Supplementary Table S1. Behavioural Effects of Ketamine in Preclinical Models

Citation	Animal	Strain	M/F	Dose in mg/kg <i>Enantiomer</i>	Stress Model	Time of Testing (after last injection)	Tests	Behavioural Responses, time (dose)	Injection Method	Special Notes/Considerations
(Autry et al., 2011)	Mouse	C57BL/6	М	3 (R,S)-ketamine	Naïve	30min, 24h (FST)	FST	• FST: ↓ Immobility, 30min-24h	IP	
(Carrier and Kabbaj, 2013)	Rat	Sprague Dawley	М	2.5, 5, 10 (R,S)-ketamine	Naïve	30min (FST) 30min (NSF) 30min (LDB) 24h (EPM) 48h (SPT)	FST NSF LDB EPM SPT	 FST: ↓ Immobility (5, 10) NSF: ↓ Latency (5, 10) LDB: = Time spent and number of entries into light box EPM: = Time spent and number of entries into open arms SPT: ↑ Sucrose preference (5, 10) 	IP	
(Carrier and Kabbaj, 2013)	Rat	Sprague Dawley	F	2.5, 5, 10 (R,S)-ketamine	Naïve	30min (FST) 30min (NSF) 30min (LDB) 24h (EPM) 48h (SPT)	FST NSF LDB EPM SPT	 FST: ↓ Immobility (2.5, 5, 10) NSF: ↓ Latency (2.5, 5, 10) LDB: = Time spent and number of entries into light box EPM: = Time spent and number of entries into open arms SPT: = Sucrose preference 	IP	Estrus cycle not taken into account.
(Chang et al., 2018)	Mouse	C57BL/6J	M/F	3, 10 (<i>R</i>)-ketamine	LPS	lh (LMT) 3h (FST)	LMT FST	 LMT: = Locomotion FST: ↓ Immobility (10) No differences between M/F in terms of acute antidepressant response. 	IP	Estrus cycle not taken into account.
(Dossat et al., 2018)	Mouse	C57BL/6J	М	1.5, 3 (R,S)-ketamine	Naïve	30min (FST)	FST	• FST: ↓ Immobility (3)	IP	
(Dossat et al., 2018)	Mouse	C57BL/6J	F	(,,,,) 1.5, 3 (R,S)-ketamine	Naïve	30min (FST)	FST	• FST: ↓ Immobility (D1: 3; PE: 1.5, 3)	IP	Giving an ERα/β agonist was sufficient to increase behavioural sensitivity in D1 females. Increased sensitivity in PE is mirrored by activation of Akt in the PFC and Akt/CaMKIIα in the HC.
(Franceschelli et al., 2015)	Mouse	C57BL/6J	М	3, 5, 10 (R,S)-ketamine	Naïve	30min, 24h (FST)	FST	• FST: ↓ Immobility, 30min (5, 10) • FST: ↓ Immobility, 24h (10)	IP	
(Franceschelli et al., 2015)	Mouse	C57BL/6J	F	3, 5, 10 (<i>R</i> , <i>S</i>)-ketamine	Naïve	30min, 24h (FST)	FST	 • FST: ↓ Immobility, 30min (3, 5, 10) • FST: ↓ Immobility, 24h (5, 10) 	IP	Estrus cycle not taken into account.
(Franceschelli et al., 2015)	Mouse	C57BL/6J	М	10 (R,S)-ketamine	CMS	30min (OFT) 1d, 7d (FST) 4d (MBT) 5d (SpIT) 6d (SPT)	OFT FST MBT SpIT SPT	OFT: = Locomotor activity and center arena exploration FST: ↓ Immobility, 1d-7d MBT: = Number of marbles buried SpIT: ↑ Grooming duration SPT: = Sucrose preference	IP	

