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S1 Taxonomic representativeness of the most important vascular
plant families in grasslands
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Figure S1: Taxonomic representativeness of the most important vascular plant families in grasslands. We
selected seven WWF open-habitat eco-regions and quantified the number of species of the most abundant families using the R
package ‘rgbif’ [5].
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S2 Extent of major biomes (107 km2) using an equilibrium vege-
tation model (BIOME4)
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Figure S2: Extent of major biomes (107 km2) using an equilibrium vegetation model (BIOME4) [9]. a)
Intertropical (30◦N-30◦S) extent of tropical forest, savanna and dry woodland, desert, grassland and dry shrubland and warm-
temperate forest as a result of simulated LGM climate changes alone, LGM climate and reduced CO2 concentrations compared
to modern extent of the same biomes. b) Northern hemisphere extent of tundra, boreal-temperate forest, desert and grassland
and dry shrubland as a result of simulated LGM climate changes alone, LGM climate plus reduced CO2 conditions. The output
of each of the seventeen climate simulations was averaged for each major biome in order to obtain a more compelling story
about the effects of climate and CO2 concentrations on the vegetation. Overall, the modeled physiological impact of low CO2

produces i) a pronounced shift towards open-habitat vegetation, and ii) a reduction of ∼50% of reduction in the area of tropical
forests compared to the area simulated under modern climate and CO2 conditions [9].
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S3 Asteraceae fossil species

Table S1: Asteraceae fossil species. Fossil data from Asteraceae come almost exclusively from pollen grains. The oldest
Asteracean-like pollen comes from the latest Cretaceous of Antarctica and New Zealand [3], assigned to the Barnadesioideae,
the sister subfamily to the core-Asteraceae. The unique macrofossil (inflorescence and associated pollen grains) confidently
assigned to Asteraceae comes from the Middle Eocene of Patagonia showing similarities with the Mutisioideae and Carduoideae
[2]. The earliest record of the Asteroideae (the clade that includes the most common open-habitat daisy tribes) occurs since the
Late Oligocene of New Zealand but in very low frequencies. Fossils refer to this subfamily increased in abundance and diversity
during the Miocene and Pliocene. Pollen referred to Artemisia, in particular, did not become abundant until the Middle-Late
Miocene with several reports from central Europe, Asia and North America. Pre-Miocene findings need further verification.
Overall, the Late Oligocene and in particular the Miocene witnessed the major step on the diversification of Asteraceae; ca.
80% of the fossil species recorded have been defined for this time interval.

