Duplex-Repair enables highly accurate sequencing, despite DNA damage

Kan Xiong¹⁺, Douglas Shea¹⁺, Justin Rhoades¹⁺, Tim Blewett¹, Ruolin Liu¹, Jin Bae¹, Erica Nguyen¹, G. Mike Makrigiorgos^{1,2}, Todd R. Golub^{1,3}, Viktor A. Adalsteinsson¹ *

¹Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA

²Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA

³Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA

⁺*These authors contributed equally.*

*To whom correspondence should be addressed. Tel: 617-714-7971; E-mail:viktor@broadinstitute.org

Recalibrate capillary electrophoresis traces:

Lengths of synthetic oligonucleotides are confirmed by IDT's mass spectrometry analysis (data not shown). However, the control peak locations reported from raw fragment analysis by using the Peak scanner 2 software differ from the expected positions (**Table S1**); the peak locations of 6-FAM tagged molecules consistently appear as underestimates whereas those with ATTO 550 present as overestimates.

To interpret the capillary electrophoresis data, we decide to recalibrate the peak locations by using a ladder of synthetic oligonucleotides with known lengths. **Equation S1-2** relates the oligonucleotide length to raw peak locations through linear regression.

y = 1.0381x - 7.681 Eq. S1

Equation S1. Linear regression of raw fragment analysis peak locations of the 6-FAMtagged strands. Experimentally determined values for the oligos tagged with 6-FAM in the 100 bp, 90 bp, 80 bp and 70 bp ssDNA controls (**Table S1** oligos e, d, c, b respectively) were used to generate a model that relates actual oligonucleotide length (x) to the fragment analysis readout (y) for 6-FAM substrates (**Fig. S1A**).

y = 0.9666x + 5.039 Eq. S2

Equation S2. Linear regression of raw fragment analysis peak locations of the ATTO 550-tagged strands. Experimentally determined values for the oligos tagged with ATTO-550 in the 100 bp, 90 bp, 80 bp and 70 bp ssDNA controls (**Table S1** oligos i, h, g, f respectively) were used to generate a model that relates actual oligonucleotide length (x) to the fragment analysis readout (y) for ATTO-550 substrates (**Fig. S1B**).

Quantification of library conversion efficiency by ddPCR:

To quantify library conversion efficiency, a ddPCR assay was designed to target the flanking adapter regions. Only fragments with successful double ligation were exponentially amplified within the QX200 ddPCR EvaGreen Supermix (Bio-Rad) and thus detected.

Figure S1: Linear regression of measured capillary electrophoresis peak locations vs. true lengths for (a) 6-FAM-tagged and (b) ATTO-550 tagged oligonucleotides. True lengths of oligonucleotides are confirmed by IDT's mass spectrometry analysis (data not shown).

Figure S2: Capillary electrophoresis analysis of synthetic duplexes subjected to each step of Duplex-Repair, versus conventional ER/AT. Each step of duplex repair imparts its intended functionality in producing the intended major product as depicted in Fig. 1 to minimize strand resynthesis seen with Conventional ER/AT. Oligonucleotides with a (i) 5' overhang, (ii) 3' overhang, (iii) nick, (iv) 1 nucleotide gap, (v) 5 nucleotide gap, (vi) uracil across from a 1 nucleotide gap, and (vii) 80xoG across from a 1 nucleotide gap were subjected to conventional ER/AT and each step of Duplex Repair and sent for capillary electrophoresis. The top strand of each oligonucleotide is labelled with 6-FAM on the 5' end, and the fragment size distributions following each treatment are represented by blue curves. The bottom strand of each oligonucleotide is labelled with ATTO-550 on the 3' end, and the fragment size distributions following each treatment are represented by black curves.

Figure S3: Characterization of the activity of key enzymes in the lesion repair enzyme cocktail by capillary electrophoresis. The activity of key enzymes to rectify each damage motif (middle) is not impacted by other enzymes in the lesion repair enzyme cocktail (bottom). The "lesion repair" condition indicates treatment with Endonuclease IV (EndoIV), Formamidopyrimidine [fapy]-DNA glycosylase (Fpg), Uracil-DNA glycosylase (UDG), T4 pyrimidine DNA glycosylase (T4 PDG), and Endonuclease VIII (EndoVIII), and Exonuclease VII (ExoVII).

Figure S4: Characterization of the activity of HiFi Taq DNA ligase by capillary electrophoresis. HiFi Taq DNA ligase efficiently seals nicks in NEBuffer 2 and HiFi Taq ligase buffer mix (bottom) as it does in HiFi Taq ligase buffer alone (middle).

Figure S5: Characterization of the activity of T4 DNA polymerase and T4 polynucleotide kinase by capillary electrophoresis. T4 DNA polymerase efficiently fills in 5 or 27 nt gaps at 37 °C in NEBuffer 2 with no detectable strand-displacement activity (middle). The efficiency of T4 DNA polymerase filling in 27 nt gaps at room temperature, however, is significantly lower (bottom).

Figure S6: Characterization of the activity of Klenow fragment (exo-) and Taq DNA polymerase by capillary electrophoresis. Klenow (exo-) and Taq DNA polymerase efficiently perform dA-tailing with only dATP present at concentrations of 0.2 mM (middle) or 2 mM (bottom).

Figure S7: Characterization of the activity of T4 DNA ligase and 5' deadenylase by BioAnalyzer. T4 DNA ligase and 5' deadenylase efficiently ligate NGS adapters to a 166 bp blunted duplex with dA tails in the presence of 15 (top) or 20% (bottom) weight by volume (w/v) PEG 8000. To minimize spurious intermolecular ligation at high PEG concentrations, Duplex-Repair only uses 10% w/v PEG 8000 during adapter ligation. Of note: the unit of the x axis of the top panel could not be converted to bp by BioAnalyzer software.

Figure S8: Characterization of the combined efficiency of dA-tailing and adapter ligation by BioAnalyzer. The combined efficiency of dA-tailing and adapter ligation of Duplex-Repair could be higher than that of the Kapa Hyper kit. The input was a 274 bp blunted duplex. Of note, the unit of the x axis of the top panel could not be converted to bp by BioAnalyzer software.

Figure S9: Characterization of the performance of Duplex-Repair (after optimizing reaction conditions and eliminating multiple Ampure cleanups) by capillary electrophoresis. Duplex-Repair facilitates the formation of a major product of NGS adapter-ligated oligonucleotides that are ready for sequencing applications. The 'nick sealing products' (middle) were collected following steps 1-3 of duplex repair but prior to dA-tailing. The 'adapter ligated products' (bottom) have undergone the entire Duplex-Repair protocol and ligation to NGS adapters, which add an additional 39-40 or 37-38 bp (unique molecular indices can be either 3 or 4 base pairs) to the exposed 3' and 5' ends of oligonucleotides after Duplex-Repair respectively (note: adapters in schematic not drone to scale).

