Supplementary Information

Multifactorial engineering of biomimetic membranes for batteries with multiple high-performance parameters

Mingqiang Wang^{1,2,3,\phi}, Ahmet Emre^{2,3,4,5,\phi}, Ji-Young Kim^{2,3,4}, Yiting Huang¹, Li Liu¹, Volkan Cecen^{2,3}, Yudong Huang¹, Nicholas A. Kotov^{2,3,4,5,*}

¹ School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China;

² Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA;

³ Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, USA;

⁴ Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA;

⁵ Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA;

[•] These authors contributed equally: Mingqiang Wang, Ahmet Emre.

*Correspondence: kotov@umich.edu

Supplementary Fig 1. (A to F) The SEM images of the surface view and side view of *np-ANF* membrane with different thickness made by sequential deposition of nanofiber strata. (A and B) *np-ANF* membrane with one layer, (C and D), *np-ANF* membrane with three layers, (E and F), *np-ANF* membrane with five layers. SEM images with enlarged sections of the membranes are given in the third column.

While we used LBL assembly to engineer the *np-ANP* composite, the single bilayers (i.e. ANF+PDDA) are thicker than the typical nanometer-scale bilayers from polyelectrolytes observed in LBL-made materials in the past. There is a distinct possibility that ANFs are depositing in the non-linear (exponential) fashion, which can lead to the gradual increase in layer thickness over multiple consecutive cycles due to diffusion-in/diffusion-out mechanism.^{1–3}

Supplementary Fig 2. DSC curves comparison of *np-ANF* and *CelgardTM* 2400 membrane. The *np-ANF* membrane shows excellent thermal stability with no obvious phase change until 500°C. The superior thermal tolerance could effectively prevent internal short-circuit at elevated temperature. In comparison, *CelgardTM* 2400 decomposes at 300 °C and exhibits an endothermic peak at 122 °C.

Supplementary Fig 3. Hot solder iron test on *np-ANF* and *CelgardTM* 2400 membrane at 150°C with increase time. The time-lapse photography demonstrates a clear difference between two membranes of *np-ANF* and *CelgardTM* 2400 on a 150 °C hot plate. The *np-ANF* remained unchanged, showing good thermal stability, while *CelgardTM* 2400 membrane shrank strongly.

Supplementary Fig 4. Photographs of static liquid electrolyte contact angles of different separators at different rest time. 1 M LiTFSI with 2 wt% LiNO₃ in DOL/DME (v/v=1:1) was used as a liquid electrolyte.

Besides the lower electrolyte contact angle of np-ANF in comparison to $Celgard^{TM}$ 2400, the *np-ANF* also has a higher electrolyte uptake.

The electrolyte uptake in this work was evaluated by the weights of sample before (W_{dry}) and after (W_{wet}) soaking in liquid electrolyte (1 mol/L LiTFSI, DOL/DME (v/v= 1/1) for 2 h and calculated according to equation:

Electrolyte uptake=
$$\frac{W_{wet} - W_{dry}}{W_{dry}} \times 100\%$$

The electrolyte uptake of the pristine $Celgard^{TM}$ 2400 and the *np-ANF* separator are 158% and 328%, respectively. The greatly improved electrolyte uptake is due to nanofibers were stacked to form a 3D network porous structure as well as the good affinity to lipid groups in the electrolyte⁴.

Supplementary Fig 5. Dimensional changes in $Celgard^{TM}$ 2400 and np-ANF when soaked in electrolyte solution

Supplementary Fig 6. (A-B) The magnified SEM images of the surface view *np-ANF* membrane made after three deposition cycles. (C) Pore size width distributions of the *np-ANF* membrane obtained from Barrett-Joyner-Halenda (BJH) analysis.

Supplementary Fig 7. (A-B) SEM image of surface of *CelgardTM* 2400. (C) The pore size width distributions of the *CelgardTM* 2400 obtained from Barrett-Joyner-Halenda (BJH) analysis.

Supplementary Fig 8. Comparative evaluation of Young's modulus and internal resistance normalized to a standard CR2032 coin cell for *np-ANF* and other membranes. The internal resistance of *np-ANF* membrane is obtained by electrochemical impedance spectroscopy (EIS) curve of Li/*np-ANF* /Li in DOL/DME solution with a standard CR2032 coin as shown in Figure S9. The corresponding references and the list of abbreviations are given in Table S2.

Supplementary Fig 9. The impedance spectra of Li/ *np-ANF* /Li using standard CR2032 coin cell.

Supplementary Fig 10. Stress-strain curves for *np-ANF* and *CelgardTM* 2400 in different state (A) dry (B) wet; (C) 80°C; (D) after electrochemical testing.

Supplementary Fig 11. Nano-indentation comparison for (A) *np-ANF* and (B) *CelgardTM* 2400

Supplementary Fig 12. Theoretical simulation of ionic flow in *CelgardTM* separator pores by finite element analysis (COMSOL Multyphysics). The concentration map and streamline change of LPS (A) and Li ion (B) from t = 0 to $t = 1 \mu s$.

Supplementary Fig 13. the High-resolution XPS spectra of S_{2p} comparison of *np-ANF* before and after adsorption test Li₂S₄ solution followed by rinsing with DOL/DME solution and drying in glovebox

Supplementary Fig 14. High-resolution XPS spectra of retrieved np-ANF sample (A) from LiNO₃ solution (B) from Li₂S₄ solution.

Supplementary Fig 15. Cyclic voltammograms at different voltage scan rates of Li-S cells: (A) with *np-ANF* membrane and (B) with *Celgard*TM 2400 membrane; (C-D) the linear fits of the peak currents for cells with *np-ANF* (C) and *Celgard*TM 2400 (D) membranes.

Supplementary Fig 16. Lithium ions transference number for (A) CelgardTM 2400; (B) np-ANF

Supplementary Fig 17. Linear sweep voltammetry for *CelgardTM 2400*, and *np-ANF* separators. The cell configuration was a two electrode cell consisting of Li metal working electrode and a stainless-steel counter electrode with a scan rate of 0.1 mV s⁻¹.