Species Botanical Affinity Epoch

Tubulifloridites lilliei type A sensu Barreda et al [3] Barnadesioideae Maastrichtian
Tubulifloridites sp. sensu Raine 2008 [16] Mutisioideae/Carduoideae? Early Eocene
Mutisiapollis tellerieae Barreda and Palazzesi Mutisioideae/Carduoideae Middle Eocene
Raiguenrayun cura Barreda et al Mutisioideaea/Carduoideae Middle Eocene
Mutisiapollis patersonii Macphail and Hill Mutisioideae (Mutisieae, Mutisia type) Early Oligocene
Tubulifloridites antipodica Cookson Asteroideae Oligocene/Miocene
Tricolporopollenites microechinatus Trevisan Asteroideae Oligocene/Miocene
Mutisiapollis viteauensis Barreda Gochnatioideae (Cnicothamnus type) Early Miocene
Huanilipollis cabrerii Barreda and Palazzesi Mutisioideae (Nassauvieae) Early Miocene
Huanilipollis criscii Barreda and Palazzesi Mutisioideae (Nassauvieae) Early Miocene
Cichorieacidites ixeriformis Zheng Cichorioideae Middle Miocene
Lapsana type Lancucka-Srodoniowa Cichorioideae (Cichorieae) Middle Miocene
Tubulifloridites granulosus Nagy Asteroideae Miocene
Tubulifloridites simplis Martin Asteroideae Miocene
Echitricolporites spinosus Germeraad et al Asteroideae Miocene
Tubulifloridites anthemidearum Nagy Asteroideae (Anthemideae) Miocene
Artemisia type sensu Leopold [14] Asteroideae (Anthemideae) Miocene
Tubulifloridites ambrosinae Nagy Asteroideae (Ambrosiinae) Miocene
Tubulifloridites sp. (Ambrosia type) Guler et al Asteroideae (Heliantheae) Miocene
Xanthium type Cavallo and Martinetto Asteroideae (Heliantheae) Miocene
Tubulifloridites grandis Nagy Asteroideae? Miocene
Compositae indet sensu Graham [8] Asteroideae? Miocene
Quilembaypollis gamerroi Palazzesi and Barreda Barnadesioideae (Chuquiraga type) Miocene
Quilembaypollis tayuoides Barreda and Palazzesi Barnadesioideae (Dasyphyllum type) Miocene
Quilembaypollis stuessyi Palazzesi and Barreda Barnadesioideae (Schlechtendalia type) Miocene
Cirsium type Lancucka-Srodoniowa Carduoideae Miocene
Cichoriaearumpollenites gracilis Nagy Cichorioideae Miocene
Cichorium intybus type Hochuli Cichorioideae (Cichorieae) Miocene
Mutisiapollis sp. sensu Barreda et al 2006 [1] Mutisioideae (Mutisieae) Miocene
Tricolporopollenites microspinulitegillatus Trevisan Asteroideae (Anthemideae, Artemisia type) Miocene/Pliocene
Tricolporopollenites rarispinulitegillatus Trevisan Asteroideae (Anthemideae, Artemisia type) Miocene/Pliocene
Artemisiaepollenites minor Zhu Asteroideae (Anthemideae) Miocene/Pliocene
Tubulifloridites minutus Regali Asteroideae (Astereae, Solidago type) Miocene/Pliocene
Echitricolporites mcneillyi Germeraad et al Asteroideae (Heliantheae, Ambrosiinae) Miocene/Pliocene
Echitricolporites sp. sensu Wang [19] Asteroideae Miocene/Pliocene
Tubulifloridites sp. sensu Wang [19] Asteroideae? Miocene/Pliocene
Tricolporopollenites kozaniensis Weiland Carduoideae? Miocene/Pliocene
Tubulifloridites macroechinatus Nagy Carduoideae? Miocene/Pliocene
ricolporopollenites spinilophatus Trevisan Cichorioideae (Cichorieae, Sonchus type) Miocene/Pliocene
Cichorium type sensu Blackmore [4] Cichorioideae (Cichorieae) Miocene/Pliocene
Fenestrites longispinosus Lorente Cichorioideae (Cichorieae) Miocene/Pliocene
Ligulifloridites sp. sensu Couper [7] Cichorioideae (Cichorieae) Miocene/Pliocene
Sonchus type sensu Blackmore [4] Cichorioideae (Cichorieae) Miocene/Pliocene
Fenestrites spinosus Hammen Cichoroideae (Cichorieae/Vernoniae) Miocene/Pliocene
Artemisiaepollenites sellularis Nagy Asteroideae (Anthemideae) Miocene/Pliocene
Artemisiaepollenites leatus Zheng Asteroideae (Anthemideae) Pliocene
Scorzonera type sensu Blackmore [4] Cichorioideae (Cichorieae) Pliocene
Tubulifloridites pleistocenicus Martin Asteroideae Pliocene/Pleistocene
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S4 Asteraceae genes

Table S2: Asteraceae genes Number of taxa (total and sampled) and genes used in phylogenetic analyses for each clade of
Asteraceae.

Clades Number of Species Sampled Species Age Genes

Barnadesioideae 92 70 64.41 ITS, trnL, matK except 7 species of the back-
bone that include 12 markers (see Panero et
al. 2015)

Famatinanthoideae 1 1 60.82 accD, atpB, matK, ndhD, ndhF, ndhI, nd-
hJKC, rbcL, rpoB, rpoC1exon2, trnL intron-
trnL-F spacer

Mutisioideae 637 210 40.55 ITS, ndhF except 12 species of the backbone
that include 12 markers

Stifftioideae 35 4 34.84 accD, atpB, matK, ndhD, ndhF, ndhI, nd-
hJKC, rbcL, rpoB, rpoC1exon1, rpoC1exon2,
trnL intron-trnL-F spacer