Figure S10: Characterization of the performance of Duplex-Repair (after optimizing reaction conditions and eliminating multiple Ampure cleanups) as a function of DNA input mass by capillary electrophoresis. Duplex-Repair is effective at preparing cfDNA inputs ranging from 20 to 800 ng for NGS. The 'nick sealing products' (top rows) were collected following steps 1-3 of duplex repair but prior to dA-tailing. The 'adapter ligated products' (bottom rows) have undergone the entire Duplex-Repair protocol and ligation to NGS adapters, which add an additional 39-40 or 37-38 bp (unique molecular indices can be either 3 or 4 base pairs) to the exposed 3' and 5' ends of oligonucleotides after Duplex-Repair respectively.

Figure S11: The measured library conversion efficiencies of Duplex-Repair vs. the Kapa Hyper kit as a function of a gDNA input by using a ddPCR assay. The library conversion efficiencies of Duplex-Repair are comparable to this with conventional ER/AT using the Kapa Hyper kit. ddPCR primers used are detailed in the Supplementary Text.

Figure S12: Duplex recovery. (A) Total duplexes recovered for 20 ng input libraries sequenced to saturation with a small hybrid capture panel. (B) Mean duplex depth across target bases and estimated duplex efficiency. Maximum theoretical duplex depth calculated for duplex efficiency estimates assumes one haploid genome equivalent is equal to 3 pg of DNA input.

Figure S13: Establishment of an assay for quantifying the number of bases resynthesized during ER/AT. Histogram of aggregate bases and their IPDs, labeled as original or fill-in based on which region of the synthetic oligos they were derived from. Regions that divide original and fill-in regions were avoided for collection.

Figure S14: Measured interpulse duration (IPD; in frames) (i) and predicted percentage of bases resynthesized (ii) as a function of the base position on five synthetic oligonucleotides treated with conventional ER/AT and with modified dNTPs. Longer IPDs, colored orange if greater than 60 frames, result from modified bases. Red dashed lines indicate where resynthesis is expected to start during ER/AT.

Figure S15: Identification of resynthesized regions by reading out interpulse durations during PacBio SMRT sequencing. Average interpulse durations (IPD; in frames) for each position relative to distance from the end of the original duplex DNA fragment for healthy cfDNA, cancer patient cfDNA, and FFPE tumor biopsies across several individuals.

Figure S16: Background estimated resynthesis of interior base pairs using standard dNTPs across FFPE and cfDNA sample types.

Figure S17: Characterization of the activity of DNase 1 by BioAnalyzer. The input was a 100 bp dsDNA oligo. The results show that up until 20 mU of DNase 1, the dominant fragment length is still 100 bp.

Figure S18: Characterization of the activity of DNase 1 by capillary electrophoresis. For all concentrations of DNAse 1 tested, the major product as determined by capillary electrophoresis is the 100mer duplex. However, intermediate-sized fragments (highlighted in red boxes) are detected with 2 and 20 mU of DNase 1, suggesting that ≥ 2 mU of DNase 1 nick but do not significantly degrade dsDNA. These intermediate-sized fragments are present in capillary electrophoresis traces, as heat pretreatment and denaturation is required, but not on BioAnalyzer traces in which there is no denaturation (Fig. S15).

Figure S19: Characterization of the oxidation activity of $CuCl_2/H_2O_2$ by Sanger sequencing. The input was a 274 bp dsDNA oligo and was treated with different concentrations of $CuCl_2/H_2O_2$. The red boxes indicate where C->A mutations are detected when treated with 1000 μ M CuCl₂/H₂O₂.

Figure S20: Error rates by mutation context observed in healthy donor cfDNA treated with varied concentrations of CuCl₂/H₂O₂ and DNase I.

Figure S21: Error rates by mutation context observed in duplex sequencing of a pan-cancer panel for cfDNA samples and FFPE tumor biopsies treated with conventional ER/AT vs. Duplex-Repair.

Figure S22: Base error rates per trinucleotide context. Tested for both conventional ER/AT and Duplex-Repair across healthy cfDNA, damaged cfDNA, cancer patient cfDNA, and FFPE tumor gDNA.

Figure S23: Distance of mutant duplex bases from closest DNA fragment end for cfDNA collected from healthy donors and cancer patients as well as gDNA from FFPE tumor biopsies. Samples underwent either conventional ER/AT or Duplex-Repair.

Figure S24: Single-strand consensus (A) and conventional raw NGS (B) error rates of four healthy cfDNA samples (three replicates per condition), three cancer patient cfDNA samples (one replicate per condition), and five cancer patient FFPE tumor biopsies (three replicates per condition) treated with conventional ER/AT or Duplex-Repair.

Table S1: DNA sequences of synthetic oligonucleotides used in this study.Asterisks (*) indicate the presence of a C3 spacer or phosphorothioate bonds that protectfluorophores from being cleaved by nucleases.

Oligo ID	Fluoro phore end	Fluoro phore	Sequence	Leng th (bp)
а	5'	6-FAM	6FAM//iSpC3/GCGTCACCAGCCACGCGAGCCG GATGAGGATCCGTGACGCGAAGT	48
b	5'	6-FAM	6FAM//iSpC3/GCGTCACCAGCCACGCGAGCCG GATGAGGATCCGTGACGCGAAGTCCTGGTAC CGCCGCTCGCTTCCGAC	70
С	5'	6-FAM	6FAM//iSpC3/GCGTCACCAGCCACGCGAGCCG GATGAGGATCCGTGACGCGAAGTCCTGGTAC CGCCGCTCGCTTCCGACCGGTTCTCCA	80
d	5'	6-FAM	6FAM//iSpC3/GCGTCACCAGCCACGCGAGCCG GATGAGGATCCGTGACGCGAAGTCCTGGTAC CGCCGCTCGCTTCCGACCGGTTCTCCACCGA GCGACC	90
е	5'	6-FAM	6FAM//iSpC3/GCGTCACCAGCCACGCGAGCCG GATGAGGATCCGTGACGCGAAGTCCTGGTAC CGCCGCTCGCTTCCGACCGGTTCTCCACCGA GCGACCTAATATTAAT	100
f	3'	ATTO 550	GTCGGAAGCGAGCGGCGGTACCAGGACTTC GCGTCACGGATCCTCATCCGGCTCGCGTGGC TGGTGACGC/iSpC3//3ATTO550	70
g	3'	ATTO 550	TGGAGAACCGGTCGGAAGCGAGCGGCGGTA CCAGGACTTCGCGTCACGGATCCTCATCCGG CTCGCGTGGCTGGTGACGC/iSpC3//3ATTO550	80
h	3'	ATTO 550	GGTCGCTCGGTGGAGAACCGGTCGGAAGCG AGCGGCGGTACCAGGACTTCGCGTCACGGAT CCTCATCCGGCTCGCGTGGCTGGTGACGC/iS pC3//3ATTO550	90
i	3'	ATTO 550	ATTAATATTAGGTCGCTCGGTGGAGAACCGGT CGGAAGCGAGCGGCGGTACCAGGACTTCGC GTCACGGATCCTCATCCGGCTCGCGTGGCTG GTG*A*C*G*C/3ATTO550 (*phosphorothioate	100