Supplementary Fig 18. Cycling performance of Li-S batteries with *np-ANF* membranes with from one layer to four layers at 0.1C rate.

Supplementary Fig 19. Electrochemical impedance spectra of Li–S batteries (**A**) before and (**B**) after cycling using *CelgardTM* 2400 and *np-ANF* membranes, and corresponding equivalent circuits before (**C**) and after (**D**) cycling; notations: R_0 is interphase-contact resistance of the electrolyte and battery; R_{ct} is the charge transfer resistance; R_{sf} is the surface film resistances; W_s is the Warburg impedance, CPE is a constant-phase element (CPE) attributed describing the double layer capacitance ^{5,6}

Supplementary Fig 20. Rate performance of Li-S cell with np-ANF membrane at a sulfur loading of 1.2 mg/cm^{-2} .

Supplementary Fig 21. Cycling performance Li-S batteries with *np-ANF* membrane (A) at a rate of 0.5 C over 1000 cycles; (B) at a rate of 1C over 1500 cycles; (C) at a rate of 2C over 2500 cycles at a sulfur loading of 1.2 mg/cm^{-2}

Supplementary Fig 22. Electrochemical performance of the Li-S batteries with *np-ANF* with various sulfur loadings. (A) Charge and discharge curve of Li-S batteries with *np-ANF* membrane at various sulfur loadings. (B). Rate performance of Li-S batteries ranged 0.1C to 3C with *np-ANF* at a sulfur loading of 5.8mg cm^{-2} .

Supplementary Fig 23 . SEM images of the lithium electrode with *CelgardTM* 2400 membrane after 250 hours cycles of stripping/plating in 1mol/L LiCF₃SO₃ DOL: DME v/v = 1/1) at a current density of 2mAcm⁻².

Condition	Sample	Thicknes s (µm)	Tensile strengt h (MPa)	Young's modulus (GPa)	Tensile toughness (J/m ³)	Elongation at break (%)
	Dry	5.8±0.5	167.4±8 .4	9.2±0.5	$3.0*10^3 \pm 76$	1.82±0.09
	Wet	5.8±0.5	154.5±7 .7	8.1±0.4	$3.0*10^3 \pm 80$	1.91±0.1
np-ANF	80 C	5.8±0.5	142.3±7 .1	3.5±0.2	$5.9*10^{3}$ ±150	4.12±0.2
	After electrochemi cal testing	5.8±0.5	155.1±7 .8	7.2±0.4	$3.3*10^3 \pm 75$	2.15±0.2
	Dry	25±1.3	74.5±3. 7	0.17±0.02	$3.22*10^4 \pm 181$	43.8±2.2
Celgard TM 2400	Wet	25±1.3	73.8±3. 7	0.15±0.03	$3.68*10^4 \pm 183$	49.8±2.5
longitudina l	80 C	25±1.3	54.4±2. 7	0.05±0.003	$6.1*10^4 \pm 260$	113±5.7
	After electrochemi cal testing	25±1.3	63.7±3. 2	0.11±0.07	$3.6*10^4 \pm 220$	56.5±6.8
	Dry	25±1.3	14.3±0. 7	$\begin{array}{c} 1.28^{*}10^{\text{-3}} \pm \\ 0.07^{*}10^{\text{-3}} \end{array}$	$1.47*10^5 \pm 0.07*10^5$	1033±50
Celgard TM	Wet	25±1.3	13.7±0. 7	$\begin{array}{c} 1.27^{*}10^{\text{-3}} \pm \\ 0.06^{*}10^{\text{-3}} \pm \end{array}$	$1.47*10^5 \pm 0.07*10^5$	1074±54
2400 transverse	80 C	25±1.3	6.8±0.3 4	$\begin{array}{c} 0.4^{*}10^{-3} \pm \\ 0.02^{*}10^{-3} \end{array}$	$\begin{array}{c} 1.15^{*}10^{5} \\ \pm 0.05^{*}10^{5} \end{array}$	1690±84
	After electrochemi cal testing	25±1.3	10.3±1. 5	$\begin{array}{c} 0.95^{*}10^{\text{-3}} \pm \\ 0.08^{*}10^{\text{-3}} \pm \end{array}$	$\begin{array}{c} 1.12{}^{*}10^{5} \\ \pm 0.11{}^{*}10^{5} \end{array}$	1085±100

Supplementary Table 1: Tensile strength, Young's modulus, Tensile toughness and elongation at break of *np-ANF* and *CelgardTM* 2400 membrane

Membrane	Description	Young's modulus (MPa)	Internal resistances	REF
np-ANF	This work	9.2x10 ³	1.2	
ANFs	Aramid nanofibers membrane prepared by vacuum filtration	8.8 x10 ³	2.57	7
ANFs	Aramid nanofibers(20-50nm) membrane	1x10 ³	~5	8
(PEO/ANF) ₂₀₀	It stands for (PEO/Aramid nanofibers) ₂₀₀ composite membrane	5x10 ³	0.25	9
ANFs/PEO	It stands 15% Aramid nanofibers / Poly(ethylene oxide) composite membrane	16.5	223	10
ANFs/PSS	It stands 15% Aramid nanofibers polyphenylene sulfide composite membrane	528	1.66	11
РВО	PBO stands for Poly-p-Phenylene Benzobisoxazole memberane	2x10 ⁴	2.2	12
Cellulose/PVDF- HFP	It stands for Cellulose/ Poly(vinylidene fluoride-hexafluoropropylene composite nonwoven	960	1.2	13
Cellulose/PSA	It stands for Cellulose/Polysulfonamide composite membrane	250	10	14
PE/PI	It stands for Polyethylene co-polyimide copolymer composite membrane	308	9.8	15
PVdF/PMIA/PVdF	PVdF/PMIA/PVdF stands for PVdF/ Poly(m-phenylene isophthalamide) /PVdF nanofiber composite membrane	30.3	1.5	16
PVDF-HFP/Sb ₂ O ₃	It stands for PVDF-HFP/Sb ₂ O ₃ composite membrane	7.52	16.13	17
PVDF	It stands for PVDF porous membrane	62.08	2.65	18
PEO/ceramic	It stands for Poly(ethylene oxide)/ceramic composite membrane	103	2631	19
PEO/POSS	It stands for PEO/polyhedral oligomeric silsesquioxane composite membrane	38.5	535	20
PMMA/Silica	It stands for Poly(methylmethacrylate) /Silica composite membrane	0.9	10.5	21
PAN gel	It stands for Polyacrylonitrile gel membrane	0.4	5.6	22
3D-GPE	It stands for Diglycidyl ether of bisphenol-A, Poly(ethylene glycol) diglycidyl ether, Diamino-poly(propylene oxide) composite gel	6.56	5	23
PET	It stands Polyethyleneterephthalate nanofiber membrane	26.6	2.5	24

Supplementary Table 2. Young's moduli and internal resistances data for different materials for batteries.