Citation	Animal	Strain	M/F	Dose in mg/kg <i>Enantiomer</i>	Stress Model	Time of Testing (after last injection)	Tests	Behavioural Responses, time (dose)	Injection Method	Special Notes/Considerations
(Franceschelli et al., 2015)	Mouse	C57BL/6J	F	10 (R,S)-ketamine	CMS	30min (OFT) 1d, 7d (FST) 4d (MBT) 5d (SpIT) 6d (SPT)	OFT FST MBT SpIT SPT	OFT: ↓ Locomotor activity and center arena exploration FST: ↓ Immobility, 1d MBT: = Number of marbles buried SpIT: = Grooming duration SPT: = Sucrose preference	IP	Estrus cycle not taken into account.
(Garcia et al., 2008a)	Rat	Wistar	М	5, 10, 15; 14d Once Daily <i>(R,S)-ketamine</i>	Naïve	Day 12 (OFT) Day 13, 14 (FST) All tests 60min after drug administration	FST OFT	 FST: ↓ Immobility, ↑ Climbing, ↑ Swimming (5, 10, 15) OFT: = Number of rearings, = Number of crossings 	IP	Acute administration of 5mg/kg in rats is insufficient for a behavioural response, but it is sufficient in a chronic regimen.
(Garcia et al., 2008b)	Rat	Wistar	М	5, 10, 15 (R,S)-ketamine	Naïve	60min (FST) 60min (OFT)	FST OFT	 FST: ↓ Immobility (10, 15) OFT: = Number of rearings, = Number of crossings 	IP	
(Garcia et al., 2009)	Rat	Wistar	М	15; acute (R,S)-ketamine	Naïve	60min (SPT)	SPT	• SPT: = Sucrose preference	IP	
(Garcia et al., 2009)	Rat	Wistar	М	15; 7d Once Daily (<i>R</i> , <i>S</i>)- <i>ketamine</i>	Naïve	60min (SPT)	SPT	• SPT: ↑ Sucrose preference	IP	Larger differences in chronic than acute ketamine administration.
(Garcia et al., 2009)	Rat	Wistar	М	15; acute (R,S)-ketamine	CMS	60min (SPT)	SPT	• SPT: = Sucrose preference	IP	
(Garcia et al., 2009)	Rat	Wistar	М	15; 7d Once Daily (<i>R</i> , <i>S</i>)-ketamine	CMS	60min (SPT)	SPT	• SPT: ↑ Sucrose preference	IP	
(Guo et al., 2016)	Rat	Sprague Dawley	M/F	6-14; 9d (Once daily) (<i>R</i> , <i>S</i>)- <i>ketamine</i>	Naïve	Day 9 (CPP)	СРР	• CPP: ↑ Preference (NS) Females more sensitive to the ketamine-induced CPP than males. Positive reinforcement agent in both sexes, but preference scores were much higher in females.	NS	Estrus cycle not taken into account.
(Iñiguez et al., 2018)	Mouse	C57BL/6J	F	20 3 injections (<i>R</i> , <i>S</i>)-ketamine	ES	30min (SIT)	SIT	 SIT: ↑ Social interaction ES induced avoidance behaviour, which was rescued with ketamine 	IP	Estrus cycle not taken into account.
(Li et al., 2010)	Rat	Sprague Dawley	М	10 (R,S)-ketamine	IES	24h (FST) 24h (NSF) 24h (LH) 30min, 1h, 2h, 6h,	FST NSF LH	 FST: ↓ Immobility NSF: ↓ Latency to eat LH: ↓ Number of escape failures 	IP	
(Li et al., 2011)	Rat	Sprague Dawley	М	10 (R,S)-ketamine	CUS	1d, 3d, 5d, 7d (SPT) 2d (NSF)	SPT NSF	 SPT: ↑ Sucrose preference, 3d-7d NSF: ↓ Latency 	IP	

