (75 MHz, C_6D_6): $\delta =$ not detected (C_{ipso}), 128.3, 126.2, 124.5 (NPh), 121.8 (C_5Me_5), 11.9 (C_5Me_5). Elemental analysis (%) calcd. for $C_{16}Br_2H_{20}NTa$ (567.09): C, 33.88; H, 3.55; N, 2.47; found: C, 33.85; H, 3.61; N, 3.15.

Synthesis of [Ta(η^5 -CsH4SiMe₃)Br₂(NPh)] (5Br). The thermal treatment at 60 °C for 24 hours of Ph₂N₂ (0.095 g, 0.522 mol) with [{Ta(η^5 -C₄H₄SiMe₃)Br₂}₂(μ -H)₂] (2Br) (0.500 g, 0.522 mmol) in toluene rendered the complex 5Br as dark orange oil (Yield: 0.520 g, 87 %) IR (KBr, cm⁻¹): $\bar{\nu}$ = 3096 (w, CH arom), 2954 (m, CH aliph), 2896 (m, CH aliph), 1562 (m, CC), 1482 (s, CC), 1351 (s, =NR), 1251 (s, SiMe₃), 1069 (m), 841 (vs, SiMe₃), 759 (s), 689 (m). ¹H NMR (300 MHz, C₆D₆): δ = 7.08, 6.89, 6.73 (NPh), 6.23, 5.91 (spin system AA'BB', 4H, C₅H₄SiMe₃), 0.12 (s, 9H, C₅H₄SiMe₃). ¹³C{¹H} NMR (75 MHz, C₆D₆): δ = 156.0 (Cipso NPh), 128.1, 125.9, 125.5 (NPh), 120.3, 114.0 (C₅H₄SiMe₃), -0.1 (sC₅H₄SiMe₃). Elemental analysis (%) calcd. for C₁₄H₁₈Br₂NSiTa (569.14): C, 29.54; H, 3.19; N, 2.46; found: C, 29.02; H, 3.47; N, 2.73.

Synthesis of [**Ta**(η^{5} -**C**₅**HMe**₄)**Br**₂(**NPh**)] (6**Br**). The thermal treatment at 70 °C for 24 hours of Ph₂N₂ (0.079 g, 0.432 mmol) with [{Ta(η^{5} -C₅HMe₄)Br₂}₂(µ-H)₂] (**3Br**) (0.400 g, 0.432 mmol) in toluene rendered the compound **6Br** as an orange solid (Yield. 0.340 g, 71 %). **METHOD B:** A 100 mL Schlenk vessel was charged in the glovebox with Ph₂N₂ (0.059 g, 0.322 mmol), [Ta(η^{5} -C₅HMe₄)Br₄] (0.400 g, 0.643 mmol), Mg (0.016g, 0.643 mmol), and thf (30-40 mL). After stirring for 24 hours at room temperature, the reaction mixture was dried in vacuum, the product was extracted with toluene and filtered through a medium porosity glass frit, and the solvent was then removed in vacuum to yield **6Br** as an orange solid (Yield: 0.306 g, 86 %). IR (KBr, cm⁻¹): $\bar{\nu}$ = 3073 (w, CH arom), 2960 (w, CH aliph), 2914 (w, CH aliph.), 1601 (w, CC), 1581 (m, CC), 1494 (s, CC), 1481 (m, CC), 1382 (m, CC), 1353 (s, =NR), 1068 (m), 764 (s), 693 (s). ¹H NMR (300 MHz, C₆D₆): δ = 7.20- 6.60 (m, 5H, Ph), 5.36 (s, 1H, C₅HMe₄), 1.92, 1.83 (s, 6H, C₅HMe₄). ¹³C{¹H}</sup> NMR (125 MHz, C₆D₆): δ = 126.0, 125.0, 124.8, 122.1 (s, Ph), 108.1 (overlapped, C₅HMe₄), 14.0, 11.9 (C₅HMe₄). Elemental analysis (%) calcd. for C₁₅H₁₈Br₂NTa (553.06): C, 32.57; H, 3.28; N 2.53; found: C, 32.87; H, 3.47; N, 3.17.