Nylon 6,6/SiO ₂	It stands Nylon 6,6/SiO ₂ composite membrane	88	12	25
----------------------------	---	----	----	----

Supplementary Table 3. Ion-transport parameters for np-ANF membranes and $Celgard^{TM} 2400$

Parameters	np-ANF	Celgard TM 2400
Li ⁺ transfer number	0.63	0.68
$\mathbf{D}_{\mathrm{Li}^{+}}(\mathrm{cm}^{2} \mathrm{s}^{-1}) \mathrm{A} (\mathrm{anodic peak})$	9.263•10 ⁻⁸	9.693•10 ⁻⁸
$\mathbf{D}_{\mathrm{Li}^{+}}(\mathrm{cm}^{2}\mathrm{s}^{-1})\mathrm{B}$ (cathodic peak)	5.310•10 ⁻⁸	5.129•10 ⁻⁸
$\mathbf{D}_{\text{Li+}}(\mathbf{cm}^2 \mathbf{s}^{-1}) \mathbf{C} \text{ (cathodic peak)}$	0.421•10 ⁻⁸	0.567•10 ⁻⁸

Supplementary Table 4. Fitting results of EIS plots in Figure S18.

Daramatars	np-A	ANF	Celgard TM 2400			
rarameters	Before cycling	After 100 cycles	Before cycling	After 100 cycles		
$R_{ heta}\left(\Omega ight)$	$R_{\theta}(\Omega)$ 1.2 7.2		3.9	11.2		
$R_{\rm ct}//{\rm CPE}_{\rm ct}(\Omega)$	$P_{\rm et}//{\rm CPE}_{\rm et}(\Omega)$ 255.4 93.6		166.1	162.8		
$R_{\rm sf}//CPE_{\rm sf}(\Omega)$	$R_{\rm sf}//{\rm CPE_{sf}}(\Omega)$			56		

Supplementary Table 5. The summary of comparative performance for Li-S batteries with	
different structural designs of membranes.	

Electrochemical Performance						
Functional Membrane coating on to PP/PE	Initial discharge capacity (mAhg ⁻¹)	Capacity retention (%)	Capacity fade per cycle(%)	Current density(1C = 1675 mA g^{-1})	Numbe r of cycle	REF
np-ANF	1268±38	85±2.6%	0.092%	0.1C	300	
np-ANF	969 <u>+</u> 28	79.2±2.4%	0.02%	0.5C	1000	
np-ANF	889 <u>±</u> 26	76.0±2.3%	0.016%	1.0C	1500	
np-ANF	703±20	69.6±2.1%	0.012%	2.0C	2500	
np-ANF	521±16	64.7±1.9%	0.01%	3.0C	3500	
Graphene oxide	1170	32%	0.93%	1.0C	400	26
Graphene oxide	920	77%	0.23%	0.1C	100	27
Graphene	1052	70%	0.1%	0.91C	300	28
SWCNT	1132	44.2%	0.19%	0.2C	300	29
MWCNT	1073	47%	0.14%	1.0C	300	30
MWCNT/PEG	1206	52%	0.16%	0.2C	300	31
Microporous carbon/PEG	1307	45%	0.11%	0.2C	500	32
Carbon nanofiber	1270	74%	0.13%	0.5C	200	33
Carbon	1386	60%	0.20%	0.2C	200	34
Carbon paper	1176	85%	0.15%	1.0C	100	35
Carbon black	1350	55%	0.09%	0.2C	500	36
N-porous carbon/PP	882	88%	0.024%	1.0C	500	37
N-doped-carbon nanowire	1123	60%	0.08%	0.2C	500	38
Cobalt/nitrogen co- doped carbon nanofibers	865	71.2%	0.06%	0.2C	500	39
C_3N_4	1100	66%	0.07%	1.0C	500	40
TiO ₂ /graphene	700	80%	0.01%	2.0C	1000	41
TiO ₂ /CNTs	627	57.5%	0.17%	0.5C	250	42
TiO ₂ /C ₆₅	1206	50.3%	0.1%	0.5C	500	43