			bonds)	
j	3'	ATTO 550	ATTAATATTAGGTCGCTCGGTGGAGAACC/ <u>i8o</u> <u>xodG</u> /GTCGGAAGCGAGCGGCGGTACCAGGA CTTCGCGTCACGGATCCTCATCCGGCTCGCG TGGCTGGTGA*C*G*C*/3ATTO550N/ (*phosphorothioate bonds)	100
k	3'	ATTO 550	ATTAATATTAGGTCGCTCGGTGGAGAACC <u>U</u> GT CGGAAGCGAGCGGCGGCGGTACCAGGACTTCGC GTCACGGATCCTCATCCGGCTCGCGTGGCTG GTGA*C*G*C*/3ATTO550N/ (*phosphorothioate bonds)	100
I	/	/	CGGTTCTCCACCGAGCGACCTAATATTAAT	30
m	/	/	GGTTCTCCACCGAGCGACCTAATATTAAT	29
n	/	/	CTCCACCGAGCGACCTAATATTAAT	25
0	/	/	GTCAAGGGTAATGGACAGTAGGTGTGGTGGA ACATACTTCCAGCACTCAAGAAGCTGAAGCAG GCAGATCTCTGTCAGTTCATGACCACTGCTGT CTACATGGTGAGCTCCAAGCCAGCCAGGCAA GAAGTGACACTCAGGtCTCGCATTGCTcagACG gCaggcA	166
ρ	/	/	TgcctGcCGTctgAGCAATGCGAGaCCTGAGTGT CACTTCTTGCCTGGCTGGCTTGGAGCTCACC ATGTAGACAGCAGTGGTCATGAACTGACAGA GATCTGCCTGCTTCAGCTTCTTGAGTGCTGGA AGTATGTTCCACCACACCTACTGTCCATTACC CTTGACA	166
q	/	1	GTCAAGGGTAATGGACAGTAGGTGTGGTGGA ACATACTTCCAGCACTCAAGAAGCTGAAGCAG GCAGATCTCTGTCAGTTCATGACCACTGCTGT CTACATGGTGAGCTCCAAGCCAGCCAGGCAA GAAGTGACACTCAGGtCTCGCATTGCTcag	156
r	/	/	GTCAAGGGTAATGGACAGTAGGTGTGGTGGA ACATACTTCCAGCACTCAAGAAGCTGAAGCAG GCAGATCTCTGTCAGTTCATGAC	86
S	1	1	CACTGCTGTCTACATGGTGAGCTCCAAGCCA GCCAGGCAAGAAGTGACACTCAGGtCTCGCAT TGCTcagACGgCaggcA	80

t /	/	ACTGCTGTCTACATGGTGAGCTCCAAGCCAG CCAGGCAAGAAGTGACACTCAGGtCTCGCATT GCTcagACGgCaggcA						
Fluorescently labelled oligos for capillary electrophoresis								
Overhang substr	ates Blur	it substrates	Gap substrates	Lesion substrates				
30 bp 5' overha	ing per	fect duplex	1 nt gap	1 nt gap Ulesion				
<u>★</u> ☆i	¢	ei	<mark>★ b m</mark> ✿ i	<mark>★ b m</mark> k				
30 bp 3' overh	ang	nick	5 nt gap	1 nt gap 8oxoG lesion				
e ☆ ∳		i I	<mark>★ b m</mark> ☆					
			27 nt gap					
			<u>*an</u> ☆──i					
dA-tailed oligos u	used to quantify s	strand resynthesis	s with PacBio sequencing	g				
Duplex substrate	Over	hang substrate	Nick substrate	Gap substrate				
	10	op 5' overhang		1 nt gap				
<u>о</u> Ар	A		A p	Ap				
	80	op 5' overhang						
_	Α	<u>r</u>						

Table S2: Quantification of DNA loss after DNase 1 treatment. The input was 20 ng of a 100 bp dsDNA oligo. *the low yield indicates a significant loss during the Ampure bead cleanup step; ** the concentration of the 2nd biological replicate is below the detection limit of the Qubit assay.

Dnase I amount (mU)	Yields of DNA products after DNase 1 treatment, mean ± SD (with two biological replicates)
0	2.48 ± 0.32*
0.02	2.48 ± 0.04
0.2	2.18 ± 0.12
2	2.06 ± 0.04
20	1**

Table S3: Error rates and fold changes by mutation context for targeted panelsequencing. Duplex sequencing error rates broken down by mutation context for fourhealthy donor cfDNA samples, three cancer patient cfDNA samples, and five FFPE tumorbiopsies. The samples were treated with Duplex-Repair and conventional ER/AT.

			Error Rate	Error Rate	Error Rate	
		Mutation	Conventional	Duplex-	Fold	
Specimen	Patient ID	Context	ER/AT	Repair	Decrease	CI (95%)
cfDNA	HD_67	T>G	3.83E-08	4.38E-08	-1.14	[-2.06, -0.23]
cfDNA	HD_67	T>C	9.70E-08	1.38E-07	-1.42	[-2.29, -0.55]
cfDNA	HD_67	T>A	3.83E-08	2.41E-08	1.59	[0.89, 2.29]
cfDNA	HD_67	C>A	2.56E-07	5.71E-08	4.47	[3.98, 4.97]
cfDNA	HD_67	C>G	6.24E-08	7.79E-08	-1.25	[-2.13, -0.36]
cfDNA	HD_67	C>T	3.24E-07	3.43E-07	-1.06	[-2.04, -0.07]
cfDNA	HD_77	T>G	4.87E-08	3.42E-08	1.42	[0.63, 2.22]
cfDNA	HD_77	T>C	1.46E-07	1.48E-07	-1.01	[-2.01, -0.02]
cfDNA	HD_77	T>A	4.87E-08	4.11E-08	1.19	[0.28, 2.09]
cfDNA	HD_77	C>A	1.10E-07	4.85E-08	2.26	[1.61, 2.91]
cfDNA	HD_77	C>G	6.45E-08	3.57E-08	1.81	[1.12, 2.49]
cfDNA	HD_77	C>T	1.18E-06	2.55E-07	4.65	[3.93, 5.37]
cfDNA	HD_78	T>G	1.80E-08	1.93E-08	-1.07	[-2.01, -0.13]
cfDNA	HD_78	T>C	4.61E-08	3.30E-08	1.39	[0.60, 2.19]
cfDNA	HD_78	T>A	2.40E-08	2.20E-08	1.09	[0.17, 2.02]
cfDNA	HD_78	C>A	1.39E-07	1.94E-08	7.19	[7.00, 7.38]
cfDNA	HD_78	C>G	3.98E-08	1.94E-08	2.05	[1.54, 2.57]
cfDNA	HD_78	C>T	4.03E-07	7.43E-08	5.42	[4.94, 5.90]
cfDNA	HD_79	T>G	1.10E-07	1.15E-08	9.5	[9.44, 9.55]
cfDNA	HD_79	T>C	1.34E-07	4.79E-08	2.8	[2.34, 3.26]