Wunderlichioideae 48 6 48.88 accD, atpB, matK, ndhD, ndhF, ndhI, nd-
hJKC, rbcL, rpoB, rpoC1exon1, rpoC1exon2,
trnL intron-trnL-F spacer

Gochnatioideae 85 32 42.60 ndhF, trnL except 3 species of the backbone
that include 12 markers

Hecastocleidoideae 1 1 46.86 accD, atpB, matK, ndhD, ndhF, ndhI, nd-
hJKC, rbcL, rpoB, rpoC1exon1, rpoC1exon2,
trnL intron-trnL-F spacer

Carduoideae 2865 373 24.26 psbA-trnH, matK except 5 species of the back-
bone that include 12 markers

Gymnarrhenoideae 2 1 38.19 accD, atpB, matK, ndhD, ndhF, ndhI, nd-
hJKC, rbcL, rpoB, rpoC1exon1, rpoC1exon2,
trnL intron-trnL-F spacer

Corymbioideae 7 1 32.13 accD, atpB, matK, ndhD, ndhF, ndhI, nd-
hJKC, rbcL, rpoB, rpoC1exon1, rpoC1exon2,
trnL intron-trnL-F spacer

Inuleae 680 105 20.03 psbA-trnH, trnL-F except 1 species of the
backbone that include 12 markers

Helianthodae 6611 510 21.41 ITS, matK except 6 species of the backbone
that include 12 markers

Senecionodae-Asterodae 10589 648 26.60 ITS, trnL-trnF except 3 species of the back-
bone that include 12 markers

Cichorioideae 3994 759 28.51 ITS, trnL-trnF except 4 species of the back-
bone that include 12 markers

Pertyoideae 70 2 17.35 accD, atpB, matK, ndhD, ndhF, ndhI, nd-
hJKC, rbcL, rpoB, rpoC1exon1, rpoC1exon2,
trnL intron-trnL-F spacer

Total 25717 2723
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S5 Poaceae genes

Table S3: Poaceae genes Number of taxa (total and sampled) and genes used in phylogenetic analyses for each clade of
Poaceae according to Spriggs et al (2014). Age estimations correspond to the calibration scenario 1 of Spriggs et al (2014)[17]

Clades Number of Species Sampled Species Age Genes

Pharoideae 12 1 57.80 matK, ndhF, rbcL
Puelioideae 11 1 53.98 matK, ndhF, rbcL
Ehrhartoideae 112 66 33.77 GPA1, ITS, matK, ndhC, ndhF, psbHpetB,

psbZ, rbcL rps19, trnHpsbA, ycf3
Bambusoideae 1441 418 23.27 matK, ndhF, rbcL, ITS, psbA-trnH, rpL16,

rpL32, rps16-trnQ, trnC-rpoB, trnL-trnF,
trnTtrnD

Pooideae 3850 1335 38.25 DMC1, ITS, matK, ndhF, pgk1, psbAtrnH,
rbcL, rpb2, rpoA, rps19, trnKrps16, trnLtrnF

Aristidoideae 365 125 27.95 ITS, matK, ndhF, rbcL, rpL16, trnL-trnF
Centotheceae 33 33 29.66 ndhF, rbcL, matk, trnLtrnF, phyB, ITS
Andropogoneae 1274 250 16.97 ITS, phyB, trnLtrnF, matK, ndhF, rbcL
Paspaleae 664 168 21.01 trnL-trnF, rbcL, psbA-trnH, atpB-rbcL, trnG,

rpL16, ndhF, matK, ITS
Paniceae-Gynerieae 1254 387 21.29 ITS, kn1, matK, ndhF, rbcL, rpL16, trnLtrnF
Danthonioideae 281 234 28.71 ndhF, rbcL, atpB-rbcL, ITS, psbM, rpl16,

rpoC2, trnC-trnD, trnL, ycf6-trnC, trnT-trnL,
matK

Chloridoideae 1721 534 32.91 ITS, matK, ndhF, rbcL rl16 rps16, rps3, trnL-
trnF

Arundinoideae-Micrairoideae 188+46 43 30.38 ITS, rpoC2, matK, ndhF, rbcL
Total 11256 3595
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S6 Environmental CO2 curve
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Figure S3: Environmental CO2 and changes in CO2 between time intervals. The lighter green line shows the
environmental CO2 as was used in the environmentally-dependent diversification rates models. The darker green line shows
the changes in CO2 over time, which might translate into changes in diversification rates if diversification rates are correlated
with environmental CO2.
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S7 Models and Priors for the environmental correlation analyses