TiO ₂ /TiN	927	67%	0.017%	1.0C	2000	44
TiN	880	63.6%	0.091%	1.0C	400	45
NbN	815	75.8%	0.061%	1.0C	300	46
V ₂ O ₅	880	91.2%	0.035%	0.0667C	250	47
V ₂ O ₅ /carbon nanofiber	1400	28.5%	0.07%	3.0C	1000	48
Al ₂ O ₃	967	61.5%	0.77%	0.2C	50	49
Al ₂ O ₃ /graphene	1067.7	75%	0.25%	0.2C	100	50
Al ₂ O ₃ /CNT	1287	63%	0.37%	0.2C	100	51
Li@Nafion/PEP/Al ₂ O ₃	924	77.2%	0.022%	1.0C	1000	52
SnO ₂	622	68%	0.064%	0.2C	500	53
Co ₉ S ₈	986	83.1%	0.011%	1.0C	1500	54
Li ₄ Ti ₅ O ₁₂ /graphene	813.3	85.7%	0.03%	1.0C	500	55
PEDOT:PSS	748	64.3%	0.0714%	1.0C	500	56
MoS ₂	808	50%	0.083%	0.5C	600	6
MoS ₂ /CNTs	1237	52.4%	0.061	0.5C	500	57
MOF/CNTs	1101	50%	0.165%	0.25C	300	58
MOF/GO	612	71%	0.019%	1.0C	1500	59
MOF/SiO ₂	1400	42.9%	0.57%	0.1C	100	60
Ce-MOFs/CNT/PP	1021	82%	0.022%	1.0C	800	61
Ni ₃ (HITP) ₂ /PP	851	84.1%	0.032%	1.0C	500	62
Ti ₃ C ₂ /CNTs	1240	51.6%	0.043%	0.5C	1200	63
MnO ₂ /graphene/CNTs	829	27.5%	0.029%	1.0C	2500	64
NiFe/N-doped graphene	812	40%	0.06%	2.0C	1000	65
Glass fiber	630	80%	0.04%	0.5C	500	66
Red phosphorus/PP	889	82%	0.036%	1.0C	500	67
Nafion	781	60%	0.08%	1.0C	500	68
Nafion/GO	1057	46%	0.18%	1.0C	300	69
PMIA	773.6	73%	0.045%	1.0C	600	70
PMIA	1121.5	63.5%	0.06%	0.5C	600	71
PD/PI	1404	63.4%	0.366%	0.5C	100	72
PAA	600	56%	0.074%	0.5C	600	73
PAH/PAA	1418	30%	1.4%		50	74

PAN/PMMA	1000	65%	0.175%	2.0C	200	75
PZI	940	88%	0.012%	1.0C	1000	76
Zn ₂ (benzimidazolate) ₂ (OH) ₂	1272	58%	0.2%	0.25C	200	77

Supplementary Table 6. Comparison of electrochemical performance of the *np-ANF* membranes with that of recent publications in Li–S batteries with various separators in the case of high sulfur loadings more than 3 mg cm⁻²

		Electrochemical Performance						
Separator Membrane	Cathod e	Sulfur loadin g (mg cm ⁻²)	Initial discharg e capacity (mAhg ⁻¹)	Initial areal capacity (mAhcm - ²)	Capacit y fade per cycle (%)	Curren t density (1C = 1675 mA g ⁻¹)	Num ber of cycle	RE F
np-ANF	C/S	5.8	1018±30	5.9±0.18	0.085± 0.003%	0.1 C	200	
np-ANF	C/S	5.8	945 <u>+</u> 28	5.5±0.16	0.066± 0.002%	0.2 C	500	
MoS ₂ -Polymer /Celgard	C/S	4.0	~800	~3.2	0.2%	1.0 C	400	78
Co ₉ S ₈ /Celgard	C/S	5.6	985	5.5	0.079%	0.1C	200	79
V ₂ O ₅ /graphene/ Celgard	C/S	5.5	~780	4.3	~0.102%	0.1C	100	80
Red phosphorus/PP	C/S	5.0	620	3.1	0.194%	0.3C	100	67
Co/NCNS/CNT/ Celgard	C/S	5.0	1134	5.67	0.108%	1.0 C	500	81
C ₃ N ₄ /Celgard	C/S	5.0	1134	5.11	0.51%	0.1C	40	82
NbN/PP	C/S	4.0	815	3.3	0.08%	1.0C	300	46
MOF/PAN	rGO/S	7.7	1102	8.5	0.17%	0.2C	50	83
Li@Nafion/PEP/Al 2O3	rGO/S	7.6	1087	8.26	0.114%	0.2C	300	52
TiO ₂ /TiN/Celgard	Graphe ne/S	4.3	493	2.1	0.033%	1.0C	2000	44
N-porous carbon/PP	CNT/S	6.0	977	5.8	0.047%	0.5C	400	37

Cellulose nanofiber paper	CNT/S	3.0	~830	~2.5	0.05%	0.1C	200	84
Ni ₃ (HITP) ₂ /PP	CNT/S	8.0	1055	8.4	0.071%	0.5C	200	62
D-HVS/PP	Carbon nanofib er/S	9.2	905	8.3	0.237%	0.2C	120	85
Ce-MOFs/CNT/PP	Carbon nanofib er/S	6.0	993.5	5.9	0.054%	0.1C	200	61
MOF/PVDF	Carbon cloth/S	5.8	1269	7.46	0.13%	0.1C	200	86

Supplementary Table 7. The summary of comparative performance for Li-S batteries at high temperature

	Operati Electrochemical Performance				ice			
Membran e	Cathode material	on tempera ture (°C)	Initial discharge capacity (mAhg ⁻¹)	Capacit y fade per cycle (%)	acitCurrentdedensityr $(1C =$ le1675 mA) g^{-1}		te (LiTFSI)	REF
np-ANF	C/S	80	1346 <u>+</u> 40	0.15%	0.1C	100	(DOL+D ME)	
np-ANF	C/S	80	801±24	0.081%	3C	500	(DOL+D ME)	
C@PI@L LZO	C/S	80	897.1	0.2%	5C	200	(DOL+D ME)	87
CuNWs- GN/PI/LL ZO	C/S	80	817.8	0.24%	0.5Ag ⁻¹	50	(DOL+D ME)	88
PAN@AP P	C/S	75	~700	0.220%	1.0C	100	(DOL+D ME)	89
Celgard TM 2325	Carbon nanotube/ S	70	~750	~0.444%	2.0C	150	(DOL+D ME)	90
$\frac{Celgard^{TM}}{2400}$	Graphene/ BN-S	70	1032	0.047%	2.0C	300	(DOL+D ME)	91
PE	S@pPAN	60	820.3		0.2C	200	(TEP+TT E)	92
Li@Nafio n/PE/Al ₂ O 3	RGO@S	60	1172	0.059%	0.2C	500	(DOL+D ME)	52
Celgard TM 2400	Porous graphene/ S	60	~590	0.297%	1.0C	80	(DOL+D ME)	93

Celgard TM 2400	Alucone coated C/S	55	1065	0.152%	0.1C	300	LiPF ₆ (EC:DEC :EMC)	94
$\begin{array}{c} Celgard^{TM} \\ 2400 \end{array}$	S@CNTs/ Co ₃ S ₄ NB _s	50	953	0.082%	0.2C	300	(DOL+D ME)	95
CNT-COF	C/S	50	450	0.16%	2.0Ag ⁻¹	300	(DOL+D ME)	96
Celgard TM 2400	Mesoporo us C/S	45	~1180	~4.067%	0.1C	10	(DOL:D ME:BTF E)	97
Tonen polyolefin	C/S	45	-	0.770%	0.1C	50	(DOL+D ME)	98

Supplementary Table 8. Multiparameter comparison with various modified separator for Li-S batteries in the form of glyph plots.