cfDNA	HD_79	T>A	7.46E-08	4.61E-08	1.62	[0.98, 2.26]
cfDNA	HD_79	C>A	2.39E-07	1.31E-07	1.82	[1.09, 2.54]
cfDNA	HD_79	C>G	1.42E-07	5.15E-08	2.75	[2.32, 3.18]
cfDNA	HD_79	C>T	1.06E-06	5.13E-07	2.07	[1.25, 2.90]
cfDNA	P33	C>A	1.07E-07	2.20E-07	-2.06	[-2.42, -1.71]
cfDNA	P33	C>G	1.07E-07	7.34E-08	1.45	[1.00, 1.90]
cfDNA	P33	C>T	2.45E-06	4.40E-07	5.57	[5.32, 5.81]
cfDNA	P33	T>A	3.90E-08	6.92E-08	-1.77	[-2.03, -1.52]
cfDNA	P33	T>C	7.81E-08	2.08E-07	-2.66	[-2.89, -2.43]
cfDNA	P33	T>G	3.90E-08	6.92E-08	-1.77	[-2.03, -1.52]
cfDNA	P48	C>A	5.25E-07	0.00E+00	inf	[0.00, 0.00]
cfDNA	P48	C>G	2.02E-08	1.06E-07	-5.25	[-5.28, -5.23]
cfDNA	P48	C>T	7.89E-06	6.01E-07	13.13	[12.85, 13.42]
cfDNA	P48	T>A	1.60E-08	5.74E-08	-3.59	[-3.64, -3.54]
cfDNA	P48	T>C	7.99E-08	1.15E-07	-1.44	[-2.06, -0.82]
cfDNA	P48	T>G	3.20E-08	2.87E-08	1.11	[0.34, 1.89]
cfDNA	P73	C>A	4.39E-07	1.17E-07	3.77	[3.57, 3.96]
cfDNA	P73	C>G	2.31E-08	0.00E+00	inf	[0.00, 0.00]
cfDNA	P73	C>T	2.54E-06	5.83E-07	4.36	[3.91, 4.81]
cfDNA	P73	T>A	3.85E-08	3.32E-08	1.16	[0.46, 1.86]
cfDNA	P73	T>C	3.85E-08	3.32E-08	1.16	[0.46, 1.86]
cfDNA	P73	T>G	1.92E-08	0.00E+00	inf	[0.00, 0.00]
FFPE						
Biopsy	P106	C>A	3.80E-06	2.59E-07	14.68	[14.41, 14.95]
FFPE	P106	C>G	1.43E-06	2.59E-07	5.54	[5.14, 5.94]

Biopsy						
FFPE						
Biopsy	P106	C>T	5.33E-05	1.98E-05	2.7	[1.77, 3.63]
FFPE						
Biopsy	P106	T>A	5.48E-07	3.35E-07	1.64	[0.87, 2.40]
FFPE						
Biopsy	P106	T>C	1.24E-06	1.41E-06	-1.14	[-2.10, -0.17]
FFPE						
Biopsy	P106	T>G	1.69E-07	0.00E+00	inf	[0.00, 0.00]
FFPE						
Biopsy	P129	C>A	4.36E-06	2.07E-07	21.09	[20.87, 21.30]
FFPE						
Biopsy	P129	C>G	2.13E-06	2.84E-07	7.47	[7.07, 7.88]
FFPE						
Biopsy	P129	C>T	5.17E-05	1.25E-05	4.14	[3.24, 5.05]
FFPE						
Biopsy	P129	T>A	3.25E-07	9.53E-08	3.41	[3.03, 3.79]
FFPE						
Biopsy	P129	T>C	1.11E-06	7.87E-07	1.41	[0.52, 2.31]
FFPE						
Biopsy	P129	T>G	1.37E-07	2.38E-08	5.77	[5.70, 5.84]
FFPE						
Biopsy	P2	C>A	1.16E-05	6.10E-07	19.02	[18.72, 19.31]
FFPE						
Biopsy	P2	C>G	6.14E-06	9.41E-07	6.53	[6.01, 7.04]
FFPE						
Biopsy	P2	C>T	1.89E-04	2.53E-05	7.5	[6.63, 8.38]

T		T P	T	,		
FFPE						
Biopsy	P2	T>A	9.43E-07	7.24E-07	1.3	[0.44, 2.17]
FFPE	1					
Biopsy	P2	T>C	4.91E-06	1.96E-06	2.5	[1.74, 3.26]
FFPE						
Biopsy	P2	T>G	1.17E-06	1.03E-07	11.33	[11.27, 11.39]
FFPE	1					
Biopsy	P73	C>A	4.47E-06	2.13E-07	21.01	[20.81, 21.20]
FFPE						
Biopsy	P73	C>G	1.71E-06	2.74E-07	6.24	[5.84, 6.65]
FFPE	1					
Biopsy	P73	C>T	3.71E-05	9.63E-06	3.85	[2.96, 4.74]
FFPE	1					
Biopsy	P73	T>A	2.67E-07	1.86E-07	1.43	[0.65, 2.22]
FFPE	1					
Biopsy	P73	T>C	1.08E-06	7.32E-07	1.47	[0.60, 2.35]
FFPE	1					
Biopsy	P73	T>G	1.78E-07	0.00E+00	inf	[0.00, 0.00]
FFPE	1					
Biopsy	P95	C>A	6.60E-06	6.79E-07	9.73	[9.31, 10.15]
FFPE						
Biopsy	P95	C>G	2.91E-06	9.28E-07	3.14	[2.48, 3.80]
FFPE	1					
Biopsy	P95	C>T	1.12E-04	2.77E-05	4.05	[3.14, 4.97]
FFPE	1					
Biopsy	P95	T>A	4.67E-07	3.69E-07	1.27	[0.41, 2.12]
FFPE	P95	T>C	2.42E-06	2.28E-06	1.06	[0.08, 2.05]

Biopsy						
FFPE						
Biopsy	P95	T>G	5.77E-07	1.52E-07	3.8	[3.48, 4.12]

Table S4: Sequencing metrics for all samples profiled by targeted panel sequencing.

						Numb er of			
						duple			
				Numb		х	Numb		
			ER/AT	er of	On	bases	er of		
		DNA damage	metho	raw	target	evalu	base	Error	CI
Specimen	Patient ID	inducers	d	reads	rates	ated	errors	Rate	(95%)
		0µM_CuCl2/	Correct	4 005	0.004	10010		0 405	[1.44e -08,
		H2O2+0m0_		1.29E	0.981	12216	4	8.19E	4.64e
CIDNA	HD_78	DNase1	ER/AT	+08	72	528	1	-08	-07]
		0µM_CuCl2/ H2O2+0.2mU	Conv	1 54F	0 982	10417		2 88F	[9.79e -08, 8 47e
cfDNA	HD_78	_DNase1	ER/AT	+08	728	986	3	-07	-07]
cfDNA	HD_78	0µM_CuCl2/ H2O2+2mU_ DNase1	Conv. ER/AT	1.39E +08	0.983 843	94064 23	5	5.32E -07	[2.27e -07, 1.24e -06]
		2µM_CuCl2/ H2O2+0mU	Conv.	1.58E	0.982	10542		3.79E	- [1.48e -07, 9.76e
cfDNA	HD_78	DNase1	ER/AT	+08	447	247	4	-07	-07]
		2µM_CuCl2/	Conv	1 265	0.000	11/20		1 275	[1.87e -07,
cfDNA	HD_78	_DNase1	ER/AT	+08	0.962	892	5	4.37⊑ -07	-06]