Citation	Animal	Strain	M/F	Dose in mg/kg Enantiomer	Stress Model	Time of Testing (after last injection)	Tests	Behavioural Responses, time (dose)	Injection Method	Special Notes/Considerations
(McDougall et al., 2017)	Rat	Sprague Dawley	M/F	5, 10, 20, 40 (R,S)-ketamine	Naïve	Immediate (LMT)	LMT	 LMT: ↑ Locomotion Significantly more locomotor activity and motor disrupting effects in female adolescent rats than male adolescent rats injected with (20, 40). 	IP	
(Saland et al., 2016)	Rat	Sprague Dawley	М	2.5; on days 4 and 6 (of 6) (<i>R</i> , <i>S</i>)-ketamine	Naïve	24h-7d (SPT) Tested once daily	SPT	• SPT: = Sucrose preference	IP	Increase in sucrose preference (lasting 6 days) if given cyclic P4.
(Saland et al., 2016)	Rat	Sprague Dawley	F	2.5; on days 4 and 6 (of 6) <i>(R,S)-ketamine</i>	Naïve	24h-7d (SPT) Tested once daily	SPT	• SPT: ↑ Sucrose preference, 24h-7d	IP	OVX animals with E2/P4 hormone replacement to physiological levels.
(Sarkar and Kabbaj, 2016)	Rat	Sprague Dawley	М	2.5, 5 (R,S)-ketamine	CSIS	3h, 24h (SPT) 3d (FST)	SPT FST	 SPT: ↑ Sucrose preference, 3h (5) FST: ↓ Immobility (5) 	NS	
(Sarkar and Kabbaj, 2016)	Rat	Sprague Dawley	F	2.5, 5 (R,S)-ketamine	CSIS	3h, 24h (SPT) 3d (FST)	SPT FST	• SPT: = Sucrose preference • FST: ↓ Immobility (2.5, 5)	NS	Females injected with ketamine during D1. No reduction in SPT after stress, but also no increase after ketamine.
(Schoepfer et al., 2019)	Rat	Sprague Dawley	М	2.5, 5, 10; 10d Every other day (<i>R</i> , <i>S</i>)-ketamine	Naïve	Day 11 (CPP) Day 2, 12 (LMT)	LMT CPP	 LMT: ↑ Locomotion, day 12 (5, 10) Locomotor response to 5mg/kg significantly smaller in males than females on day 12 CPP: ↑ Preference (10) 	IP	
(Schoepfer et al., 2019)	Rat	Sprague Dawley	F	2.5, 5, 10; 10d Every other day (<i>R</i> , <i>S</i>)-ketamine	Naïve	Day 11 (CPP) Day 2, 12 (LMT)	LMT CPP	 LMT: ↑ Locomotion, day 2 and 12 (5, 10) Locomotor response to 5mg/kg significantly larger in females than males on day 12 CPP: = Preference 	IP	Females have more psychostimulant effects at an equivalent dose as males, but they have a lower threshold for antidepressant effects and therefore may be more tolerant to effects at lower doses. Estrus cycle not taken into account.
(Silvestre et al., 1997)	Rat	Wistar	М	7 (R,S)-ketamine	Naïve	30min (EPM) 30min (SIT) 30min (HBT)	EPM SIT HBT	 EPM: ↓ Time spent and number of entries into open arms SIT: ↓ Interaction, ↓ Rearings, ↓ Activity in medial areas, ↓ Total central activity HBT: ↑ Crossings, ↓ Rearings 	IP	Anxiogenic-like effects.

