Supplemental Data-1

Connexin 43 confers chemoresistance through activating PI3K

Kevin J Pridham, Farah Shah, Kasen R Hutchings, Kevin L Sheng, Sujuan Guo, Min Liu, Pratik Kanabur, Samy Lamouille, Gabrielle Lewis, Marc Morales, Jane Jourdan, Christina L Grek, Gautam G Ghatnekar, Robin Varghese, Deborah F Kelly, Robert G Gourdie, and Zhi Sheng

Supplemental Table S1

	Reagent	Company	Catalog#	Reagent	Company	Catalog#
	GSK2636771	AdooQ		TGX-221	AdooQ	
		Bioscience			Bioscience	
	Temozolomide	AbMole		Puromycin	Millipore-Sigma	
		BioScience				
	αCT-1	LifeTein	Custom	Gap27	LifeTein	Custom
			synthesis			synthesis
	DMEM	Life		EquaFETA FBS	Atlas	
Chamicala/		Technologies			Biologicals	
Cnemicals/	Penicillin/	Gibco		FBS	Peak Serum	
Cell Culture	Streptomycin					
	MCDB-131	Millipore-Sigma		B-27	Life	
				supplement	Technologies	
	FGF-2	PeproTech		EGF	PeproTech	
	L-Glutamine	Gibco		MTS cell viability assay	Promega	
	Caspasa Gla	Promoça		Bradford assau	Rio Pad	
	3/7 assay	Fromega		Diauloiu assay	L aboratories	
	JIT assay				Laboratories	
Antibodioo	Anti-phospho-	Cell Signaling	CST-3511	Anti-Cx43	Cell Signaling	CST-3512
	Cx43-S368	Technology	(1:1000)		Technology	(1:1000)
	Anti-phospho-	Cell Signaling	CST-4051	Anti-phospho-	Cell Signaling	CST-4056
for western	AKT-S473	Technology	(1:1000)	AKT-T308	Technology	(1:1000)
blotting	Anti-AKT	Cell Signaling	CST-4685	Anti-phospho-	Cell Signaling	CST-9247
		Technology	(1:1000)	cRAF-S338	Technology	(1:250)
	Anti-phospho-	Cell Signaling	CST-4377	Anti-phospho-	Cell Signaling	CST-2101
	ERK-T202/T204	Technology	(1:1000)	SRC-Y416	Technology	(1:1000)

	Anti-p110α	Cell Signaling	CST-4249	Anti-p110β	Cell Signaling	CST-3011
		Technology	(1:1000)		Technology	(1:1000)
	Anti-p110δ	Cell Signaling	CST-34050	Anti-p85	Cell Signaling	CST-4292
		Technology	(1:1000)		Technology	(1:1000)
	Anti-β-actin	Millipore-Sigma	MS-A3854	Anti-GAPDH	Santa Cruz	SC-25778
			(1:5000)		Biotechnology	(1:1000)
	Protease	Millipore-Sigma		Phosphatase	Millipore-Sigma	
	inhibitor			inhibitor		
	Anti-Cx43	Millipore-Sigma	MS-C6219	Anti-p110α	Cell Signaling	CST-4249
Immuno-			(1:50)		Technology	(1:25)
precipitation	Anti-p110β	Cell Signaling	CST-3011	Anti-p110δ	Cell Signaling	CST-34050
		Technology	(1:25)		Technology	(1:25)
	Rabbit IgG	Santa Cruz	SC-2027	Protein G	Thermo-Fisher	
		Biotechnology	(1:400)	Dynabeads	Scientific	
	Cx43 shRNA	Millipore-Sigma	TRCN	PIK3CA shRNA	Thermo-Fisher	RHS4844-
			0000059773		Scientific	101656239
	PIK3CB shRNA	Thermo-Fisher	RHS4884-	PIK3D shRNA	Thermo-Fisher	RHS4884-
shRNAs		Scientific	10165656350		Scientific	101655755
/plasmids	pBABE-puro	Addgene	1764	pBABE-PIK3CA-	Addgene	12525
				E545K		
	pCMV5-ERK2-	Addgene	40816	pBABE-SRC-	Addgene	13660
	Q103A			Y527F		
Animal	Matrigel Matrix	Corning		Scid/beige mice	Taconic	
experiments					Biosciences	
Kits	Kinase-Glo [®]	Progema		Amplex™ Red	Thermo-Fisher	
	Luminescent			Glutamic	Scientific	
	Kinase Assay			Acid/Glutamate		
				Oxidase Assay		
				Kit		