		2µM_CuCl2/	Conv	1 85E	0 983	75596		6 61 F	[2.83e -07, 1.55e
cfDNA	HD_78	DNase1	ER/AT	+08	726	20	5	-07	-06]
cfDNA	HD_78	100µM_CuCl 2/H2O2+0mU _DNase1	Conv. ER/AT	1.33E +08	0.982 054	11668 760	5	4.28E -07	[1.83e -07, 1.00e -06]
cfDNA	HD_78	100µM_CuCl 2/H2O2+0.2 mU_DNase1	Conv. ER/AT	1.47E +08	0.981 823	10624 035	7	6.59E -07	[3.19e -07, 1.36e -06]
cfDNA	HD_78	100µM_CuCl 2/H2O2+2mU _DNase1	Conv. ER/AT	1.66E +08	0.983 928	83802 84	7	8.35E -07	[4.05e -07, 1.72e -06]
cfDNA	HD_78	0µM_CuCl2/ H2O2+0mU_ DNase1	Conv. ER/AT	1.51E +08	0.981 821	13171 944	3	2.28E -07	[7.75e -08, 6.70e -07]
cfDNA	HD_78	0µM_CuCl2/ H2O2+0.2mU _DNase1	Conv. ER/AT	1.30E +08	0.982 407	11141 949	3	2.69E -07	[9.16e -08, 7.92e -07]
cfDNA	HD_78	0µM_CuCl2/ H2O2+2mU_ DNase1	Conv. ER/AT	1.66E +08	0.983 527	10042 644	6	5.97E -07	[2.74e -07, 1.30e -06]
cfDNA	HD_78	2µM_CuCl2/ H2O2+0mU_ DNase1	Conv. ER/AT	1.20E +08	0.982 558	10956 968	1	9.13E -08	[1.61e -08, 5.17e -07]
cfDNA	HD_78	2µM_CuCl2/ H2O2+0.2mU _DNase1	Conv. ER/AT	1.67E +08	0.982 041	10056 176	2	1.99E -07	[5.45e -08, 7.25e -07]
cfDNA	HD_78	2µM_CuCl2/	Conv.	1.95E	0.983	89659	3	3.35E	[1.14e

		H2O2+2mU_ DNase1	ER/AT	+08	867	81		-07	-07, 9.84e -07]
cfDNA	HD_78	100µM_CuCl 2/H2O2+0mU _DNase1	Conv. ER/AT	1.30E +08	0.982 483	12904 331	3	2.32E -07	[7.91e -08, 6.84e -07]
cfDNA	HD_78	100µM_CuCl 2/H2O2+0.2 mU_DNase1	Conv. ER/AT	1.30E +08	0.981 903	10159 501	6	5.91E -07	[2.71e -07, 1.29e -06]
cfDNA	HD_78	100µM_CuCl 2/H2O2+2mU _DNase1	Conv. ER/AT	1.52E +08	0.984 147	69539 14	7	1.01E -06	[4.88e -07, 2.08e -06]
cfDNA	HD_78	0µM_CuCl2/ H2O2+0mU_ DNase1	Conv. ER/AT	1.49E +08	0.980 883	12742 674	4	3.14E -07	[1.22e -07, 8.07e -07]
cfDNA	HD_78	0µM_CuCl2/ H2O2+0.2mU _DNase1	Conv. ER/AT	1.39E +08	0.981 531	12832 585	3	2.34E -07	[7.95e -08, 6.87e -07]
cfDNA	HD_78	0µM_CuCl2/ H2O2+2mU_ DNase1	Conv. ER/AT	1.48E +08	0.983 953	69980 68	2	2.86E -07	[7.84e -08, 1.04e -06]
cfDNA	HD_78	2µM_CuCl2/ H2O2+0mU_ DNase1	Conv. ER/AT	1.53E +08	0.981 475	13027 274	0	0	[0.00e +00, 2.95e -07]
cfDNA	HD_78	2µM_CuCl2/ H2O2+0.2mU _DNase1	Conv. ER/AT	1.54E +08	0.982 044	11278 606	1	8.87E -08	[1.57e -08, 5.02e -07]
cfDNA	HD_78	2µM_CuCl2/ H2O2+2mU_	Conv. ER/AT	1.82E +08	0.982 618	86820 12	5	5.76E -07	[2.46e -07,

		DNase1							1.35e -06]
cfDNA	HD_78	100µM_CuCl 2/H2O2+0mU _DNase1	Conv. ER/AT	1.37E +08	0.981 088	11267 015	5	4.44E -07	[1.90e -07, 1.04e -06]
cfDNA	HD_78	100µM_CuCl 2/H2O2+0.2 mU_DNase1	Conv. ER/AT	1.33E +08	0.980 935	88740 34	3	3.38E -07	[1.15e -07, 9.94e -07]
cfDNA	HD_78	100µM_CuCl 2/H2O2+2mU _DNase1	Conv. ER/AT	1.27E +08	0.983 378	73194 79	5	6.83E -07	[2.92e -07, 1.60e -06]
cfDNA	damaged _HD_78_ cfDNA	100µM_CuCl 2/H2O2_+_2 mU_DNase1	Duple x- Repair	5.34E +07	0.988 432	44538 494	13	2.92E -07	[1.71e -07, 4.99e -07]
cfDNA	damaged _HD_78_ cfDNA	100µM_CuCl 2/H2O2_+_2 mU_DNase2	Duple x- Repair	6.42E +07	0.988 659	43911 733	21	4.78E -07	[3.13e -07, 7.31e -07]
cfDNA	damaged _HD_78_ cfDNA	100µM_CuCl 2/H2O2_+_2 mU_DNase3	Duple x- Repair	6.92E +07	0.988 647	50237 066	18	3.58E -07	[2.27e -07, 5.66e -07]
cfDNA	HD_78	NA	Duple x- Repair	1.12E +08	0.983 891	22096 7435	20	9.05E -08	[5.86e -08, 1.40e -07]
cfDNA	HD_78	NA	Duple x- Repair	1.22E +08	0.982 716	20527 0556	24	1.17E -07	[7.86e -08, 1.74e -07]
cfDNA	HD_78	NA	Duple x- Repair	1.15E +08	0.983 438	24664 9702	24	9.73E -08	[6.54e -08, 1.45e

