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Other Supplementary Material for this manuscript includes the following:

Tables S1 to S4



Supplementary Tables

Table S1: Global proteomic analysis of EpCAM* tumor cells from PyMT and Her2/Neu

mice collected and processed under physioxia and ambient air.

Table S2: Phospho-proteomic analysis of EpCAM* tumor cells from PyMT mice collected

and processed under physioxia and ambient air.

Table S3: RNA-seq analysis of cells from ascites fluids of three patients. Genes differentially

expressed under physioxia compared to ambient air are listed.

Table S4: List of genes alternatively spliced along with splicing type and location under

physioxia compared to ambient air.
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fig. S1: Physioxia minimally effected CD49f/EpCAM staining patterns. (A) CD49f/EpCAM
staining patterns of tumor cells under physioxia and ambient air (n=3-6, one-way ANOVA). (B)
Number of CD49f" cells were similar under two conditions except in cultured Her2/Neu tumor
cells (PL). (C) Number of EpCAM" cells were similar under two conditions except in cultured
Her2/Neu cells. (D-F) Staining patterns of isotype controls for the experiments that measured
LGRS5-PE/TSPANS-APC, CD61-FITC/TSPANS-APC, CD49f-PE/EpCAM-APC, CD274-
PE/EpCAM-APC and CD24-APC/CD29-FITC. *p<0.05, ***p<0.001 by ANOVA. ns is not
significant.
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fig. S2: Analysis of tumors developed upon re-transplantation of cells derived from stage 3
tumors. (A) LGR5/TSPANS staining patterns of cells from tumors derived from stage 3 as
described in Fig. 1A. (B) CD61/TSPANS staining patterns. (C) CD49f/EpCAM staining patterns.
Representative staining patterns with isotype control antibodies are shown.
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fig. S3: LGRS positivity of CellROX-Green* populations, representing cells with nuclear
ROS, was higher under physioxia compared to ambient air. (A) Representative flow
cytometry data showing staining patterns of CellROX-green”°% (CR"°%) and CellROX-green”
(CR") populations in PyMT and Her2/Neu tumor cells and enrichment of LGR5™ cells in both
populations. (B) Quantitation of LGR5" cells in CellROX-green”°" and CellROX-green*
populations in PyMT and Her2/Neu tumor cells (n=3-4). (C) Representative flow cytometry data
showing TSPANS" cells in CellROX-green”*" and CellROX-green” populations in PyMT and
Her2/Neu tumor cells. (D) Quantitation of TSPANS" cells in CellROX-green”" and CellROX-
green” populations in PyMT and Her2/Neu tumor cells (n=3-4). (E) Tumor cells collected and
processed under physioxia and processed under ambient air were stained with CellROX-orange
and subjected to flow cytometry (n=4). (F) Tumor cells collected and processed under physioxia
and processed under ambient air were stained with MitoSOX or vehicle control and analyzed by
flow cytometry (n=4).
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fig. S4: Histology of tumors developed from re-implanted tumor cells collected and
processed under physioxia or processed under ambient air. (A) Tumor histotype designated
by a pathologist based on H&E staining patterns (n=7). (B) Immunohistochemistry for TSPANS
(n=7). (C) Immunohistochemistry for EpCAM (n=7). (D) Immunohistochemistry for CK14
(n=7). CK14 negativity suggests that tumors have retained luminal characteristics.
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fig. S5: Phospho-proteomics reveal a specific effect of physioxia on splicing machinery and
YAP1 signaling. (A) STRING network analysis of phospho-proteins abundant under physioxia.
(B) STRING network analysis of phospho-proteins abundant under ambient air. (C)
Phosphoproteomics show decreased phosphorylation on either S148 or S149 within the peptide
spanning residues 147-166 under physioxia relative to ambient air. (D) Table shows
phosphopeptide position in mouse YAP1 and position of the phosphoserines, including
corresponding positions in human YAP1. (E) Western blots show expression of YAP1 in
HEK293T cells transfected with the indicated plasmid constructs under ambient air and
physioxia. HEK293T cells were grown and transfected with indicated plasmid constructs under
physioxia, cells were split into two equal parts 24 hours post-transfection, with one portion
grown in physioxia and the other in ambient air. Cells were lysed after 24 hours for western
blotting. Endo, endogenous expression. (F) Decreased endogenous YAP1 activity under
physioxia compared to ambient air as indicated by luciferase reporter activity (n=5). (G)
Differential YAP1 activity in HEK293T cells co-transfected with indicated plasmid constructs
and 8xGTIIC luciferase under physioxia and ambient air (n=5). Activity of wild type YAP1 was
normalized to 100 and relative activity of mutants with specific non-phosphorylatable residues is
shown. (H and I) Tumor cells processed and grown under ambient air showed higher
proliferation rate. Indicated number of PyMT tumor cells were plated in 96 well plates and cell
proliferation rates were measured on indicated days after plating (n=6). (J) CD61/TSPANS
staining pattern of tumor cells from transplanted PyMT tumor xenografts developed from tumor
cells collected and processed under ambient air and physioxia, and treated daily with 100 mg/kg
body weight lapatinib (Lap) or vehicle control (VC) via oral gavage for 25 days (n=3).
*x%p<0.001, ****p<0.0001 by ANOVA.
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fig. S6: Characterization of cells from ascites fluids collected and processed under
physioxia and ambient air. (A) CD133/EpCAM staining pattern of lineage-negative cells from
ascites fluid (n=9). (B) CD274/EpCAM staining pattern of cells from ascites fluid (n=5). (C)
Cells cultured from ascites fluid of a serous carcinoma under physioxia showed elevated levels
of CD274" cells. (D) CD271/EpCAM staining pattern of cells from ascites fluids (n=4). (E)
Physioxia displayed tumor subtype-specific effects on CD271" cells. (F and G). Isotype control
antibody staining patterns for cells derived from ascites fluids that measured CD49f-
APC/EpCAM-VioBlue, CD44-APC/CD24-FITC,CD133-APC/EpCAM-VioBlue, CD274-
APC/EpCAM-VioBlue and CD271-APC/EpCAM-VioBlue.
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fig. S7: Heatmap of genes differentially expressed and alternatively spliced genes in cells of
ascites fluid collected and processed under physioxia compared to that collected and
processed under ambient air. (A) Heatmap of differentially expressed genes in cells collected
and processed under physioxia compared to cells collected and processed under ambient air.
Differentially expressed genes from independent analyses were filtered for FDR <= 0.05 and
absolute log2FC >= 0.5. Genes passing filters and common in both patients were then used to
generate the heatmap. Log2FPKM values were centered and scaled by gene in each experiment
separately. Color bar at the top denotes ambient air or physioxia condition. (B) Heatmap of
differentially spliced genes in cells collected and processed under physioxia compared to cells
collected and processed under ambient air. Differentially spliced events from all event types
were merged and filtered in both experiments. Events having an FDR <= 0.05 and a minimum
number of 5 inclusion or exclusion reads across all replicates in a group, as well as having at
least 1 inclusion or exclusion read in all replicates from both groups, were kept. These filters
ensured events were significant, sufficiently covered and consistently present respectively.
Inclusion levels of the remaining 8 exons were directly plotted for each gene and sample
replicate. Color bar at the top denotes ambient air (gray) or physioxia (red) condition. (C)
Ingenuity pathway analysis (IPA) of alternatively spliced genes under physioxia compared to
ambient air. These genes are part of cMyc-mediated apoptotic pathways.
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