S7.1 Fixed

Our first model, which is equivalent to the exponential environmentally-dependent diversification model of
Condamine et al. [6], has two parameters per speciation and extinction rate; the initial rate λ0 and µ0 and
the correlation factor β, with

λ0 ∼ Uniform(0, 100) (S1)

ln(λi) = ln(λi−1) + βλ × ∆CO2 . (S2)

Table S4: Model parameter names and prior distributions for the fixed model.

Parameter X f(X)

Speciation at present λ0 Uniform(0,100)
Extinction at present µ0 Uniform(0,100)
Speciation Correlation βλ Normal(0,1)
Extinction Correlation βµ Normal(0,1)

S7.2 UC

The second models extends our first model by additional “errors”, or variation, on top of the diversification
rate variation due to the environmental variable. Thus, we additionally have a variance parameter σ2 as well
as ελ and εµ per interval. The resulting speciation and extinction rates are computed by

λ0 ∼ Uniform(0, 100) (S3)

ln(λ̂i) = ln(λ̂i−1) + βλ × ∆CO2 (S4)

σ ∼ halfCauchy(0, 1) (S5)

εi ∼ Normal(0, σ) (S6)

ln(λi) = ln(λ̂i) + εi . (S7)

Table S5: Model parameter names and prior distributions for the UC model.

Parameter X f(X)

Speciation at present λ0 Uniform(0,100)
Extinction at present µ0 Uniform(0,100)
Speciation Variation σλ HalfCauchy(0,1)
Extinction Variation σµ HalfCauchy(0,1)
Speciation Correlation βλ Normal(0,1)
Extinction Correlation βµ Normal(0,1)
Per interval log-speciation rate variation ελ Normal(0,σλ)
Per interval log-extinction rate variation εµ Normal(0,σµ)
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S7.3 Gaussian Markov Random Field (GMRF)

The GMRF model has autocorrelated rate variation compared to the uncorrelated variation from the UC
model. The speciation and extinction rates are computed by

λ0 ∼ Uniform(0, 100) (S8)

σ ∼ halfCauchy(0, 1) (S9)

εi ∼ Normal(0, σ) (S10)

ln(λi) = ln(λi−1) + βλ × ∆CO2 + εi . (S11)

We additionally used a global scaling parameter for the variation of diversification of ζ = 0.587405 × N ,
where N is the number of epochs, so that we expect one order of magnitude variation over the course of the
age of the phylogeny [15]. Alternatively, the parameter ζ could be place into the prior distribution on σ by
using a halfCauchy(0, ζ) prior distribution instead. Both approaches are equivalent.

Table S6: Model parameter names and prior distributions for the GMRF model.

Parameter X f(X)

Speciation at present λ0 Uniform(0,100)
Extinction at present µ0 Uniform(0,100)
Speciation Variation γλ HalfCauchy(0,1)
Extinction Variation γµ HalfCauchy(0,1)
Speciation Correlation βλ Normal(0,1)
Extinction Correlation βµ Normal(0,1)
Per interval log-speciation rate difference ln(∆λ) Normal(0,γλζ)
Per interval log-extinction rate difference ln(∆µ) Normal(0,γµζ)

S7.4 HSMRF

The HSMRF model allows for interval specific variance parameters γ2i . This allows for some epochs to be
more variable, while most epochs will actually be less variable [15]. The resulting speciation and extinction
rates are thus computed by

λ0 ∼ Uniform(0, 100) (S12)

σ ∼ halfCauchy(0, 1) (S13)

γi ∼ halfCauchy(0, 1) (S14)

εi ∼ Normal(0, σγiζ) (S15)

ln(λi) = ln(λi−1) + βλ × ∆CO2 + εi . (S16)

As before, we additionally used a global scaling parameter for the variation of diversification of ζ = 0.587405×
N so that we expect one order of magnitude variation over the course of the age of the phylogeny [15].
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Table S7: Model parameter names and prior distributions for the HSMRF model.