Supplemental Table S2

Gene symbol	Gene full name	Alias	Abbreviations
GJA1	Gap junction protein alpha 1	Connexin 43	Cx43
GJA3	Gap junction protein alpha 3	Connexin 46	Cx46
GJA4	Gap junction protein alpha 4	Connexin 37	Cx37
GJA5	Gap junction protein alpha 5	Connexin 40	Cx40
GJA8	Gap junction protein alpha 8	Connexin 50	Cx50
GJA9	Gap junction protein alpha 9	Connexin 58	Cx58
GJA10	Gap junction protein alpha 10	Connexin 62	Cx62
GJB1	Gap junction protein beta 1	Connexin 32	Cx32
GJB2	Gap junction protein beta 2	Connexin 26	Cx26
GJB3	Gap junction protein beta 3	Connexin 31	Cx31
GJB4	Gap junction protein beta 4	Connexin 30.3	Cx30.3
GJB5	Gap junction protein beta 5	Connexin 31.1	Cx31.1
GJB6	Gap junction protein beta 6	Connexin 30	Cx30
GJB7	Gap junction protein beta 7	Connexin 25	Cx25
GJC1	Gap junction protein gamma 1	Connexin 45	Cx45
GJC2	Gap junction protein gamma 2	Connexin 47	Cx47
GJC3	Gap junction protein gamma 3	Connexin 30.2	Cx30.2
GJD2	Gap junction protein delta 2	Connexin 36	Cx36
GJD3	Gap junction protein delta 3	Connexin 31.9	Cx31.9
GJD4	Gap junction protein delta 4	Connexin 40.1	Cx40.1
GJE1	Gap junction protein epsilon 1	Connexin 23	Cx23

Supplemental Table S2. Nomenclature of connexins. Information regarding gene symbols and aliases was retrieved from GeneCards (https://www.genecards.org).

Supplemental Table S3

Cell lines	Cx43	pAKT-S473	p110β	MGMT	TMZ IC50 (μM)
SF295	1.4	2.0	0.5	No	500
U87MG	3.2	2.2	0.7	No	1000
A172	0.5	0.1	0.4	No	30
LN229	0.5	0.0	0.2	No	20
SF268	0.7	0.1	0.3	No	20
SNB75	0.9	0.2	0.2	No	293

Supplemental Table S3. Levels of Cx43, pAKT-S473, p110β, MGMT and TMZ IC50. Data were retrieved from our previous publications (21, 27).

Supplemental Fig. S1. mRNA levels of connexins in GBM. Gene expression data were retrieved from cBioPortal, GlioVis, or DepMap. Shown are mRNA levels of connexins in the TCGA Agilent-4502A microarray (**A**), the TCGA RNAseq (**B**), the LeeY GBM dataset (**C**), and DepMap GBM cell lines (**D**). Case numbers (n) are also shown. Error bars represent standard deviations. Cx43 is highlighted in red and other connexins are in green. Individual data points are also shown (purple for Cx43 and yellow for other connexins). *P* values were obtained using One-Way ANOVA with Dunnett test for correction of multiple comparisons. ****: *P* < 0.0001. All analyses were performed and results were plotted using Prism 9.

Supplemental Fig. S2. Levels of connexins in high-grade glioma. Immunohistochemical staining images of high-grade glioma were retrieved the Human Protein Atlas. Images of two patient specimens are shown in **A** and **B**, respectively. Inset figures depict details of immunostaining. Levels of staining are highlighted in red (Cx43) or in green (other connexins).

Supplemental Fig. S3. Expression of connixins in normal and malignant brain cells and tissues. (A) Levels of connexins in low-grade glioma. Case numbers with different immunostaining intensities are shown. Data were retrieved from The Human Protein Atlas. (B) Immunostaining results of connexin proteins in glia cells in basal ganglia, hippocampus, and cerebral cortex. (C) Correlation of levels between Cx43 mRNA and protein in high-grade glioma cell lines. Proteomic and transcriptomic results in the same cell lines (GBM and astrocytoma) were plotted and Pearson correlation coefficient r was determined using Prism software. Data were retrieved from DepMap. (D) DepMap proteomic results of connexin proteins in high-grade glioma cell lines. All analyses were performed and results were plotted using Prism 9.

Supplemental Fig. S4. Kaplan-Meier analysis and Cox univariate analysis in the primary or MGMT+ TCGA datasets. Data were retrieved from cBioportal. Patients were divided into Cx43-high (red, top 25 percentile) and Cx43-low (blue, bottom 25 or 75 percentile) based upon Cx43 mRNA levels in primary GBM (Primary GBM) or MGMT-expressing primary GBM (MGMT+). Kaplan-Meier analysis (**A**) and Cox univariate analysis (**B**) were preformed using JMP Pro and results were plotted using either JMP Pro or Prism 9. Case number (n), average survival time in months (m), 95% CI (shadow), long-rank *P* values, and hazard ratios are shown. *: P < 0.05. ns: not significant.

Supplemental Figure S5

Supplemental Fig. S5. Kaplan-Meier analysis and Cox univariate analysis in the Murat GBM dataset. Data were retrieved from GlioVis. Patients were divided into Cx43-high (red, top 25 percentile) and Cx43-low (blue, bottom 25 or 75 percentile) based upon Cx43 mRNA levels in all GBM (All GBM), primary GBM (Primary GBM), MGMT-deficient primary GBM (MGMT–), MGMT-expressing (MGMT+), or recurrent GBM (Recurrent GBM). Kaplan-Meier analysis (**A**) and Cox univariate analysis (**B**) were performed using JMP Pro and results were plotted using JMP Pro or Prism 9. Case number (n), average survival time in months (m), 95% CI (shadow), long-rank *P* values, and hazard ratios are shown. *: *P* < 0.05. ns: not significant.