Synthesis of $[{Ta(\eta^5-C_5Me_5)Br_2}_2(\mu-NC_6H_4-C_6H_4N)]$ (7Br). A 100 mL Schlenk vessel was charged in the glovebox with benzo[c]cinnoline (0.038 g, 0.210 mmol), $[{Ta(\eta^5-C_5Me_5)Br_2}_2(\mu-H)_2]$ (1Br) (0.200 g, 0.210 mmol), and toluene (30-40 mL). After stirring for

24 hours at room temperature, the reaction mixture was filtered through a medium porosity glass frit, and the solvent was then removed in vacuum to yield **7Br** (Yield: 0.216 g, 91 %) as an orange solid. **METHOD B:** A 100 mL Schlenk vessel was charged in the glovebox with benzo[c]cinnoline (0.071 g, 0.393 mmol), [Ta(η^{5} -C₅Me₅)Br₄] (0.500 g, 0.786 mmol), Mg (0.019 g, 0.786 mmol), and thf (30-40 mL). After stirring for 24 hours at room temperature, the reaction mixture was dried in vacuum, the product was extracted with toluene and filtered through a medium porosity glass frit, and the solvent was then removed in vacuum to yield **7Br** (0.334 g, 75 %) as an orange solid. IR (KBr, cm⁻¹): v = 3059 (w, CH arom), 2960 (w, CH aliph), 2914 (w, CH aliph), 1586 (w, CC), 1461 (m, CC), 1418 (m, CC), 1334 (s, =NR), 1114 (w), 1024 (w), 974 (w), 759 (s). ¹H NMR (500 MHz, C₆D₆): $\delta = 7.55$ -6.80 (m, 8H, NC₆H₄-C₆H₄N), 1.92 (s, 30H, C₅Me₅). ¹³C{¹H} NMR (125 MHz, C₆D₆): $\delta = 152.2$, 135.2, 132.9, 128.7, 127.1, 124.4 (NC₆H₄-C₆H₄N), 121.9 (C₅Me₅), 12.2 (C₅Me₅). Elemental analysis (%) calcd. for C₃₂Br₄H₃₈N₂Ta₂ (1132.17): C, 33.95; H, 3.38; N 2.47; found C, 34.31; H, 3.42; N, 2.84.

Synthesis of [{**Ta**(η^5 -**CsH**4**SiMe**₃)**Br**₂}₂{*μ*-(η^2 , η^2 -**NC**₆**H**4**C**₆**H**4**N**)}] (**8Br**). A 100 mL Schlenk vessel was charged in the glovebox with benzo[c]cinnoline (0.094 g, 0.522 mmol), [{Ta(η^5 -C₅H₄SiMe₃)Br₂}₂(*μ*-H)₂] (**2Br**) (0.500 g, 0.522 mmol), and toluene (30-40 mL). After stirring for 24 hours at room temperature, the reaction mixture was filtered through a medium porosity glass frit, and the solvent was then removed in vacuum to yield **8Br** (Yield: 0.540 g, 91 %) as a violet microcrystalline solid. IR (KBr, cm⁻¹): v = 3072 (w, CH arom), 2952 (s, CH aliph), 2894 (m, CH aliph), 1601 (w), 1481 (m, CC), 1436 (m, CC), 1252 (s, SiMe₃), 1168 (m), 902 (m), 840 (vs, SiMe₃), 756 (s). ¹H NMR (300 MHz, C₆D₆): $\delta = 7.77$ -6.82 (m, 8H, NC₆*H*₄-C₆*H*₄N), 7.63-5.61 (m, 8 H, C₅*H*₄SiMe₃), 0.25 (s, 18 H, C₅H₄SiMe₃). ¹³C{¹H}</sup> NMR (75 MHz, C₆D₆): $\delta = 153.3$, 125.9, 125.3, 122.0, 121.1 (NC₆H₄-C₆H₄N), 125.0, 119.2, 116.2, 110.6 (C₅H₄SiMe₃), 0.7 (C₅H₄SiMe₃). Elemental analysis (%) calcd. for C₂₈H₃₄N₂Br₄Si₂Ta₂ (1136.2657): C, 29.60; H, 3.01; N, 2.46; found: C, 29.97; H, 3.56; N, 2.79.