Parameter X f(X)

Speciation at present λ0 Uniform(0,100)
Extinction at present µ0 Uniform(0,100)
Speciation Variation σλ HalfCauchy(0,1)
Extinction Variation σµ HalfCauchy(0,1)
Speciation Correlation βλ Normal(0,1)
Extinction Correlation βµ Normal(0,1)
Per interval speciation rate variation factor γλ,i HalfCauchy(0,1)
Per interval extinction rate variation factor γµ,i HalfCauchy(0,1)
Per interval log-speciation rate difference ln(∆λ,i) Normal(0,γλ,iσλζ)
Per interval log-extinction rate difference ln(∆µ,i) Normal(0,γµ,iσµζ)
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S8 Diversification rates with phylogenies

S8.1 Diversification shifts against simplified phylogenies

Figure S4: Speciation rates using the GMRF (red) and HSRMF (blue) models with daisy and grass (#1 and
#2) phylogenies. Note that the most pronounced increase in speciation rates in both families occurred during the divergence
of the largest clades and when all major subfamilies were already present. This indicates the global (i.e., tree-wide) impact of
diversification rate change.
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S8.2 Diversification shifts among lineages

Figure S5: Speciation (left), extinction (middle) and diversification (right) rates using the best fitting models
(GMRF for daisies and HSRMF model for grasses (#1)). For daisies, B: Barnadesioideae; M: Mutisioideae; C:
Carduoideae; H: Helianthodae; S:Senecionodae; A:Asterodae; Ci:Cichorioideae. For grasses, P:Pooideae; B:Bambusoideae;
O:Oryzoideae; P:Paniceae; Ch:Chlorioideae; Da:Danthonioideae; Ar:Aristidoideae. Note that the most pronounced increase in
diversification rates occurred during the last ∼30 Mya in both families. Also note that diversification rates change while all
subfamilies diversified. This shows the global (i.e., tree-wide) impact of the diversification rate change compared to a single or
few clades driving the diversification rate changes.
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S9 The effect of different prior models on diversification rates
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Figure S6: Diversification rate estimates using different prior models. The speciation, extinction and net-
diversification rate estimates using the GMRF (red), HSRMF (blue) and UCLN (green) prior models. The rates were es-
timated using 100 epochs (for other numbers of epochs see Figure S7). The two autocorrelated models qualitatively agree
on the estimated rates and infer diversification rate shifts driven by changes in the speciation rate. As expected, the GMRF
model produces smoother rates while the HSMRF model produces more discrete jumps. The UCLN model produces strong
variation which is a clear result of over-fitting (see Figure S8). Also note that this results cannot be due to non-identifiability
of diversification rates because the episodic birth-death model used here is identifiable [13].

14



S10 The effect of number of epochs on diversification rates
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Figure S7: Diversification rate estimates for different number of epochs. We estimated diversification rates using N =
{4, 10, 20, 50, 100, 200} epochs for all three diversification prior models (GMRF, HSMRF and UCLN). The two autocorrelated
models estimate smoother rate functions with higher number of intervals, as previously observed by Magee et al[15]. The
uncorrelated model over-fitted when many intervals where used (see Figure S8).
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S11 Model selection of diversification models
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Figure S8: Model selection between the three diversification rate prior models and for different number of
epochs. We estimated marginal likelihoods for all three diversification prior models (GMRF, HSMRF and UCLN) and for
varying number of epochs, N = {4, 10, 20, 50, 100, 200}. The colored areas show (i) no significant support in white, (ii) support
in light gray, (iii) strong support in gray, and (iv) decisive support in dark gray according to the common Bayes factor thresholds
[12]. The UCLN model was always decisively rejected. The best fitting model for the daisy phylogeny was the GMRF with 200
epochs and the HSRMF with 100 epochs for the grasses phylogeny. Interestingly, only for N = 4 epochs was the UCLN model
better (daisy dataset) or equially good (grasses dataset) but more epochs resulted in worse model fit (best fit for daisies was
10 epochs and 4 epochs for grasses).
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S12 The effect of different taxon sampling methods