Citation	Animal	Strain	M/F	Dose in mg/kg Enantiomer	Stress Model	Time of Testing (after last injection)	Tests	Behavioural Responses, time (dose)	Injection Method	Special Notes/Considerations
(Strong et al., 2017)	Rat	Sprague Dawley	М	2.5, 5; 1/wk for 7 wk (R,S)-ketamine	Naïve	Immediate (LMT) 3-4d (CPP) 2wk (Ketamine challenge using escalating doses of 0, 2.5, and 5mg/kg every 30 mins)	LMT CPP KC	 LMT: ↑ Locomotion, 10min (2.5, 5) KC: Locomotor sensitization when treated with (5) and challenged with (5) CPP: = Preference 	IP	
(Strong et al., 2017)	Rat	Sprague Dawley	F	2.5, 5; 1/wk for 7 wk (<i>R</i> , <i>S</i>)-ketamine	Naïve	Immediate (LMT) 3-4d (CPP) 2wk (Ketamine challenge using escalating doses of 0, 2.5, and 5mg/kg every 30 mins)	LMT CPP KC	 LMT: ↑ Locomotion, 10min-20min (2.5) KC: Locomotor sensitization when treated with (2.5, 5) and challenged with (5) CPP: ↓ Preference (5) (CPA) 	IP	All females were tested in D1.
(Thelen et al., 2016)	Mouse	C57BL/6J	М	3, 5, 10; 21 d Once daily (<i>R</i> , <i>S</i>)-ketamine	Naïve	Day 15 (OFT) Day 22 (FST)	OFT FST	 • OFT: = Center arena exploration • FST: ↓ Immobility (10) 	IP	
(Thelen et al., 2016)	Mouse	C57BL/6J	F	3, 5, 10; 21 d Once daily (<i>R</i> , <i>S</i>)-ketamine	Naïve	Day 15 (OFT) Day 22 (FST)	OFT FST	 • OFT: ↓ Center arena exploration (5, 10) • FST: ↑ Immobility (10) 	IP	Repeated ketamine induced anxiety-like and depressive-like effects in females, but not males. Estrus cycle not taken into account.
(Tizabi et al., 2012)	Rat	Wistar- Kyoto (WKY)	F	2.5, 5.0 (R,S)-ketamine	Naïve	20min, 1wk (FST) 20min, 1wk (OFLA)	FST OFLA	 FST: ↓ Immobility, 20min (2.5, 5) FST: ↓ Immobility, 20min-1wk (5) OFLA: = Locomotor activity 	IP	
(Tizabi et al., 2012)	Rat	Wistar	F	2.5, 5.0 (R,S)-ketamine	Naïve	20min, 1wk (FST) 20min, 1wk (OFLA)	FST OFLA	FST: = ImmobilityOFT: = Locomotor activity	IP	
(Tizabi et al., 2012)	Rat	Wistar- Kyoto (WKY)	F	0.5, 2.5; 10d Once daily (<i>R</i> , <i>S</i>)-ketamine	Naïve	20-22h, 1wk (FST) 20-22h, 1wk (OFLA)	FST OFLA	 • FST: ↓ Immobility 20-22h (0.5, 2.5) • FST↓ Immobility, 20-22h-1wk (2.5) • OFLA: = Locomotor activity 	IP	
(Tizabi et al., 2012)	Rat	Wistar	F	0.5, 2.5; 10d Once daily (<i>R</i> , <i>S</i>)-ketamine	Naïve	20-22h, 1wk (FST) 20-22h, 1wk (OFLA)	FST OFLA	FST: = ImmobilityOFLA: = Locomotor activity	IP	
(Wright et al., 2017)	Rat	Sprague Dawley	М	Self- administration: 0.1/infusion (every 4 days; 10 sessions) <u>Reinstatement:</u> 2.5 (<i>R</i> , <i>S</i>)-ketamine	Naïve	Daily extinction training. Once established, reinstatement dose administered immediately before session.		Reinstated ketamine-seeking behaviours after extinction when exposed to drug-paired cues alone or ketamine+cues.	IV IP	Self-administration. The cues alone were enough to reinstate deug seeking behaviours in males.