Synthesis of [{Ta(η^5 -C₅HMe₄)Br₂}₂{ μ -(η^2 , η^2 -NC₆H₄-C₆H₄N)}] (9Br). A 100 mL Schlenk vessel was charged in the glovebox with benzo[c]cinnoline (0.058 g, 0.324 mmol), [{Ta(η^5 -C₅HMe₄)Br₂}₂(μ -H)₂] (3Br) (0.300 g, 0.324 mmol), and toluene (30-40 mL). After stirring for 24 hours at room temperature, the reaction mixture was filtered through a medium porosity glass frit, and the solvent was then removed in vacuum to yield 9Br as a microcrystalline purple solid (Yield: 0.308 g, 86%). METHOD B: A 100 mL Schlenk vessel

was charged in the glovebox with benzo[c]cinnoline (0.058 g, 0.322 mmol), [Ta(n^5 -C₅HMe₄)Br₄] (0.400 g, 0.643 mmol), Mg (0.016 g, 0.643 mmol), and thf (30-40 mL). After stirring for 24 hours at room temperature, the reaction mixture was dried in vacuum, the product was extracted with toluene and filtered through a medium porosity glass frit, and the solvent was then removed in vacuum to yield **9Br** as a purple solid (Yield: 0.266 g, 75%). IR (KBr, cm⁻¹): $\bar{\nu}$ = 3081 (w, CH arom), 3058 (w, CH aliph), 2996 (w, CH aliph), 2963 (w, CH aliph), 2911 (w, CH aliph.), 1601 (m, CC), 1481 (s, CC), 1455 (s, CC), 1433 (m, CC), 1377 (m, Ta-N), 1254 (s), 1102 (m), 976 (w), 755 (s), 462 (w). ¹H NMR (500 MHz, C₆D₆): δ = 8.02 (s, 2H, C₅HMe₄), 8.10-6.80 (m, 8H, NC₆H₄-C₆H₄N), 2.69, 2.11, 1.85, 1.65 (s, 6H, C₅HMe₄). ¹³C{¹H} NMR (125 MHz, C₆D₆): δ = 154.1, 132.4, 129.3, 125.6, 122.5, 121.8 (NC₆H₄-C₆H₄N), 101.0 (overlapped, C₅HMe₄), 17.1, 14.4, 13.9, 13.1 (C₅HMe₄). Elemental analysis (%) calcd. for C₃₀H₃₄Br₄N₂Ta₂ (1104.11): C, 32.63; H, 3.10; N 2.54; found: C, 33.02; H, 3.22; N, 3.07.

Synthesis of [{Ta(η^{5} -CsH4SiMe₃)Br₂}₂(μ -NC₆H₄-C₆H₄N)] (10Br). A toluene solution (20 mL) of **8Br** (0.400 g, 0.352 mmol) were placed in a 25-mL Carious tube and then sealed under vacuum by flame. The reaction mixture was heated in an autoclave at 200°C for four days, and then was allowed to cool to room temperature affording orange solutions. The Carious tube was opened in a glovebox, the solution was decanted, and the solvent was then removed in vacuum to yield **10Br** (Yield: 0.360, 92%). IR (KBr, cm⁻¹): $\bar{\nu} = 3093$ (w, CH arom), 2955 (m, CH aliph), 2897 (m, CH aliph), 1572 (w), 1481 (m, CC), 1435 (m, CC), 1344 (m, =NR), 1250 (s, SiMe₃), 905 (m), 841 (vs, SiMe₃), 758 (s)... ¹H NMR (300 MHz, C₆D₆): δ = 7.36-6.75 (m, 8H, NC₆H₄-C₆H₄N), 6.26-5.90 (spin system AA'BB', m, 8 H, C₅H₄SiMe₃), 0.23 (s, 18 H, C₅H₄SiMe₃). ¹³C{¹H} NMR (75 MHz, C₆D₆): δ = 154.5, 136.3, 131.8, 127.4, 127.1, 125.0 (NC₆H₄-C₆H₄N), 121.5, 112.6 (C₅H₄SiMe₃), -0.1 (C₅H₄SiMe₃). Elemental analysis (%) calcd. for C₂₈H₃₄Br₄N₂Si₂Ta₂ (1136.27): C, 29.60; H, 3.01; N, 2.46 found: C, 29.90; H, 3.19; N, 2.86.