a)
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

di
ve

rs
ifi

ca
tio

n 
ra

te

−80 −60 −40 −20 0

daisy

million years before present

sampling method

empirical
uniform

−80 −60 −40 −20 0

grasses

million years before present

b)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

di
ve

rs
ifi

ca
tio

n 
ra

te

−80 −60 −40 −20 0

daisy

million years before present

sampling method

empirical
uniform

−80 −60 −40 −20 0

grasses

million years before present

Figure S9: Diversification rate estimates using different incomplete taxon sampling methods. We estimated the
diversification rates using our newly developed empirical taxon sampling and the previously developed uniform taxon sampling.
The diversification rates were estimates using a) the GMRF diversification rate prior model and b) the HSRMF diversification
rate prior model. For each model with assumed N = 200 epochs. The estimated diversification rate differ depending on the
incomplete taxon sampling method, but are similar between diversification rate prior models (see Figure S6). Thus, using the
correct incomplete taxon sampling approach is crucial for unbiased estimation of diversification rates.
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S13 The effect of different models on correlations to the environ-
mental variable
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Figure S10: Estimating correlation between diversification rates and two environmental variables. We estimated
the correlation between atmospheric CO2 and paleo-temperature (with environmental variables averaged in 1MY bins) to
speciation and extinction rates using our four environmentally-dependent diversification models: fixed, UC, GMRF and HSMRF.
The inset posterior probabilities show the posterior probability that the correlation factor β is smaller than 0 (i.e., a negative
correlation). If the posterior probability is close to one, then there is a significant negative correlation and if the posterior
probability is close to zero, then there is a significant positive correlation. The speciation rate is negatively correlated with
atmospheric CO2 for the both the daisy and grasses datasets regardless of the chosen model. The extinction rate is also negatively
correlated and shows the same trend as the speciation rate. The correlation between paleo-temperature and speciation rate
is less certain: the fixed and UC model infer a negative correlation whereas the GMRF and HSMRF infer no correlation or a
positive correlation. The HSMRF model was the best fit model for the paleo-temperature analyses (see Figure S11). The same
trend is seen in both datasets for the daisies and grasses.
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S14 Model selection of environmental variable correlated models
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Figure S11: Marginal likelihood estimates for the four environmentally-dependent diversification models. We
estimated marginal likelihoods using stepping stone sampling for the four environmentally-dependent diversification models
(fixed, UC, GRMF and HSMRF) and two environmental variables (atmospheric CO2 and paleo-temperature). Additionally,
we binned the environmental variable in 1, 2.5 and 5 million year bins. We computed the marginal likelihoods for both the
daisy and grasses dataset (calibration method #1). The shaded boxes represent significance levels according to standard Bayes
factors[12]: slightly support (white), supported (light gray), strongly supported (dark gray) and decisively supported (dark
gray). We found that for the daisy dataset the best predictor is atmospheric CO2 with 2.5 MY bins using the UC model.
The binning size did not impact the results and the order of preferred models remained unchanged. For the grasses dataset,
the fixed model with atmospheric CO2 as predictor variable in 2.5 MY bins received highest support. Interestingly, for the
paleo-temperature as predictor variable the results flip with the two autocorrelated models (GMRF and HSMRF) receiving
higher marginal likelihood than the fixed and UC model. This is particularly important as for the atmospheric CO2 all models
agreed on the negative correlation between CO2 and speciation rates, whereas for the paleo-temperature the results qualitatively
differed from negative correlation (fixed and UC) to no correlation or slighly positive correlation (GMRF and HSMRF); see
Figure S10.
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S15 The effect of binning on environmental variable correlated
models
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Figure S12: Estimated correlation factor for different bin size of the environmental variable. We estimated
the correlation factor β between the speciation and extinction rates and the environmental variable (atmospheric CO2 and
paloe-temperature) using the HSRMF model. The environmental variables were computed as averages for bins of size 1, 2.5
and 5 MY. The inset posterior probabilities show the posterior probability that the correlation factor β is smaller than 0 (i.e.,
a negative correlation). If the posterior probability is close to one, then there is a significant negative correlation and if the
posterior probability is close to zero, then there is a significant positive correlation. There is little effect on the correlation
factor depending on the bin size, although a bin size of 5MY has the widest posterior distribution and is slightly shifted closer
towards zero values and the posterior probabilities was less significant.
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S16 The effect of node calibration on environmental variable cor-
related models
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Figure S13: Estimated correlation factor β for the grasses dataset depending on node calibration scenario.
We compared the correlation factor between speciation and extinction rates and environmental variables (atmospheric CO2