Citation	Animal	Strain	M/F	Dose in mg/kg Enantiomer	Stress Model	Time of Testing (after last injection)	Tests	Behavioural Responses, time (dose)	Injection Method	Special Notes/Considerations
(Wright et al., 2017)	Rat	Sprague Dawley	F	Self- administration: 0.1/infusion (every 4 days; 10 sessions) <u>Reinstatement:</u> 2.5 (<i>R</i> , <i>S</i>)-ketamine	Naïve	Daily extinction training. Once established, reinstatement dose administered immediately before session.		Diestrus trained: failed to acquire ketamine self-administration after ketamine/drug-paired cue exposure and rapidly decrease intake. Proestrus trained: Reinstated ketamine-seeking behaviours after extinction when exposed to drug- paired cues alone or ketamine+cues.	IV IP	Self-administration. Females lavaged for estrus staging. The cues alone were enough to reinstate drug seeking behaviours in PE-trained, but not D1- trained, animals
(Yang et al., 2015)	Mouse	C57BL/6	М	10 (R)-ketamine (S)-ketamine	SDS	1d, 6d (SPT) 2d, 7d (TST) 2d, 7d (FST)	SPT TST FST	 SPT: ↑ Sucrose preference, 1d-6d TST: ↓ Immobility, 2d-7d FST: ↓ Immobility, 2d-7d (R)- and (S)-ketamine both work, but (R)-ketamine has a greater effect in all tests. 	IP	R-ketamine more potent than S-ketamine. (S)-ketamine increases locomotion, has psychomimetic effects, and induces CPP, where (R)-ketamine doesn't seem to do any of those things in mice. (R)-ketamine may be free of psychomimetic side effects and abuse liability in humans.
(Yang et al., 2015)	Mouse	C57BL/6	М	5, 10, 20, 7d (CPP) On days 1, 3, 5 (R)-ketamine (5, 10, 20) (S)-ketamine (5, 10, 20) (R,S)-ketamine (10) 5, 10, 20 (LMT, PPI) (R)-ketamine (S)-ketamine	SDS	7d	LMT PPI CPP	 (S)-ketamine LMT: ↑ Locomotion (5, 10, 20) PPI: Deficits at 77db and 71db (10, 20) CPP: ↑ Preference (5, 10, 20) (R)-ketamine LMT: = Locomotion PPI: Normal CPP: = Preference (R,S)-ketamine CPP: ↑ Preference 	IP	R-ketamine more potent than S-ketamine. (S)-ketamine increases locomotion, has psychomimetic effects, and induces CPP, where (R)-ketamine doesn't seem to do any of those things in mice. (R)-ketamine may be free of psychomimetic side effects and abuse liability in humans.
(Yang et al., 2015)	Rat	Sprague Dawley	М	20 (R)-ketamine (S)-ketamine	US	5d (LH)	LH	LH: ↓ Escape latency and number of failures, (R)-ketamine only, (S)-ketamine had no effect on LH	IP	(R)-ketamine, but not (S)-ketamine has an AD effect in a rat LH model.
(Yang et al., 2018)	Mouse	C57BL/6	М	10 (R)-ketamine	CSDS	1d (TST) 1d (FST) 7d (SPT)	LMT TST FST SPT	• LMT: = Locomotion • TST: ↓ Immobility • FST: ↓ Immobility • SPT: ↑ Sucrose preference	IP	

Citation	Animal	Strain	M/F	Dose in mg/kg <i>Enantiomer</i>	Stress Model	Time of Testing (after last injection)	Tests	Behavioural Responses, time (dose)	Injection Method	Special Notes/Considerations
(Yang et al., 2018)	Mouse	C57BL/6	М	10 (S)-ketamine	CSDS	1d (TST) 1d (FST) 7d (SPT)	LMT TST FST SPT	 LMT: = Locomotion TST: ↓ Immobility FST: ↓ Immobility SPT: ↑ Sucrose preference 	IP	
(Zanos et al., 2016)	Mouse	C57BL/6J	M/F	1, 3, 10, 30, 50 (FST) 10 (LH) (<i>R</i> , <i>S</i>)-ketamine	CSDS	1h, 24h (FST) 1d (LH)	FST LH	 FST: ↓ Immobility time, 1h (10, 30) (M/F grouped) FST: ↓ Immobility time, 24h (10) (M/F grouped) LH: ↓ Number of escape failures For males at 24 hours, only (10) reduced immobility in the FST, but both (3) and (10) reduced immobility in females. Greater antidepressant potency in female mice 	IP	Deuterated ketamine (which only affects its metabolism into HNK) did not induce AD effects in the FST or LH at 24h, suggesting a role of (2S,6S;2R,6R)- HNK in the sustained effects. Estrus cycle not taken into account.
(Zanos et al., 2016)	Mouse	C57BL/6J	M/F	1, 3, 10, 30 (FST, NSF) 1, 5, 25 (LH) (<i>R</i>)-ketamine	CSDS	1h, 24h (FST) 30min, 60min (NSF) 1d (LH)	FST NSF LH	 FST: ↓ Immobility, 1h (3, 10, 30) FST: ↓ Immobility, 24h (10, 30) LH: ↓ Number of escape failures (5, 25) NSF: ↓ Latency 	IP	Greater potency of (R)- ketamine in the FST, NSF, and LH. Estrus cycle not taken into account.
(Zanos et al., 2016)	Mouse	C57BL/6J	M/F	1, 3, 10, 30 (S)-ketamine	CSDS	1h, 24h (FST) 30min, 60min (NSF) 1d (LH)	FST NSF LH	 FST: ↓ Immobility, 1h (30) FST: = Immobility, 24h LH: ↓ Number of escape failures (25) 	IP	Greater potency of (R)- ketamine in the FST, NSF, and LH. Estrus cycle not taken into account.
(Zanos et al., 2016)	Mouse	C57BL/6J	M/F	3, 10 (FST) 10 (LH) (2R,6R)-HNK (2S, 6S)-HNK	CSDS	24h (FST) 1d (LH)	FST LH	 (2R,6R)-HNK FST: ↓ Immobility (10) LH: ↓ Number of escape failures (2S,6S)-HNK FST: = Immobility LH: = Number of escape failures 	IP	(2R,6R)-HNK more potent than (2S,6S)- HNK. (2R,6R)-HNK lacks ketamine's side effects. Estrus cycle not taken into account.