									-07]
cfDNA	P33	NA	Duple x- Repair	1.48E +07	0.965 585	28090 417	15	5.34E -07	[3.24e -07, 8.81e -07]
cfDNA	P33	NA	Conv. ER/AT	3.96E +07	0.970 814	98148 695	133	1.36E -06	[1.14e -06, 1.61e -06]
cfDNA	P48	NA	Duple x- Repair	3.91E +07	0.986 819	63145 388	27	4.28E -07	[2.94e -07, 6.22e -07]
cfDNA	P48	NA	Conv. ER/AT	6.12E +07	0.980 437	11212 2125	426	3.80E -06	[3.46e -06, 4.18e -06]
cfDNA	P73	NA	Duple x- Repair	3.39E +07	0.983 176	55844 344	20	3.58E -07	[2.32e -07, 5.53e -07]
cfDNA	P73	NA	Conv. ER/AT	3.46E +07	0.981 357	95264 860	135	1.42E -06	[1.20e -06, 1.68e -06]
FFPE Tumor Biopsy	P106	NA	Conv. ER/AT	5.36E +07	0.988 84	20006 860	521	2.60E -05	[2.39e -05, 2.84e -05]
FFPE Tumor Biopsy	P106	NA	Conv. ER/AT	6.61E +07	0.988 419	23707 349	665	2.81E -05	[2.60e -05, 3.03e -05]
FFPE Tumor Biopsy	P106	NA	Conv. ER/AT	9.51E +07	0.988 755	43482 673	1235	2.84E -05	[2.69e -05, 3.00e -05]

FFPE Tumor Biopsy	P106	NA	Duple x- Repair	6.73E +07	0.991 287	49319 461	467	9.47E -06	[8.65e -06, 1.04e -05]
FFPE Tumor Biopsy	P106	NA	Duple x- Repair	8.13E +07	0.991 346	53118 736	538	1.01E -05	[9.31e -06, 1.10e -05]
FFPE Tumor Biopsy	P106	NA	Duple x- Repair	6.85E +07	0.991 322	50713 014	551	1.09E -05	[9.99e -06, 1.18e -05]
FFPE Tumor Biopsy	P95	NA	Conv. ER/AT	8.51E +07	0.990 015	17146 216	879	5.13E -05	[4.80e -05, 5.48e -05]
FFPE Tumor Biopsy	P95	NA	Conv. ER/AT	7.61E +07	0.990 807	24648 513	1564	6.35E -05	[6.04e -05, 6.67e -05]
FFPE Tumor Biopsy	P95	NA	Conv. ER/AT	8.33E +07	0.990 089	27917 450	1734	6.21E -05	[5.93e -05, 6.51e -05]
FFPE Tumor Biopsy	P95	NA	Duple x- Repair	8.51E +07	0.991 906	32413 963	530	1.64E -05	[1.50e -05, 1.78e -05]
FFPE Tumor Biopsy	P95	NA	Duple x- Repair	7.40E +07	0.991 789	28687 673	471	1.64E -05	[1.50e -05, 1.80e -05]
FFPE Tumor Biopsy	P95	NA	Duple x- Repair	7.44E +07	0.991 882	29219 082	421	1.44E -05	[1.31e -05, 1.59e -05]
FFPE	P2	NA	Conv.	6.47E	0.984	13700	1078	7.87E	[7.41e

Tumor Biopsy			ER/AT	+07	017	238		-05	-05, 8.35e -05]
FFPE Tumor Biopsy	P2	NA	Conv. ER/AT	5.20E +07	0.985 261	23873 009	2729	0.000 11431	[1.10e -04, 1.19e -04]
FFPE Tumor Biopsy	P2	NA	Conv. ER/AT	7.87E +07	0.986 823	24256 287	2853	0.000 11762	[1.13e -04, 1.22e -04]
FFPE Tumor Biopsy	P2	NA	Duple x- Repair	1.00E +08	0.992 637	26565 686	469	1.77E -05	[1.61e -05, 1.93e -05]
FFPE Tumor Biopsy	P2	NA	Duple x- Repair	1.03E +08	0.992 481	27540 728	457	1.66E -05	[1.51e -05, 1.82e -05]
FFPE Tumor Biopsy	P2	NA	Duple x- Repair	9.27E +07	0.992 096	14224 743	209	1.47E -05	[1.28e -05, 1.68e -05]
FFPE Tumor Biopsy	P73	NA	Conv. ER/AT	9.77E +07	0.988 559	49482 848	988	2.00E -05	[1.88e -05, 2.13e -05]
FFPE Tumor Biopsy	P73	NA	Conv. ER/AT	8.96E +07	0.988 492	45128 942	860	1.91E -05	[1.78e -05, 2.04e -05]
FFPE Tumor Biopsy	P73	NA	Conv. ER/AT	8.27E +07	0.991 062	51361 631	1184	2.31E -05	[2.18e -05, 2.44e -05]
FFPE Tumor	P73	NA	Duple x-	9.48E +07	0.991 359	46828 201	251	5.36E -06	[4.74e -06,

Biopsy			Repair						6.07e -06]
FFPE Tumor Biopsy	P73	NA	Duple x- Repair	9.98E +07	0.992 118	43268 486	197	4.55E -06	[3.96e -06, 5.23e -06]
FFPE Tumor Biopsy	P73	NA	Duple x- Repair	1.03E +08	0.991 284	50748 145	286	5.64E -06	[5.02e -06, 6.33e -06]
FFPE Tumor Biopsy	P129	NA	Conv. ER/AT	6.19E +07	0.990 651	38198 285	790	2.07E -05	[1.93e -05, 2.22e -05]
FFPE Tumor Biopsy	P129	NA	Conv. ER/AT	5.70E +07	0.988 617	46259 759	1411	3.05E -05	[2.90e -05, 3.21e -05]
FFPE Tumor Biopsy	P129	NA	Conv. ER/AT	8.37E +07	0.988 78	67552 550	2111	3.12E -05	[2.99e -05, 3.26e -05]
FFPE Tumor Biopsy	P129	NA	Duple x- Repair	6.32E +07	0.990 994	46410 054	300	6.46E -06	[5.77e -06, 7.24e -06]
FFPE Tumor Biopsy	P129	NA	Duple x- Repair	6.47E +07	0.990 846	47452 054	315	6.64E -06	[5.94e -06, 7.41e -06]
FFPE Tumor Biopsy	P129	NA	Duple x- Repair	6.50E +07	0.991 667	67397 721	463	6.87E -06	[6.27e -06, 7.52e -06]
cfDNA	HD_67	NA	Conv. ER/AT	1.15E +08	0.987 253	28724 1318	94	3.27E -07	[2.67e -07, 4.00e