	Discharg e Capacity 0.1C (mAhg ⁻¹)	Discharge Capacity 1C (mAhg ⁻¹)	Cycle number	Capacity Retention 1C (%)	CE (%)	Sulfur loadin g (mg/c m ²)	Operatio nal Temper ature (°C)	REF
This work	1268±38	889 <i>±</i> 26	1500	76	98	5.8	80	
NANF/Celgard	1270	760	800	62.4	98	5.2	70	99
PMIA/MOF	1391	901	350	88	96.9	9.23	80	100
GO/Celgard	1403	1100	400	32	98	1.1	22	26
N-porous carbon/PP	1257	851	500	88	98	6.0	22	37
MWCNT/Celga rd	1324	1073	300	47	99	1.2	22	30
Carbon paper/Celgard	1367	1176	100	85	96	1.2	22	35
MoS ₂ /Celgard	1300	1007	2000	42	98	4.0	22	78
Red phosphorus/PP	1200	889	500	82	99	5.0	22	67
Co ₉ S ₈ /Celgard	1360	986	1500	83	98	5.6	22	54
Ni ₃ (HITP) ₂ /PP	1186	879	500	84	99	8.0	22	62
MOF@GO	1072	612	1500	71	98	0.7	22	59
MnO ₂ /graphene /CNTs	1259	960	2500	27.5	99	2.37	22	64
PAN@APP	1310	815	400	77.8	99	1.8	75	89
Ce- MOFs/CNT/PP	1200	1021	800	82	99	6.0	22	61

Li@Nafion/PE P/Al ₂ O ₃	1398	924	1000	77.2	99	7.6	60	52
PZI	1095	940	1000	85	99	5.8	25	76
Li4Ti5O12/graph ene/Celgard	1408	813	500	85	98	1.1	22	55
PEDOT:PSS	914	748	500	64.3	99	2.9	22	56
PMIA/Celgard	944	773	600	73	98	0.6	22	70
TiO ₂ /TiN/Celga rd	1250	790	2000	85	99	4.3	22	44
NbN/Celgard	1400	815	300	81.7	99	4.0	22	46
Nafion/Celgard	960	718	500	60	98	0.53	22	68
C_3N_4 /Celgard	1200	1100	500	66	99	5.0	22	40

SUPPLEMENTARY REFERENCES

- 1. Picart, C. *et al.* Molecular basis for the explanation of the exponential growth of polyelectrolyte multilayers. *Proc. Natl. Acad. Sci. U. S. A.* **99**, 12531–5 (2002).
- 2. Porcel, C. *et al.* Influence of the polyelectrolyte molecular weight on exponentially growing multilayer films in the linear regime. *Langmuir* **23**, 1898–904 (2007).
- 3. Zhu, J., Watts, D. & Kotov, N. A. Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites. *Zeitschrift für Phys. Chemie* 232, 1383–1398 (2018).
- 4. Chen, Y. *et al.* Electrospun PMIA and PVDF-HFP composite nanofibrous membranes with two different structures for improved lithium-ion battery separators. *Solid State Ionics* **347**, 115253 (2020).
- 5. Sun, J. *et al.* Entrapment of Polysulfides by a Black-Phosphorus-Modified Separator for Lithium– Sulfur Batteries. *Adv. Mater.* **28**, 9797–9803 (2016).
- 6. Ghazi, Z. A. *et al.* MoS2/Celgard separator as efficient polysulfide barrier for long-life lithium–sulfur batteries. *Adv. Mater.* **29**, 1606817 (2017).
- 7. Patel, A. *et al.* High Modulus, Thermally Stable , and Self-Extinguishing Aramid Nanofiber Separators. *ACS Appl. Mater. Interfaces* **12**, 25756–25766 (2020).
- 8. Li, J., Tian, W., Yan, H., He, L. & Tuo, X. Preparation and performance of aramid nanofiber membrane for separator of lithium ion battery. *J. Appl. Polym. Sci.* **133**, 43623 (2016).
- 9. Tung, S. O., Ho, S., Yang, M., Zhang, R. & Kotov, N. A. A dendrite-suppressing composite ion conductor from aramid nanofibres. *Nat. Commun.* **6**, 6152 (2015).
- 10. Liu, L. *et al.* membranes with 3D aramid nanofiber frameworks for stable all-solid-state lithium metal batteries. *Sci. China Mater.* **63**, 703–718 (2020).