Behavioural Test Abbreviations	Stress Model Abbreviations	Other Abbreviations
CPA: Conditioned Place Aversion	CMS: Chronic Mild Stress	(m)(dl)PFC: (medial)(dorsolateral) Prefrontal Cortex
CPP: Conditioned Place Preference	CSDS: Chronic Social Defeat Stress	D1: Diestrus
EPM: Elevated Plus Maze	CSIS: Chronic Social Isolation Stress	HC: Hippocampus
FST: Forced Swim Test	CUS: Chronic Unpredictable Stress	IP: Intraperitoneal
HBT: Holeboard Test	ES: Emotional/Psychological Stress	IV: Intravenous
KC: Ketamine Challenge	IES: Inescapable Shock	NAcC: Nucleus Accumbens Core
LDB: Light-Dark Box	LPS: Lipopolysaccharide Inflammation	NAcSh: Nucleus Accumbens Shell
LMT: Locomotor test	SDS: Social Defeat Stress	NS: Not Specified
MBT: Marble Burying Test	US: Uncontrollable Stress	PE: Proestrus
NSF: Novelty Suppressed Feeding		
OFLA: Open Field Locomotor Activity		
OFT: Open Field Test		
PPI: Pre-Pulse Inhibition		
SIT: Social Interaction Test		
SplT: Splash Test		
SPT: Sucrose Preference Test		
TST: Tail Suspension Test		

List of Abbreviations

References

Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng P, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91–95.

Carrier N, Kabbaj M (2013) Sex differences in the antidepressant-like effects of ketamine. Neuropharmacology 70:27–34.

- Chang L, Toki H, Qu Y, Fujita Y, Mizuno-Yasuhira A, Yamaguchi J-I, Chaki S, Hashimoto K (2018) No Sex-Specific Differences in the Acute Antidepressant Actions of (R)-Ketamine in an Inflammation Model. Int J Neuropsychopharmacol 21:932–937.
- Dossat AM, Wright KN, Strong CE, Kabbaj M (2018) Behavioral and biochemical sensitivity to low doses of ketamine: influence of estrous cycle in C57BL/6 mice. Neuropharmacology 130:30–41.
- Franceschelli A, Sens J, Herchick S, Thelen C, Pitychoutis PM (2015) Sex differences in the rapid and the sustained antidepressant-like effects of ketamine in stress-naïve and "depressed" mice exposed to chronic mild stress. Neuroscience 290:49–60.
- Garcia LS, Comim CM, Valvassori SS, Réus GZ, Andreazza AC, Stertz L, Fries GR, Gavioli EC, Kapczinski F, Quevedo J (2008a) Chronic Administration of Ketamine Elicits Antidepressant-Like Effects in Rats without Affecting Hippocampal Brain-Derived Neurotrophic Factor Protein Levels. Basicc Clin Pharmacol Toxicol 103:502–506.
- Garcia LS, Comim CM, Valvassori SS, Réus GZ, Barbosa LM, Andreazza AC, Stertz L, Fries GR, Gavioli EC, Kapczinski F, Quevedo J (2008b) Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Prog Neuro-Psychopharmacol Biol Psychiatry 32:140–144.
- Garcia LS, Comim CM, Valvassori SS, Réus GZ, Stertz L, Kapczinski F, Gavioli EC, Quevedo J (2009) Ketamine treatment reverses behavioral and physiological alterations induced by chronic mild stress in rats. Prog Neuro-Psychopharmacol Biol Psychiatry 33:450–455.
- Guo R, Tang Q, Ye Y, Lu X, Chen F, Dai X, Yan Y, Liao L (2016) Effects of gender on ketamine-induced conditioned placed preference and urine metabonomics. Regul Toxicol Pharmacol 77:263–274.