Synthesis of [{Ta(η^5 -C₅HMe₄)Br₂}₂(μ -NC₆H₄-C₆H₄N)] (11Br). Benzo[c]cinnoline (0.058 g, 0.324 mmol) was added to a toluene solution (30-40 mL) of [{Ta(η^5 -C₅HMe₄)Br₂}₂(μ -H)₂] (**3Br**) (0.300 g, 0.324 mmol) placed into a Carius tube (100 mL) with a Young's valve. The argon pressure was reduced, and the reaction mixture was heated to 90 °C for 24 hours, and then filtered. The resulting orange solid **11Br** (0.297 g, 83%) was obtained after drying under vacuum. IR (KBr, cm⁻¹): $\bar{\nu} = 3056$ (w, CH arom), 2976 (w, CH aliph), 2960 (w, CH aliph), 2915 (w, CH aliph.), 1584 (w, CC), 1486 (s, CC), 1448 (s, CC), 1423 (m, CC), 1339 (s,

=NR), 1112 (w), 1105 (w), 761 (s). ¹H NMR (500 MHz, C₆D₆): δ = 7.50-6.80 (m, 8H, NC₆H₄-C₆H₄N), 5.55 (s, C₅HMe₄), 2.00, 1.83 (s, 12H, C₅HMe₄). ¹³C{¹H} NMR (125 MHz, C₆D₆): δ = not detected (C₁), 135.6, 132.5, 127.3, 124.5, not detected (NC₆H₄-C₆H₄N), 107.7 (overlapped, C₅HMe₄), 14.2, 11.7 (C₅HMe₄). Elemental analysis (%) calcd. for C₃₀H₃₄Br₄N₂Ta₂ (1104.12): C, 32.63; H, 3.10; N 2.54; found: C, 32.67; H, 3.28; N, 3.15.

(1) Hidalgo Llinás, G; Mena, M.; Palacios, F.; Royo, P.; Serrano, R. (C₅Me₅)SiMe₃ as a Mild and Effective Reagent for Transfer of the C₅Me₅ Ring: An Improved Route to Monopentamethylcyclopentadienyl Trihalides of the Group 4 Elements. J. Organomet. Chem. 1998, 340, 37-40.