									-07]
cfDNA	HD_67	NA	Conv. ER/AT	1.21E +08	0.987 747	22837 3435	100	4.38E -07	[3.60e -07, 5.33e -07]
cfDNA	HD_67	NA	Conv. ER/AT	1.07E +08	0.987 641	21251 0412	90	4.24E -07	[3.45e -07, 5.21e -07]
cfDNA	HD_67	NA	Duple x- Repair	15562 0562	0.980 312	32679 6016	95	2.91E -07	[2.38e -07, 3.55e -07]
cfDNA	HD_67	NA	Duple x- Repair	11388 6380	0.980 136	24248 3444	102	4.21E -07	[3.47e -07, 5.11e -07]
cfDNA	HD_67	NA	Duple x- Repair	12750 5618	0.980 876	27230 8087	81	2.97E -07	[2.39e -07, 3.70e -07]
cfDNA	HD_77	NA	Conv. ER/AT	15971 1982	0.987 585	45950 9299	318	6.92E -07	[6.20e -07, 7.72e -07]
cfDNA	HD_77	NA	Conv. ER/AT	13494 4370	0.988 378	24708 1170	201	8.13E -07	[7.09e -07, 9.34e -07]
cfDNA	HD_77	NA	Conv. ER/AT	12608 6546	0.987 581	27168 1550	238	8.76E -07	[7.72e -07, 9.95e -07]
cfDNA	HD_77	NA	Duple x- Repair	16810 5150	0.976 197	32053 9624	96	2.99E -07	[2.45e -07, 3.66e -07]

-									
cfDNA		NA	Duple x- Repair	14719	0.976	28768	74	2.57E -07	[2.05e -07, 3.23e -07]
				1012	10	0401		0,	
			Duple						-07,
			X-	11385	0.973	22230		2.74E	3.52e
cfDNA	HD_77	NA	Repair	1702	208	7450	61	-07	-07]
									[8.51e -07,
			Conv.	83749	0.978	20839		1.25E	1.83e
cfDNA	HD_79	NA	ER/AT	956	007	707	26	-06	-06]
cfDNA	HD 79	NA	Conv. ER/AT	89172 830	0.977 934	22898 460	25	1.09E -06	[7.40e -07, 1.61e -06]
									[5.92e
cfDNA	HD_79	NA	Conv. ER/AT	14613 4132	0.983 414	15276 7879	109	7.14E -07	-07, 8.61e -07]
cfDNA	HD_79	NA	Duple x- Repair	17878 1140	0.977 662	25155 9928	88	3.50E -07	[2.84e -07, 4.31e -07]
cfDNA	HD_79	NA	Duple x- Repair	90429 248	0.974 458	22015 921	35	1.59E -06	[1.14e -06, 2.21e -06]
cfDNA	HD_79	NA	Duple x- Repair	16066 5758	0.977 917	24145 9115	74	3.06E -07	[2.44e -07, 3.85e -07]

			total_base_	total_bas		total_bas		
		data_t	errors_er-	es_eval_	total_base_	es_eval_	binom_	
patient_id	dna_type	уре	at	er-at	errors_d-r	d-r	p_value	stars
				8719688			1.26E-	
P106	gDNA	dsc	2421	2	1.56E+03	1.53E+08	228	***
				1520105				
P129	gDNA	dsc	4312	94	1.08E+03	1.61E+08	0	***
				6182953				
P2	gDNA	dsc	6660	4	1.14E+03	6.83E+07	0	***
				9814869			0.0001	
P33	cfDNA	dsc	133	5	1.50E+01	2.81E+07	971	***
				1121221		6314538	7.73E-	
P48	cfDNA	dsc	426	25	27	8	41	***
				9526486		5584434	2.75E-	
P73	cfDNA	dsc	135	0	20	4	10	***
				1459734		1408448	1.09E-	
P73	gDNA	dsc	3032	21	734	32	289	***
				6971217		9032071		
P95	gDNA	dsc	4177	9	1422	8	0	***
				7281251		8415875	0.0243	
HD_67	cfDNA	dsc	284	65	278	47	1536	*
				9782720		8305274	3.73E-	
HD_77	cfDNA	dsc	757	19	231	75	46	***
				9514722		6728876	3.92E-	
HD_78	cfDNA	dsc	307	69	62	87	22	***
				1965060		5150349	1.81E-	
HD_79	cfDNA	dsc	160	46	197	64	13	***
				2726357		3682679		
HD_67	cfDNA	SSC	64515	147	44325	397	0	***
				3393231		3175674		
HD_77	cfDNA	SSC	77658	581	33436	821	0	***
HD_78	cfDNA	SSC	62391	2659902	40531	3047703	0	***

 Table S5: Clinical samples tested with calculated p-values.

				925		136		
				9834750		1933927		
HD_79	cfDNA	ssc	38706	08	27059	680	0	***
				7812585		9373182		
P106	gDNA	ssc	253906	01	115514	33	0	* * *
				9357387		9269472		
P129	gDNA	SSC	269950	09	96514	95	0	***
				4339784		4111903		
P2	gDNA	SSC	246281	86	70662	18	0	* * *
				2798734		1384749	3.81E-	
P33	cfDNA	SSC	8907	19	1989	36	238	* * *
				3440017		2174763		
P48	cfDNA	SSC	17187	55	2633	34	0	***
				3225027		2211799		
P73	cfDNA	SSC	10818	70	3476	42	0	***
				1038992		9899545		
P73	gDNA	SSC	254718	250	89271	27	0	***
				5245683		4953584		
P95	gDNA	SSC	259101	82	83345	54	0	***
				2710271		4018288		
HD_67	cfDNA	raw	1078421	751	1629802	526	1	-
				3127576		3184355		
HD_77	cfDNA	raw	928213	014	1283583	471	1	-
				3648579		3126690	2.39E-	
HD_78	cfDNA	raw	1136603	542	957481	908	35	***
				1037374		1875556	0.9999	
HD_79	cfDNA	raw	407005	537	741377	018	3612	-
				1093812		1140806		
P106	gDNA	raw	864788	190	482096	327	0	***
				1139213		1086832		
P129	gDNA	raw	824944	367	449896	587	0	***
				5958710		4981278		
P2	gDNA	raw	747902	40	295360	21	0	* * *

				2657188		1826372	4.60E-	
P33	cfDNA	raw	131725	83	76541	55	300	***
				3469784		2262521		
P48	cfDNA	raw	178553	90	76638	17	0	***
				3314825		2397677		
P73	cfDNA	raw	155983	92	88822	78	0	***
				1281655		1183109		
P73	gDNA	raw	831924	767	462957	503	0	***
				6922460		5846197		
P95	gDNA	raw	727896	25	284807	45	0	***
0uM_CuCl								
2/H2O2+0								
mU_DNase				9514722		6728876	2.68E-	
1	cfDNA	dsc	307	69	68	93	20	***
100uM_Cu								
CI2/H2O2+								
2mU_DNas				5535539		1386872	3.95E-	
e1	cfDNA	dsc	648	32	5.20E+01	93	17	***

Table S6: Error rates for	or SSC and	conventional	raw NGS da	ita.
---------------------------	------------	--------------	------------	------

				Number of			
		Data	ER/AT	bases	Number of		
Specimen	Patient ID	Туре	method	evaluated	base errors	Error Rate	CI (95%)
cfDNA	HD_67	raw	Conv. ER/AT	2710271751	1.08E+06	3.98E-04	[3.97e-04, 3.99e-04]
cfDNA	HD_67	raw	Duplex-Repair	4018288526	1.63E+06	4.06E-04	[4.05e-04 <i>,</i> 4.06e-04]
cfDNA	HD_77	raw	Conv. ER/AT	3127576014	9.28E+05	2.97E-04	[2.96e-04 <i>,</i> 2.97e-04]
cfDNA	HD_77	raw	Duplex-Repair	3184355471	1.28E+06	4.03E-04	[4.02e-04 <i>,</i> 4.04e-04]
cfDNA	HD_78	raw	Conv. ER/AT	3648579542	1136603	3.12E-04	[3.11e-04, 3.12e-04]