- Iñiguez SD, Flores-Ramirez FJ, Riggs LM, Alipio JB, Garcia I, Hernandez MA, Sanchez DO, Lobo MK, Serrano PA, Braren SH, Castillo SA (2018) Vicarious Social Defeat Stress Induces Depression-related Outcomes in Female Mice. Biol Psychiatry 83:9–17.
- Li N, Lee B, Liu R-J, Banasr M, Dwyer JM, Iwata M, Li X-Y, Aghajanian G, Duman RS (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329:959–964.
- Li N, Liu R-J, Dwyer JM, Banasr M, Lee B, Son H, Li X-Y, Aghajanian G, Duman RS (2011) Glutamate NMDA receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry 69:754–761.
- McDougall SA, Moran AE, Baum TJ, Apodaca MG, Real V (2017) Effects of ketamine on the unconditioned and conditioned locomotor activity of preadolescent and adolescent rats: impact of age, sex, and drug dose. Psychopharmacology 234:2683–2696.
- Saland SK, Schoepfer KJ, Kabbaj M (2016) Hedonic sensitivity to low-dose ketamine is modulated by gonadal hormones in a sex-dependent manner. Sci Rep 6:21322.
- Sarkar A, Kabbaj M (2016) Sex Differences in Effects of Ketamine on Behavior, Spine Density, and Synaptic Proteins in Socially Isolated Rats. Biol Psychiatry 80:448–456.
- Schoepfer KJ, Strong CE, Saland SK, Wright KN, Kabbaj M (2019) Sex- and dose-dependent abuse liability of repeated subanesthetic ketamine in rats. Physiol Behav 203:60–69.
- Silvestre JS, Nadal R, Pallarés M, Ferré N (1997) Acute effects of ketamine in the holeboard, the elevated-plus maze, and the social interaction test in Wistar rats. Depress Anxiety 5:29–33.
- Strong CE, Schoepfer KJ, Dossat AM, Saland SK, Wright KN, Kabbaj M (2017) Locomotor sensitization to intermittent ketamine administration is associated with nucleus accumbens plasticity in male and female rats. Neuropharmacology 121:195–203.
- Thelen C, Sens J, Mauch J, Pandit R, Pitychoutis PM (2016) Repeated ketamine treatment induces sex-specific behavioral and neurochemical effects in mice. Behav Brain Res 312:305–312.

- Tizabi Y, Bhatti BH, Manaye KF, Das JR, Akinfiresoye L (2012) Antidepressant-like effects of low ketamine dose is associated with increased hippocampal AMPA/NMDA receptor density ratio in female Wistar–Kyoto rats. Neuroscience 213:72–80.
- Wright KN, Strong CE, Addonizio MN, Brownstein NC, Kabbaj M (2017) Reinforcing properties of an intermittent, low dose of ketamine in rats: effects of sex and cycle. Psychopharmacology 234:393–401.
- Yang C, Ren Q, Qu Y, Zhang J-C, Ma M, Dong C, Hashimoto K (2018) Mechanistic Target of Rapamycin–Independent Antidepressant Effects of (R)-Ketamine in a Social Defeat Stress Model. Biol Psychiatry 83:18–28.
- Yang C, Shirayama Y, Zhang J-C, Ren Q, Yao W, Ma M, Dong C, Hashimoto K (2015) R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl Psychiatry 5:e632–e632.
- Zanos P et al. (2016) NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533:481-486.