Crystallographic Data

	$[Ta(\eta^{5}\text{-}C_{5}HMe_{4})Br_{4}]$	1	1Br	2	2Br
Formula	C9H13Br4Ta	C ₂₀ H ₃₂ Cl ₄ Ta ₂	$C_{20}H_{32}Br_4Ta_2$	$C_{16}H_{28}Cl_4Si_2Ta_2$	$C_{16}H_{28}Br_4Si_2Ta_2$
М	621.78	776.15	953.99	780.26	958.1
<i>T</i> [K]	200(2)	200(2)	200(2)	200(2)	200(2)
λ[Å]	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal system	triclinic	orthorhombic	orthorhombic	triclinic	triclinic
Space group	P-1	Fdd2	Fdd2	P-1	P-1
<i>a</i> [Å]; α [°]	9.1291(5); 115.417(2)	14.523(1)	14.631(1)	7.6832(7); 110.887(5)	7.91.7(7); 112.33(1)
<i>b</i> [Å]; β [°]	12.3854(6); 95.581(2)	37.796(1)	37.977(3)	11.9799(4);97.956(7)	12.143(2);99.33(1)
c [Å]; γ [°]	14.2864(8); 104.780(2)	8.868(1)	9.1002(5)	14.664(1);93.191(5)	14.610(4);92.669(9)
$V[Å^3]$	1370.60(13)	4867.6(6)	5056.4(7)	1240.8(2)	1272.5(4)
Z	4	8	8	2	2
$\rho_{\text{calcd}} [\text{g cm}^{-3}]$	3.013	2.118	2.506	2.088	2.501
μ [mm ⁻¹]	19.644	9.427	14.975	9.336	14.967
<i>F</i> (000)	1120	2928	3504	732	876
Crystal size [mm ³]	0.47 x0.15 x 0.10	0.10 x 0.10 x 0.10	$0.10 \times 0.10 \times 0.05$	0.47 x 0.30 x 0.14	0.27 x 0.21 x 0.04
θ range [deg]		3.00 - 25.03	2.69 - 25.03	2.69 - 25.03	2.63 - 25.03
Index ranges	-11 to 11,	−17 to 17,	−17 to 17,	-9 to 9,	-10 to 10,
	-16 to 16,	-44 to 44,	-44 to 44,	-15 to 14,	-15 to 15,
	-18 to 18	-10 to 10	-10 to 10	-19 to 19	-18 to 18
Reflections collected	33179	16361	17370	24018	24339
Unique data	$6132(R_{int} = 0.076)$	$2141(R_{int} = 0.086)$	2236 ($R_{int} = 0.159$)	$4358(R_{int} = 0.142)$	$4492(R_{int} = 0.155)$
Reflections $[I>2\sigma(I)]$	4997	1799	1815	2715	2369
Goodness-of-fit on F^2	1.052	1.089	1.096	1.017	1.126
Final R indices $[I > 2\sigma(I)]$	R1 = 0.034	R1 = 0.038	R1 = 0.062	R1 = 0.048	R1 = 0.064
	wR2 = 0.049	wR2 = 0.073	wR2 = 0.142	wR2 = 0.105	wR2 = 0.122
R indices (all data)	R1 = 0.073	R1 = 0.055	R1 = 0.091	R1 = 0.111	R1 = 0.183
0.5	wR2 = 0.079	wR2 = 0.081	wR2 = 0.167	wR2 = 0.125	wR2 = 0.180
Largest diff. peak/hole [e·Å ⁻³]	1.340/-1.239	2.753/-1.857	2.71/-2.316	2.612/ -2.258	2.509 / -2.436

Table S1. Experimental data for the X-ray diffraction studies on [Ta(η⁵-C₅HMe₄)Br₄], 1, 1Br, 2, 2Br, 3Br, 4, 7, 8Br, and 9.

^a $RI = \Sigma ||F_0| - |F_c|| / [\Sigma|F_0|]$ $wR2 = \{ [\Sigma w (F_0^2 - F_c^2)^2] / [\Sigma w (F_0^2)^2] \}^{1/2}$