							[3.06e-04,
cfDNA	HD_78	raw	Duplex-Repair	3126690908	957481	3.06E-04	3.07e-04]
							[3.91e-04 <i>,</i>
cfDNA	HD_79	raw	Conv. ER/AT	1037374537	407005	3.92E-04	3.94e-04]
							[3.94e-04 <i>,</i>
cfDNA	HD_79	raw	Duplex-Repair	1875556018	741377	3.95E-04	3.96e-04]
							[7.89e-04,
gDNA	P106	raw	Conv. ER/AT	1093812190	864788	7.91E-04	7.92e-04]
							[4.21e-04,
gDNA	P106	raw	Duplex-Repair	1140806327	482096	4.23E-04	4.24e-04]
							[7.23e-04,
gDNA	P129	raw	Conv. ER/AT	1139213367	824944	7.24E-04	7.26e-04]
	5400			40000000000			[4.13e-04,
gDNA	P129	raw	Duplex-Repair	1086832587	449896	4.14E-04	4.15e-04]
				505074040	747000	4 265 02	[1.25e-03,
gDNA	PZ	raw	CONV. ER/AT	595871040	747902	1.26E-03	1.26e-03]
~ D N A	52	10.11	Duralau Danain	400107001	205260		[5.91e-04,
gDNA	PZ	raw	Duplex-Repair	498127821	295360	5.93E-04	5.95e-04]
	220	r014/		265710002	121725	4 065 04	[4.93e-04,
CIDINA	F 3 3	Idw	COIIV. EK/AT	203710005	151725	4.902-04	4.966-04]
cfDNA	D33	r214/	Dupley-Repair	182637255	765/11	1 19F-01	[4.16e-04,
	F 3 3	law	Duplex-Repair	182037233	/0341	4.191-04	4.220-04]
cfDNA	P/18	raw		3/6978/90	178553	5 15F-04	[5.12e-04, 5 17e-04]
CIDINA	1 40			540576450	1/0555	J.1JL 04	
cfDNA	P48	raw	Dunlex-Renair	226252117	76638	3 39F-04	[3.36e-04, 3 41e-04]
				220252117	/ 0030	5.552 04	
cfDNA	P73	raw	Conv FR/AT	331482592	155983	4 71F-04	[4.68e-04, 4 73e-04]
				551 102552	100000		
cfDNA	P73	raw	Duplex-Repair	239767778	88822	3.70F-04	[5.06e-04, 3.73e-04]
				233707770	00022	5.752 04	[6 480 04
gDNA	P73	raw	Conv. FR/AT	1281655767	831924	6.49F-04	6.50e-041
00.0	1.75			1201000,07	001024	0.132 04	

							[3.90e-04,
gDNA	P73	raw	Duplex-Repair	1183109503	462957	3.91E-04	3.92e-04]
							[1.05e-03,
gDNA	P95	raw	Conv. ER/AT	692246025	727896	1.05E-03	1.05e-03]
							[4.85e-04,
gDNA	P95	raw	Duplex-Repair	584619745	284807	4.87E-04	4.89e-04]
							[2.35e-05,
cfDNA	HD_67	SSC	Conv. ER/AT	2726357147	64515	2.37E-05	2.38e-05]
(-							[1.19e-05,
cfDNA	HD_67	SSC	Duplex-Repair	3682679397	44325	1.20E-05	1.21e-05]
(-							[2.27e-05,
cfDNA	HD_77	SSC	Conv. ER/AT	3393231581	77658	2.29E-05	2.30e-05]
(5.1.4							[1.04e-05,
cfDNA	HD_//	SSC	Duplex-Repair	31/56/4821	33436	1.05E-05	1.06e-05]
(5))				2650000005	62204	2 2FF 0F	[2.33e-05,
CTDNA	HD_78	SSC	Conv. ER/AT	2659902925	62391	2.35E-05	2.36e-05]
	115 70			2047702426	40524	4 225 05	[1.32e-05,
CTDNA	HD_78	SSC	Duplex-Repair	3047703136	40531	1.33E-05	1.34e-05]
	110 70			002475000	20706		[3.90e-05,
CTDNA	HD_79	SSC	Conv. ER/AT	983475008	38706	3.94E-05	3.98e-05]
			Duralau Danain	100007000	27050		[1.38e-05,
CIDNA	HD_79	SSC	Duplex-Repair	1933927680	27059	1.40E-05	1.42e-05j
	D10C			701250501	252000	2 255 04	[3.24e-04,
gDNA	P106	SSC	CONV. ER/AT	/81258501	253906	3.25E-04	3.26e-04j
	D106		Dunlay Danair	027210222	115514	1 225 04	[1.23e-04,
gDNA	P106	SSC	Duplex-Repair	93/318233	115514	1.23E-04	1.24e-04j
	D120			025720700	260050		[2.87e-04,
gDNA	P129	SSC	CONV. ER/AT	935/38/09	209950	2.885-04	2.90e-04]
	D120		Dunlay Danair	026047205	06514		[1.03e-04,
RDINA	P129	SSC	Duplex-kepair	920947295	90514	1.04E-04	1.05e-04]
	20			422070400	246204		[5.65e-04,
BDINA	P2	SSC	CONV. ER/AT	433978486	246281	5.0/E-04	5.70e-04]

-							
gDNA	P2	ssc	Duplex-Repair	411190318	70662	1.72E-04	[1.71e-04, 1.73e-04]
cfDNA	P33	ssc	Conv. ER/AT	279873419	8.91E+03	3.18E-05	[3.12e-05, 3.25e-05]
cfDNA	P33	ssc	Duplex-Repair	138474936	1.99E+03	1.44E-05	[1.37e-05, 1.50e-05]
cfDNA	P48	ssc	Conv. ER/AT	344001755	17187	5.00E-05	[4.92e-05, 5.07e-05]
cfDNA	P48	ssc	Duplex-Repair	217476334	2633	1.21E-05	[1.17e-05, 1.26e-05]
cfDNA	P73	ssc	Conv. ER/AT	322502770	10818	3.35E-05	[3.29e-05 <i>,</i> 3.42e-05]
cfDNA	P73	ssc	Duplex-Repair	221179942	3476	1.57E-05	[1.52e-05, 1.62e-05]
gDNA	P73	ssc	Conv. ER/AT	1038992250	254718	2.45E-04	[2.44e-04, 2.46e-04]
gDNA	P73	ssc	Duplex-Repair	989954527	89271	9.02E-05	[8.96e-05 <i>,</i> 9.08e-05]
gDNA	P95	ssc	Conv. ER/AT	524568382	259101	4.94E-04	[4.92e-04, 4.96e-04]
gDNA	P95	ssc	Duplex-Repair	495358454	83345	1.68E-04	[1.67e-04, 1.69e-04]