Supplemental Fig. S6. Kaplan-Meier analysis of CGGA recurrent GBMs. Data regarding 76 recurrent GBM were retrieved from the CGGA data portal. Patients were divided into Cx43-hgih (top 25 percentile) or Cx43-low (bottom 75 percentile) based on Cx43 mRNA levels in 76 recurrent GBMs. Kaplan-Meier survival analyses were performed using JMP Pro. Case number (n), average survival time in months (m), and long-rank *P* values are shown.

Supplemental Fig. S7. Kaplan-Meier analysis in Murat GBMs and CGGA recurrent GBMs. (A) Kaplan Meier analysis in Murat GBM. MGMT– GBMs were divided into Cx43-high (top 25 percentile) or Cx43-low group (bottom 75 percentile). Patients treated with radiation alone (Radio; red) were compared to patients treated with both radiation and TMZ (Radio+TMZ; blue). (B) Kaplan Meier analysis in CGGA recurrent GBM. Data regarding 76 recurrent GBM were retrieved from the CGGA data portal. Patients were divided into Cx43-hgih (top 25 percentile) or Cx43-low (bottom 75 percentile) based on Cx43 mRNA levels in 76 recurrent GBMs. Cx43-hgih (top 25 percentile) or Cx43-low (bottom 75 percentile) or Cx43-low (bottom 75 percentile) or Cx43-low (bottom 75 percentile) patients were divided into Radio (red, treated with radiation only) or Radio+chemo (blue, treated with radiation and chemotherapy) based on Cx43 mRNA levels in recurrent GBMs. Kaplan-Meier survival analyses were performed using JMP Pro. Case number (n), average survival time in months (m), and long-rank *P* values are shown.

Supplemental Fig. S8. Repeats of α CT1/TMZ treatment and Cx43 knockdown. (A) Signaling pathways affected by α CT1. Cx43-high U87MG cells were treated with 100 μ M α CT1 or 50 μ M TMZ for 4 days. (B) PI3K signaling upon depletion of Cx43. U87MG and A172 cells were transiently transfected with viruses containing an NS shRNA or a Cx43 shRNA for 3 days. Signaling molecules were analyzed using immunoblotting.

Supplemental Fig. S9. Correlation between connexins and PI3K catalytic subunits. Pearson correlation coefficient assay was performed in different gene expression datasets using Prism 9. mRNA levels of Cx43 were compared to mRNA levels of PI3K catalytic subunits (A, C, E, and G) in four different datasets as indicated. mRNA levels of PIK3CB were compared to those of connexin mRNAs (B, D, F, and H). The coefficient r and corresponding *P* values are shown.

Supplemental Fig. S10. Optimization of α CT1, TGX-221 and TMZ in U87MG cells. (A) Combination of 20 μ M TGX-221 and TMZ at various concentrations. U87MG cells were treated with drug combinations as indicated for 6 days. Cell viability was determined using the MTS viability assay. The vehicle DMSO was the control and set as 100%. Treated cells were normalized to DMSO-treated cells. (B) Combination of 50 μ M TMZ and TGX-221 at various concentrations. (C) Combination of 20 μ M TGX-221/50 μ M TMZ and α CT1 at different concentrations. (D) Scores of Excess Over Bliss in C calculated using the Bliss Independence model. One-way ANOVA and student *t* test were used to determine statistical significance. Drug combinations with strong synergistic effect were marked in red.

Supplemental Fig. S11. The aCT1/TGX combo in VTC-003 and VTC-005. (**A**) Viability of VTC-003 cells treated with different drug combinations for 6 days. Cell viability was determined using the MTS viability assay. (**B**) Scores of Excess Over Bliss of VTC-003 calculated using the Bliss Independence model. (**C**) Viability of VTC-005 cells treated with different drug combinations. (**D**) Scores of Excess Over Bliss of VTC-005 cells calculated using the Bliss Independence model. One-way ANOVA or student *t* test were used to determine statistical significance. Drug combinations with strong synergistic effect were marked in red.

Supplemental Fig. S12. The \alphaCT1/TGX combo in A172. (A) Viability of A172 cells treated with different drug combinations for 6 days. Cell viability was determined using the MTS viability assay. (B) Scores of Excess Over Bliss calculated using the Bliss Independence model. One-way ANOVA or student *t* test were used to determine statistical significance.

Supplemental Fig. S13. A combination of α CT1 and GSK2636771 overcomes TMZ resistance. The effect of the α CT1/GSK/TMZ combo in VTC-103 (**A**), U87MG (**C**), and LN229 (**E**) cells. Cells were treated with 50 µM TMZ, 25 µM GSK2636771, and/or 30 µM α CT1 including single agents, double combinations and the α CT1/GSK/TMZ combo. Excess Over Bliss scores of drug combinations in VTC-103 (**B**), U87MG (**D**), and LN229 (**E**) cells were calculated using the Bliss Independence mode. One-way ANOVA with Dunnett test for correction of multiple comparisons or Student's *t* test was used to determine statistical significance. ns: not significant. Drug combinations with strong synergistic effect were marked in red.