	3Br	4	7	8Br	9
Formula	$C_{30}H_{40}Br_4Ta_2$	C ₁₆ H ₂₀ Cl ₂ NTa	C ₃₂ H ₃₈ Cl ₄ N ₂ Ta ₂	$C_{28}H_{34}Br_4N_2Si_2Ta_2$	C37H42Cl4N2Ta2
Μ	1082.16	478.18	954.34	1136.29	1018.42
<i>T</i> [K]	200(2)	200(2)	200(2)	200(2)	200(2)
λ[Å]	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal system	tetragonal	orthorhombic	monoclinic	monoclinic	orthorhombic
Space group	$P4_{1}22$	Pbca	$P2_1/c$	C2/c	Pbca
a [Å]; α [°]	9.5580(4)	13.136(1)	15.562(2)	32.504(2)	14.0319(4)
<i>b</i> [Å]; β [°]	9.5580(4)	14.313(1)	13.649(1); 110.39(1)	15.1481(8);98.185(2)	16.0226(5)
c [Å]; γ [°]	34.417(2)	18.167(1)	16.351(1)	13.5051(6)	33.757(1)
V [Å ³]	3326.9(3)	3415.7(3)	3255.3(5)	6581.8(6)	7589.6(4)
Z	4	8	4	8	8
$\rho_{\text{calcd}} [\text{g cm}^{-3}]$	2.161	1.86	1.947	2.293	1.783
μ [mm ⁻¹]	11.395	6.739	7.071	11.596	6.072
<i>F</i> (000)	2024	1840	1832	4240	3936
Crystal size [mm ³]	0.23 x 0.13 x 0.10	$0.33 \times 0.19 \times 0.10$	0.16 x 0.12 x 0.10	0.20 x 0.20 x 0.05	0.30 x 0.23 x 0.08
θ range [deg]	3.07 - 27.48	2.24 - 25.00	2.66 - 25.00	2.19 - 25.03	2.61 - 25.03
Index ranges	-12 to 11,	-15 to 15,	-18 to 18,	-38 to 38,	–16 to 16,
2	-12 to 12,	−17 to 17,	-16 to 16,	−18 to 18,	-19 to 18,
	-47 to 47	-21 to 21	-19 to 19	-16 to 16	-40 to 40
Reflections collected	59146	38505	60215	179710	107947
Unique data	$3822(R_{int} = 0.050)$	$3005 (R_{int} = 0.113)$	$5729(R_{int} = 0.100)$	$5790(R_{int} = 0.066)$	$6694(R_{int} = 0.143)$
Reflections $[I>2\sigma(I)]$	3731	2088	4506	5401	4563
Goodness-of-fit on F^2	1.173	1.135	1.075	1.032	1.009
Final R indices $[I>2\sigma(I)]$	R1 = 0.018	R1 = 0.047	R1 = 0.039	R1 = 0.013	R1 = 0.035
	wR2 = 0.035	wR2 = 0.106	wR2 = 0.093	wR2 = 0.031	wR2 = 0.106
R indices (all data)	R1 = 0.019	R1 = 0.083	R1 = 0.062	R1 = 0.016	R1 = 0.095
	wR2 = 0.035	wR2 = 0.129	wR2 = 0.111	wR2 = 0.033	wR2 = 0.140
Largest diff. peak/hole [e·Å ⁻³]	0.422/ -0.447	2.648/-2.139	2.575/ -1.608	0.629 / -0.511	2.217/ -2.788

Table S1(cont.). Experimental data for the X-ray diffraction studies on $[Ta(\eta^5-C_5HMe_4)Br_4]$, 1, 1Br, 2, 2Br, 3-Br, 4, 7, 8Br, and 9.

^a $RI = \Sigma ||F_0| - |F_c|| / [\Sigma |F_0|]$ $wR2 = \{ [\Sigma w (F_0^2 - F_c^2)^2] / [\Sigma w (F_0^2)^2] \}^{1/2}$

Figure S1: Molecular structure of compound $[Ta(\eta^5-C_5HMe_4)Br_4]$. Thermal ellipsoids are at 50% probability. Selected bond lengths (Å) and angles (deg): Ta1-Br1 2.5025(7), Ta1-Br2 2.522(8), Ta1-Br3 2.514(1), Ta1-Br4 2.515(1), Br-Ta1-Br averaged 83.3(5).

Figure S2: Molecular structure of compound 1Br. Thermal ellipsoids are at 50% probability. Hydrogen atoms of η^5 -C₅Me₅ ligands are omitted for clarity.

Figure S3: Molecular structure of compound 2Br. Thermal ellipsoids are at 50% probability.

Figure S4: Molecular structure of compound **3Br**. Thermal ellipsoids are at 50% probability. Hydrogen atoms of methyl groups are omitted for clarity.

Figure S5. Molecular structure of compound **4**. Thermal ellipsoids are at 50% probability. Hydrogen atoms are omitted for clarity. Selected averaged bond lengths (Å) and angles (deg) found for complex **4**: Ta1-N1 1.780(9), Ta1-Cl 2.333(1), N1-C21 1.400(13), Ta1-N1-C21 167.7(8), N1-Ta1-Cl 103.4(2), Cl-Ta1-Cl 104.0(1).

Figure S6: Molecular structure of compound **8Br**. Thermal ellipsoids are at 50% probability. Hydrogen atoms are omitted for clarity.