- 11. Zhu, C. *et al.* Aramid nanofibers/ polyphenylene sulfide nonwoven composite separator fabricated through a facile papermaking method for lithium ion battery. *J. Memb. Sci.* **588**, 117169 (2019).
- 12. Hao, X. *et al.* Ultrastrong polyoxyzole nanofiber membranes for dendrite-proof and Heat-resistant battery separators. *Nano Lett.* **16**, 2981–2987 (2016).
- 13. Zhang, J. *et al.* Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator. *ACS Appl. Mater. Interfaces* **5**, 128–134 (2013).
- 14. Xu, Q. *et al.* Cellulose/Polysulfonamide Composite Membrane as a High Performance Lithium-Ion Battery Separator. *ACS Sustain. Chem. Eng.* **2**, 194–199 (2014).
- 15. Song, J. *et al.* Co-polyimide-coated polyethylene separators for enhanced thermal stability of lithium ion batteries. *Electrochim. Acta* **85**, 524–530 (2012).
- 16. Zhai, Y. *et al.* Sandwich-structured PVdF/PMIA/PVdF nanofibrous separators with robust mechanical strength and thermal stability for lithium ion batteries. *J. Mater. Chem. A* **2**, 14511 (2014).
- 17. Ansari, Y. *et al.* Low-cost, dendrite-blocking polymer-Sb2O3 separators for lithium and sodium batteries. *J. Electrochem. Soc.* **161**, A1655–A1661 (2014).
- 18. Ji, G. L., Zhu, B. K., Cui, Z. Y., Zhang, C. F. & Xu, Y. Y. PVDF porous matrix with controlled microstructure prepared by TIPS process as polymer electrolyte for lithium ion battery. *Polymer* (*Guildf*). **48**, 6415–6425 (2007).
- 19. Leo, C. J., Subba Rao, G. V. & Chowdari, B. V. R. Studies on plasticized PEO-lithium triflateceramic filler composite electrolyte system. *Solid State Ionics* **148**, 159–171 (2002).
- 20. Pan, Q., Smith, D. M., Qi, H., Wang, S. & Li, C. Y. Hybrid Electrolytes with Controlled Network Structures for Lithium Metal Batteries. *Adv. Mater.* **27**, 5995–6001 (2015).
- 21. Gayet, F. *et al.* Unique combination of mechanical strength, thermal stability, and high ion conduction in PMMA Silica nanocomposites containing high loadings of ionic liquid. *Chem. Mater.* **21**, 5575–5577 (2009).
- 22. Patel, M., Chandrappa, K. G. & Bhattacharyya, A. J. Increasing ionic conductivity and mechanical strength of a plastic electrolyte by inclusion of a polymer. *Electrochim. Acta* **54**, 209–215 (2008).
- 23. Lu, Q. *et al.* Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. *Adv. Mater.* **29**, 1604460 (2017).
- 24. Hao, J. *et al.* A novel polyethylene terephthalate nonwoven separator based on electrospinning technique for lithium ion battery. *J. Memb. Sci.* **428**, 11–16 (2013).
- Yanilmaz, M., Dirican, M. & Zhang, X. Evaluation of electrospun SiO2/nylon 6,6 nanofiber membranes as a thermally-stable separator for lithium-ion batteries. *Electrochim. Acta* 133, 501– 508 (2014).
- 26. Shaibani, M. *et al.* Suppressed Polysulfide Crossover in Li-S Batteries through a High-Flux Graphene Oxide Membrane Supported on a Sulfur Cathode. *ACS Nano* **10**, 7768–7779 (2016).
- 27. Huang, J.-Q. *et al.* Permselective Graphene Oxide Membrane for Highly Stable and Anti-Self-Dischage Lithium-Sulfur Batteries. *ACS Nano* **9**, 3002–3011 (2015).
- 28. Li, F. *et al.* A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries. *Adv. Mater.* **26**, 625–631 (2014).

- 29. Chang, C. H., Chung, S. H. & Manthiram, A. Effective Stabilization of a High-Loading Sulfur Cathode and a Lithium-Metal Anode in Li-S Batteries Utilizing SWCNT-Modulated Separators. *Small* **12**, 174–179 (2016).
- 30. Chung, S. H. & Manthiram, A. High-performance Li-S batteries with an ultra-lightweight MWCNT-coated separator. *J. Phys. Chem. Lett.* **5**, 1978–1983 (2014).
- 31. Luo, L., Chung, S. H. & Manthiram, A. A trifunctional multi-walled carbon nanotubes/polyethylene glycol (MWCNT/PEG)-coated separator through a layer-by-layer coating strategy for high-energy Li-S batteries. *J. Mater. Chem. A* **4**, 16805–16811 (2016).
- 32. Chung, S. H. & Manthiram, A. A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium-sulfur batteries. *Adv. Mater.* **26**, 7352–7357 (2014).
- Chung, S. H., Han, P., Singhal, R., Kalra, V. & Manthiram, A. Electrochemically Stable Rechargeable Lithium-Sulfur Batteries with a Microporous Carbon Nanofiber Filter for Polysulfide. *Adv. Energy Mater.* 5, 1–12 (2015).
- 34. Chung, S. H. & Manthiram, A. Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium-sulfur batteries. *Adv. Funct. Mater.* **24**, 5299–5306 (2014).
- 35. Su, Y. S. & Manthiram, A. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. *Nat. Commun.* **3**, 1166 (2012).
- 36. Yao, H. *et al.* Improved lithium–sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode–separator interface. *Energy Environ. Sci.* **7**, 3381–3390 (2014).
- 37. Pei, F. *et al.* A Two-dimensional porous carbon-modified separator for high-energy-density Li-S batteries. *Joule* **2**, 323–336 (2018).
- 38. Zhou, X. *et al.* A high-level N-doped porous carbon nanowire modified separator for long-life lithium-sulfur batteries. *J. Electroanal. Chem.* **768**, 55–61 (2016).
- 39. Chen, G. *et al.* A multifunctional separator modified with cobalt and nitrogen co-doped porous carbon nanofibers for Li–S batteries. *J. Memb. Sci.* **548**, 247–253 (2018).
- 40. Fan, C. Y. *et al.* The Effective Design of a Polysulfide-Trapped Separator at the Molecular Level for High Energy Density Li-S Batteries. *ACS Appl. Mater. Interfaces* **8**, 16108–16115 (2016).
- 41. Xiao, Z. *et al.* A lightweight TiO2/Graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries. *Adv. Mater.* **27**, 2891–2898 (2015).
- 42. Xu, G. *et al.* Absorption mechanism of carbon-nanotube paper-titanium dioxide as a multifunctional barrier material for lithium-sulfur batteries. *Nano Res.* **8**, 3066–3074 (2015).
- 43. Xu, G. *et al.* A thin multifunctional coating on a separator improves the cyclability and safety of lithium sulfur batteries. *Chem. Sci.* **8**, 6619–6625 (2017).
- 44. Zhou, T. *et al.* Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusionconversion of polysulfides towards ultralong life lithium-sulfur batteries. *Energy Environ. Sci.* **10**, 1694–1703 (2017).
- 45. Qi, B. *et al.* Mesoporous TiN microspheres as an efficient polysulfide barrier for lithium–sulfur batteries. *J. Mater. Chem. A* (2018). doi:10.1039/C8TA04920C