and paleo-temperature with averages over 1MY bins). The inset posterior probabilities show the posterior probability that the
correlation factor β is smaller than 0 (i.e., a negative correlation). If the posterior probability is close to one, then there is a
significant negative correlation and if the posterior probability is close to zero, then there is a significant positive correlation. We
applied the HSRMF model to the two grasses phylogenies obtained under different calibration scenarios (scenario #1 younger
and scenario #2 older). For scenario #1 we estimate a negative correlation between atmospheric CO2 and speciation rates
but not correlation to paleo-temperature. For scenario #2 we estimate a positive correlation between speciation rates and
paleo-temperature but no correlation to atmospheric CO2.
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S17 The effect of environmentally-dependent diversification mod-
els on diversification rates
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Figure S14: Estimated diversification rates for the daisy phylogeny. Here we compare the estimated diversification
rates of our environmentally-dependent models to the null-hypothesis without environmental dependence. The environmen-
tally dependent HSMRF and GMRF models yield extremely similar diversification rates compared with the environmentally
independent diversification rate estimates. This shows that the diversification rates are not forced due the environmental cor-
relation, but instead are driven by the information in the data (the phylogeny with divergence times). The uncorrelated (UC)
rate models shows very different diversification rates for the correlation with paleo-temperature which confirms the disagree-
ment in correlation factors (Figure S10). Unsurprisingly, the fixed environmentally-dependent diversification rate model show
diversification rate closely following the environmental variable because no other source of rate-variation is allowed. Thus, all
diversification rate variation in the fixed model, e.g., when using paleo-temperature as the environmental variable, is misleading
because it is wrongfully enforced by the environmental variable.
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Figure S15: Estimated diversification rates for the grasses phylogeny (calibration scenario 1). Here we com-
pare the estimated diversification rates of our environmentally-dependent models to the null-hypothesis without environmental
dependence. For the CO2 as the environmental driver, we see that all four environmentally-dependent diversification models
provide very similar diversification rates. This confirms the agree that all models infer a correlation between CO2 and diver-
sification rates in grasses (Figure S10). Conversely, the diversification rates of all four models disagree if paleo-temperature
is used. Thus, the correlation between paleo-temperature and diversification rates is unreliable and dependent on the specific
model.
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S18 Simulation study of environmentally-dependent diversifica-
tion rates