Figure S7. ¹H NMR spectrum of compound [Ta(η^5 -C₅HMe₄)Cl₄] in C₆D₆ (500 MHz).

Figure S8. ¹³C NMR spectrum of compound [Ta(η^5 -C₅HMe₄)Cl₄] in C₆D₆ (125 MHz).

Figure S9. ¹H NMR spectrum of compound [Ta(η^5 -C₅HMe₄)Br₄] in C₆D₆ (500 MHz).

Figure S10. ¹³C NMR spectrum of compound [Ta(η^5 -C₅HMe₄)Br₄] in C₆D₆ (125 MHz).

Figure S11. ¹H NMR spectrum of compound 1 in C₆D₆ (300 MHz).

Figure S12. ${}^{13}C{}^{1}H$ NMR spectrum of compound 1 in C₆D₆ (75 MHz).

Figure S13. ¹H NMR spectrum of compound 1Br in C_6D_6 (300 MHz).

Figure S14. ¹³C{¹H} NMR spectrum of compound 1Br in C₆D₆ (75 MHz).

Figure S15. ¹H NMR spectrum of compound 2 in C_6D_6 (300 MHz).

Figure S16. ¹³C{¹H} NMR spectrum of compound 2 in C₆D₆ (75 MHz).

Figure S17. ¹H NMR spectrum of compound 2Br in C₆D₆ (300 MHz).

Figure S18. ¹³C{¹H} NMR spectrum of compound 2Br in C₆D₆ (75 MHz).

Figure S19. ¹H NMR spectrum of compound 3 in C_6D_6 (300 MHz).

Figure S20. ¹³C NMR spectrum of compound 3 in C_6D_6 (75 MHz).

Figure S21. ¹H NMR spectrum of compound 3Br in C₆D₆ (300 MHz).

Figure S22. ¹³C NMR spectrum of compound 3Br in C_6D_6 (75 MHz).

Figure S23. ¹H NMR spectrum of compound 4 in C₆D₆ (500 MHz).

Figure S24. ¹³C{¹H} NMR spectrum of compound 4 in C_6D_6 (125 MHz).

Figure S25. g-HSQC NMR spectrum of compound 4 in C₆D₆ (500 MHz).

Figure S26. ¹H NMR spectrum of compound 4Br in C_6D_6 (300 MHz).

Figure S27. ¹³C{¹H} NMR spectrum of compound 4Br in C₆D₆ (75 MHz).

Figure S28. g-HSQC NMR spectrum of compound 4Br in C₆D₆ (500 MHz).

S25

6.11.—

Figure S29. ¹H NMR spectrum of compound 5 in C_6D_6 (300 MHz).

Figure S30. ${}^{13}C{}^{1}H$ NMR spectrum of compound 5 in C₆D₆ (75 MHz).

Figure S31. ¹H NMR spectrum of compound 5Br in C₆D₆ (300 MHz).

Figure S32. ¹³C{¹H} NMR spectrum of compound 5Br in C₆D₆ (75 MHz).

Figure S33. ¹H NMR spectrum of compound 6 in C_6D_6 (500 MHz).

Figure S34. ¹³C NMR spectrum of compound 6 in C_6D_6 (125 MHz).

Figure S35. ¹H NMR spectrum of compound 6Br in C₆D₆ (300 MHz).

Figure S36. ¹³C NMR spectrum of compound 6Br in C_6D_6 (75 MHz).

Figure S37. ¹H NMR spectrum of compound 7 in C_6D_6 (500 MHz).

Figure S38. ${}^{13}C{}^{1}H$ NMR spectrum of compound 7 in C₆D₆ (125 MHz).

Figure S39. g-HSQC NMR spectrum of compound 7 in C₆D₆ (500 MHz).

Figure S40. ¹H NMR spectrum of compound 7Br in C₆D₆ (500 MHz).

Figure S41. ¹³C{¹H} NMR spectrum of compound 7Br in C_6D_6 (125 MHz).

Figure S42. g-HSQC NMR spectrum of compound 7Br in C_6D_6 (500 MHz).

Figure S43. ¹H NMR spectrum of compound 8 in C_6D_6 (500 MHz).