- 46. Kim, S. *et al.* Simultaneous suppression of shuttle effect and lithium dendrite growth by lightweight bifunctional separator for Li-S batteries. *ACS Appled Energy Mater.* **3**, 2643–2652 (2020).
- 47. Li, W. *et al.* V2O5polysulfide anion barrier for long-lived Li-S batteries. *Chem. Mater.* **26**, 3404–3410 (2014).
- 48. Liu, M. *et al.* Suppressing Self-Discharge and Shuttle Effect of Lithium–Sulfur Batteries with V2O5-Decorated Carbon Nanofiber Interlayer. *Small* **13**, 1–7 (2017).
- 49. Zhang, Z., Lai, Y., Zhang, Z., Zhang, K. & Li, J. Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries. *Electrochim. Acta* **129**, 55–61 (2014).
- 50. Song, R. *et al.* A trilayer separator with dual function for high performance lithium-sulfur batteries. *J. Power Sources* **301**, 179–186 (2016).
- 51. Xu, Q., Hu, G. C., Bi, H. L. & Xiang, H. F. A trilayer carbon nanotube/Al2O3/polypropylene separator for lithium-sulfur batteries. *Ionics (Kiel).* **21**, 981–986 (2015).
- 52. He, Y., Wu, S., Li, Q. & Zhou, H. Designing a multifunctional separator for high-performance Li-S batteries at elevated temperature. *Small* **15**, 1904332 (2019).
- 53. Xiang, Y. *et al.* Interfacing soluble polysulfides with a SnO2 functionalized separator: An efficient approach for improving performance of Li-S battery. *J. Memb. Sci.* **563**, 380–387 (2018).
- 54. Science, E. Vertical Co9S8 hollow nanowall arrays grown on Celgard separator as a multifunctional polysulfide barrier for high- performance Li-S batteries. (2018). doi:10.1039/x0xx00000x
- 55. Zhao, Y. *et al.* Dense coating of Li4Ti5O12 and graphene mixture on the separator to produce long cycle life of lithium-sulfur battery. *Nano Energy* **30**, 1–8 (2016).
- 56. Abbas, S. A. *et al.* Bifunctional separator as a polysulfide mediator for highly stable Li-S batteries. *J. Mater. Chem. A* **4**, 9661–9669 (2016).
- 57. Yan, L. *et al.* Enhanced performance of lithium-sulfur batteries with an ultrathin and lightweight MoS2/carbon nanotube interlayer. *J. Power Sources* **389**, 169–177 (2018).
- 58. Li, M. *et al.* Metal-Organic Framework-Based Separators for Enhancing Li-S Battery Stability: Mechanism of Mitigating Polysulfide Diffusion. *ACS Energy Lett.* **2**, 2362–2367 (2017).
- 59. Bai, S., Liu, X., Zhu, K., Wu, S. & Zhou, H. Metal-organic framework-based separator for lithium-sulfur batteries. *Nat. Energy* **1**, (2016).
- 60. Suriyakumar, S., Stephan, A. M., Angulakshmi, N., Hassan, M. H. & Alkordi, M. H. Metal– organic framework@SiO₂ as permselective separator for lithium–sulfur batteries. *J. Mater. Chem. A* (2018). doi:10.1039/C8TA02259C
- Hong, X. *et al.* Cerium based metal-organic frameworks as an efficient separator coating catalyzing the conversion of polysulfi des for high performance lithium-sulfur batteries. *ACS Nano* 13, 1923–1931 (2019).
- 62. Zang, Y. *et al.* Large-Area Preparation of Crack-Free Crystalline Microporous Conductive Membrane to Upgrade High Energy Lithium – Sulfur Batteries. *Adv. Energy Mater.* **8**, 1802052 (2018).
- 63. Liang, X., Rangom, Y., Kwok, C. Y., Pang, Q. & Nazar, L. F. Interwoven MXene

Nanosheet/Carbon-Nanotube Composites as Li-S Cathode Hosts. Adv. Mater. 29, 1-7 (2017).

- 64. Kong, W. *et al.* Ultrathin MnO2/Graphene Oxide/Carbon Nanotube Interlayer as Efficient Polysulfide-Trapping Shield for High-Performance Li–S Batteries. *Adv. Funct. Mater.* **27**, (2017).
- 65. Peng, H. J. *et al.* A Cooperative Interface for Highly Efficient Lithium–Sulfur Batteries. *Adv. Mater.* **28**, 9551–9558 (2016).
- 66. Wang, L., Liu, J., Haller, S., Wang, Y. & Xia, Y. A scalable hybrid separator for a high performance lithium–sulfur battery. *Chem. Commun.* **51**, 6996–6999 (2015).
- 67. Wang, Z. *et al.* Constructing metal-free and cost-effective multifunctional separator for high-performance lithium-sulfur batteries. *Nano Energy* **59**, 390–398 (2019).
- 68. Huang, J.-Q. *et al.* Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries. *Energy Environ. Sci.* **7**, 347–353 (2014).
- 69. Zhuang, T. Z. *et al.* Rational Integration of Polypropylene/Graphene Oxide/Nafion as Ternary-Layered Separator to Retard the Shuttle of Polysulfides for Lithium-Sulfur Batteries. *Small* **12**, 381–389 (2016).
- 70. Sun, C. *et al.* Integrating flexible PMIA separator and electrode for dealing with multi-aspect issues in Li-S batteries. *Electrochim. Acta* **359**, 136987 (2020).
- 71. Deng, N. *et al.* Designing of a phosphorus, nitrogen, and sulfur three-flame retardant applied in a gel poly-m- phenyleneisophthalamide nanofiber membrane for advanced safety lithium- sulfur batteries. *ACS Appl. Mater. interfaces* **11**, 36705–36716 (2019).
- Wang, Y., Zhang, Z., Dong, L. & Jin, Y. Reduced shuttle effect by dual synergism of lithium sulfur batteries with polydopamine-modified polyimide separators. *J. Memb. Sci.* 595, 117581 (2020).
- Song, S., Shi, L., Lu, S. & Pang, Y. Author 's Accepted Manuscript A new polysulfide blocker -Poly (acrylic acid) modified separator for improved performance of lithium-sulfur battery. *J. Memb. Sci.* 563, 277–283 (2018).
- 74. Gu, M. *et al.* Inhibiting the shuttle effect in lithium-sulfur batteries using a layer-by-layer assembled ion-permselective separator. *RSC Adv.* **4**, 46940–46946 (2014).
- 75. Li, Y. *et al.* Glass fiber separator coated by porous carbon nanofiber derived from immiscible PAN/PMMA for high-performance lithium-sulfur batteries. *J. Memb. Sci.* **552**, 31–42 (2018).
- 76. Li, G. *et al.* Polysulfide Regulation by the Zwitterionic Barrier toward Durable Lithium-Sulfur Batteries. *JACS* **142**, 3583–3592 (2020).
- 77. Huang, J. K. *et al.* Functional Two-Dimensional Coordination Polymeric Layer as a Charge Barrier in Li-S Batteries. *ACS Nano* **12**, 836–843 (2018).
- 78. Wu, J. *et al.* Ultralight layer-by-layer self-assembled MoS2-polymer modified separator for simultaneously trapping polysulfides and suppressing lithium dendrites. *Adv. Energy Mater.* **8**, 1802430 (2018).
- 79. Li, S., He, J. & Chen, Y. Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide. *Energy Environ. Sci.* **11**, 2560–2568 (2018).
- 80. Zhang, Y. & Wu, H. Interwoven V2O5 nanowire/graphene nanoscroll hybrid assembled as efficient polysulfide-trapping-conversion interlayer for long-life lithium–sulfur batteries. *J. Mater.*