S18.1 Simulated diversification rates under environmentally-dependent diver-
sification rates models
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Figure S16: Speciation rated simulated under an environmentally-dependent GRMF diversification model. We
simulated speciation rates with different correlation factors β = {0,−0.005,−.01} and standard deviations σ = {0, 0.02, 0.04}.
We used the atmospheric CO2 as the environmental variable. When β = 0 in the simulations, then this model was equivalent
to an environmentally-independent diversification model. When σ = 0 in the simulations, then this model was equal to the
fixed environmentally-diversification model. When both β = 0 and σ = 0, then we simulated under a constant rate process (top
left). This establishes the false positive rate in our simulations. Note that the autocorrelated model (GMRF) has overall more
variation in speciation rates (e.g., top right) compared to the uncorrelated model (Figure S17) because the variation is additive
over epochs in the autocorrelated model.
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Figure S17: Speciation rated simulated under an environmentally-dependent UC diversification model. We
simulated speciation rates with different correlation factors β = {0,−0.005,−.01} and standard deviations σ = {0, 0.02, 0.04}.
We used the atmospheric CO2 as the environmental variable. When β = 0 in the simulations, then this model was equivalent
to an environmentally-independent diversification model. When σ = 0 in the simulations, then this model was equal to the
fixed environmentally-diversification model. When both β = 0 and σ = 0, then we simulated under a constant rate process (top
left). This establishes the false positive rate in our simulations. Note that the autocorrelated model (GMRF, Figure S16) has
overall more variation in speciation rates (e.g., top right) compared to the uncorrelated model because the variation is additive
over epochs in the autocorrelated model.
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S18.2 Simulated phylogenies under environmentally-dependent diversification
rates
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Figure S18: Lineage-through-time (LTT) curves of 10 phylogenies simulated under an environmentally-
dependent GRMF diversification model. We used the simulated diversification rate trajectories shown and described
in Figure S16. We nicely observe the log-linear LTT curve for the constant-rate birth-death simulations (top left) and increas-
ing deviation from the log-linear curve with higher correlation factor β. Higher standard deviation σ in the speciation rates led
to slightly more variation in LTT curves but no large effect.
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Figure S19: Lineage-through-time (LTT) curves of 10 phylogenies simulated under an environmentally-
dependent UC diversification model. We used the simulated diversification rate trajectories shown and described in
Figure S17. We nicely observe the log-linear LTT curve for the constant-rate birth-death simulations (top left) and increasing
deviation from the log-linear curve with higher correlation factor β. Higher standard deviation σ in the speciation rates led to
slightly more variation in LTT curves but no large effect.
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S18.3 Estimated correlation factors from the phylogenies simulated under environmentally-
dependent diversification rates
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Figure S20: Estimated correlation factors for the simulated phylogenies under the GMRF environmentally-
dependent diversification rates model. We estimated correlation factor β using the simulated phylogenies shown and
described in Figure S18. We used all four environmentally-dependent diversification rates model for inference, running in total
450 MCMC analyses. Overall, all four models perform well to estimate the environmental correlation. As we noticed in our
simulations, the diversification rate variation is primarily driven by the environmental variable and less by additional factors
(comparably low σ). In these situations it does not matter much which environmentally-dependent diversification rates model
is used. Nevertheless, the HSRMF model always produced the smallest credible intervals and was most precise. This simulation
study shows that there is high power to detect environmental correlation to diversification rates (middle and bottom row) while
retaining a low false-positive rate (top row). The results are congruent with our inferences using the simulated trees under the
UC environmentally-dependent diversification rates model (Figure ??).
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Figure S21: Estimated correlation factors for the simulated phylogenies under the UC environmentally-
dependent diversification rates model. We estimated correlation factor β using the simulated phylogenies shown and
described in Figure S19. We used all four environmentally-dependent diversification rates model for inference, running in total
450 MCMC analyses. Overall, all four models perform well to estimate the environmental correlation. As we noticed in our
simulations, the diversification rate variation is primarily driven by the environmental variable and less by additional factors
(comparably low σ). In these situations it does not matter much which environmentally-dependent diversification rates model
is used. Nevertheless, the HSRMF model always produced the smallest credible intervals and was most precise. This simulation
study shows that there is high power to detect environmental correlation to diversification rates (middle and bottom row) while
retaining a low false-positive rate (top row). The results are congruent with our inferences using the simulated trees under the
GMRF environmentally-dependent diversification rates model (Figure S21).
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S19 Simulation study using empirical taxon sampling
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Figure S22: Lineage-through-time curves of simulated phylogenies under empirical sampling. We simulated 100
phylogenies (only first 10 shown here) under a constant-rate birth-death process (false-positive) and an episodic-birth-death
process (power) using empirical taxon sampling. These trees were simulated by adding the missing species randomly in the pre-
assigned clades of the daisy phylogeny. Then, we simulated divergence times under either the constant or episodic birth-death
process. After simulation, the additional taxa were pruned again to mimic empirical sampling. The solid black line shows the
empirical LTT curve of the daisy phylogeny.
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Figure S23: Estimated net-diversification rates using the simulated phylogenies from Figure S22. The solid black
line shows our true net-diversification rates. If our assumption of incomplete taxon sampling matches the simulation conditions,
then we infer unbiased diversification rates, as previously shown under similar incomplete taxon sampling schemes [11, 10, 18].
Conversely, if the incomplete taxon sampling assumption is violated, e.g., assuming all missing species are uniformly distributed
within the phylogeny, then we obtain strongly biased diversification rates. We also note that our GMRF model shows a good
performance even when the true diversification rates are constant (top left, low false-positive rate). Our good precision in not
surprising because the simulated phylogenies had 2723 tips, as our daisy phylogeny.
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