Figure S44. ¹³C NMR spectrum of compound 8 in C₆D₆ (125 MHz).

Figure S45. ¹H NMR spectrum of compound 8Br in C₆D₆ (300 MHz).

Figure S46. ¹³C NMR spectrum of compound 8Br in C₆D₆ (75 MHz).

Figure S47. ¹H NMR spectrum of compound 9 in C₆D₆ (500 MHz).

Figure S48. ¹³C NMR spectrum of compound 9 in C_6D_6 (125 MHz).

Figure S49. g-HSQC NMR spectrum of compound 9 in C_6D_6 (500 MHz).

Figure S50. ¹H NMR spectrum of compound 9Br in C₆D₆ (300 MHz).

Figure S51. ¹³C NMR spectrum of compound 9Br in C₆D₆ (75 MHz).

Figure S52. ¹H NMR spectrum of compound 10 in C_6D_6 (500 MHz).

Figure S53. ${}^{13}C{}^{1}H$ NMR spectrum of compound 10 in C₆D₆ (125 MHz).

Figure S54. ¹H NMR spectrum of compound 10Br in C₆D₆ (500 MHz).

Figure S55. ${}^{13}C{}^{1}H$ NMR spectrum of compound 10Br in C₆D₆ (125 MHz).

Figure S56. ¹H NMR spectrum of compound 11 in C₆D₆ (300 MHz).

Figure S57. 13 C NMR spectrum of compound 11 in C₆D₆ (75 MHz).

Figure S58. ¹H NMR spectrum of compound 11Br in C₆D₆ (500 MHz).

Figure S59. ¹³C NMR spectrum of compound 11Br in C₆D₆ (125 MHz).

Figure S60. g-HSQC NMR spectrum of compound 11Br in C₆D₆ (500 MHz).

S41

Theoretical Studies

	1		1Br		2		2Br		3Br	
	X-ray	Calc.								
Ta-Ta	2.813(1)	2.78	2.840(2)	2.80	2.758(1)	2.72	2.753(2)	2.73	2.764(1)	2.75
Ta-H1	2.0(2)	1.84	1.960(1)	1.84	1.859(1)	1.86	1.86(2)	1.85	1.84(1)	1.85
Ta-H1a/2	1.8(2)	1.84	1.621(1)	1.84	1.656(1)	1.86	1.66(2)	1.85	1.85(1)	1.85
Ta-Cl/Br	2.36(1)	2.37	2.510(1)	2.54	2.354(9)	2.37	2.502(6)	2.54	2.503(8)	2.52
										2.55
Та-Н1-Та	97(2)	98	104.5(1)	99	103.2(1)	94	102.5(5)	95	96.9(7)	96
Cl1/Br1-Ta- Cl2/Br2	100.0(2)	101	99.3(1)	99	101.5(3)	104	101.0(5)	104	101.5(1)	103

Table S2. X-Ray diffraction vs Calculated geometrical parameters for complex 1 and 2 and their analogous with Br, 1Br, 2Br and 3Br. Distances are in Å and angles in deg.

Figure S61. Frontier Molecular Orbitals of complexes 1, 2 and 3; and HOMO-LUMO energy gaps.

Figure S62. Alternative N=N double bond breaking mechanism for the transformation of 1 into 4. Gibbs free energies in kcal·mol⁻¹. Although the overall free energy barrier is only somewhat higher (1 kcal mol⁻¹) than that of the proposed mechanism in Figure 5, we discarded this mechanism because it does not involve the formation of an intermediate analogous to experimentally isolated dinuclear μ -(η^2 , η^2)-benzo[c]cinnoline complexes (10 and 11).

Figure S63. DFT structures of reactants and product 4. Distances in Å. Hydrogens are omitted for clarity.

Figure S64. DFT structures of different reaction intermediates of the mechanism shown in Figure 5. Selected distances in Å. Hydrogens are omitted for clarity.

Figure S65. DFT structures of the transition states of the mechanism shown in Figure 5. Selected distances in Å. Hydrogens are omitted for clarity.