Chem. A 6, 19358–19370 (2018).

- 81. Song, C. *et al.* 3D catalytic MOF-based nanocomposite as separator coatings for high-performance Li-S battery. *Chem. Eng. J.* **381**, 122701 (2020).
- 82. Fan, C. *et al.* The effective design of a polysulfide-trapped separator at the molecular level for high energy density Li-S batteries. *ACS Appl. Mater. Interfaces* **8**, 16108–16115 (2016).
- 83. Zhou, C. *et al.* A robust electrospun separator modi fi ed with in situ grown metal-organic frameworks for lithium-sulfur batteries. *Chem. Eng. J.* **395**, 124979 (2020).
- Lee, S. & Lee, S. Nanomat Li–S batteries based on all-fibrous cathode/separator assemblies and reinforced Li metal anodes: towards ultrahigh energy density and flexibility. *Energy Environ. Sci.* 12, 177–186 (2019).
- 85. Wang, J. *et al.* Suppressing the shuttle effect and dendrite growth in lithium -sulfur batteries. *ACS Nano* **14**, 9819–9831 (2020).
- 86. He, Y. *et al.* Simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF-based membrane in Li-S batteries. *Adv. Energy Mater.* **8**, 1802130 (2018).
- 87. Zhou, Z. *et al.* Functionalized polyimide separators enable high performance lithium sulfur batteries at elevated temperature. *J. Power Sources* **396**, 542–550 (2018).
- 88. Zhou, Z. *et al.* A multifunctional separator enables safe and durable lithium/magnesium-sulfur batteries under elevated temperature. *Adv. Energy Mater.* **10**, 1902023 (2020).
- 89. Lei, T. *et al.* A nonflammable and thermotolerant separator suppresses pPolysulfide dissolution for safe and long-cycle lithium-sulfur batteries. *Adv. Energy Mater.* 1802441 (2018). doi:10.1002/aenm.201802441
- 90. Kim, H., Lee, J. T. & Yushin, G. High temperature stabilization of lithium e sulfur cells with carbon nanotube current collector. *J. Power Sources* **226**, 256–265 (2013).
- 91. Deng, D. R. *et al.* Enhanced adsorptions to polysulfides on graphene-supported BN nanosheets with excellent Li-S battery performance in a wide temperature range. *ACS Nano* **12**, 11120–11129 (2018).
- 92. Yang, H. *et al.* An intrinsic flame-retardant organic electrolyte for safe lithium-sulfur batteries. *Angew. Chemie Int. Ed.* **131**, 801–805 (2019).
- 93. Huang, J., Liu, X. & Zhang, Q. Entrapment of sulfur in hierarchical porous graphene for lithiumsulfur batteries with high rate performance from -40 to 60C. *Nano Energy* **2**, 314–321 (2013).
- 94. Li, X. *et al.* Safe and durable high-temperature lithium-sulfur batteries via molecular layer deposited coating. *Nano Lett.* **16**, 3545–3549 (2016).
- 95. Chen, T. *et al.* Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium-sulfur batteries. *JACS* **139**, 12710–12715 (2017).
- 96. Wang, J., Qin, W., Zhu, X. & Teng, Y. Covalent organic frameworks (COF)/CNT nanocomposite for high performance and wide operating temperature lithium-sulfur batteries. *Energy* doi.org/10.1016/j.energy.2020.117372 (2020). doi:10.1016/j.energy.2020.117372
- 97. Gordin, M. L. *et al.* Bis(2,2,2-trifluoroethyl) ether as an electrolyte co-solvent for mitigating selfdischarge in lithium-sulfur batteries. *ACS Appl. Mater. Interface* **6**, 8006–8010 (2014).

- 98. Rolf, M. *et al.* Systematical electrochemical study on the parasitic shuttle-effect in lithium-sulfurcells at different temperatures and different rates. *J. Power Sources* **259**, 289–299 (2014).
- 99. Zheng, S., Zhang, H., Fan, J., Xu, Q. & Min, Y. Improving Electrochemical Performance and Safety of Lithium-Sulfur Batteries by a "Bulletproof Vest". *ACS Appl. Mater. Interfaces* **12**, 51904–51916 (2020).
- 100. Liu, J. *et al.* A high-safety and multifunctional MOFs modified aramid nanofiber separator for lithium-sulfur batteries. *Chem. Eng. J.* **411**, 128540 (2021).