Supplementary Table S2. Molecular Effects of Ketamine in Preclinical Models

Citation	Animal	Strain	M/F	Dose in mg/kg <i>Enantiomer</i>	Stress Model	Time of Testing (after last injection)	Molecular Changes, time (dose)	Injection Method	Tissue Collection Method	Special Notes/Considerations
(Autry et al., 2011)	Mouse	C57BL/6	М	3 (R,S)-ketamine	Naïve	30min, 24h	$mPFC$ • \uparrow BDNF, 30min • = GluR1 • = p-p70S6K • = p-mTOR • = p-eEF2 HC • \uparrow BDNF, 30min • \downarrow p-eEF2, 30 min • \downarrow p-mTOR	IP	Whole Tissue	↑ BDNF protein, but not mRNA (regulation at the level of translation).
(Carrier and Kabbaj, 2013)	Rat	Sprague Dawley	М	2.5, 5 (R,S)-ketamine	Naïve	30min	Whole Tissue $mPFC$ • = total mTOR• = p-mTOR HC • \downarrow p-eEF2 (5)Synaptoneurosomes $mPFC$ • \uparrow p-mTOR (5)• Synaptoneurosomes with \uparrow p-mTOR were also highly concentrated with PSD-95	IP	Synaptoneurosomes Whole Tissue	
(Carrier and Kabbaj, 2013)	Rat	Sprague Dawley	F	2.5, 5 (R,S)-ketamine	Naïve	30min	Whole Tissue $mPFC$ • = total mTOR• = p-mTOR HC • = p-eEF2Synaptoneurosomes $mPFC$ • \uparrow p-mTOR (5)• Synaptoneurosomeswith \uparrow p-mTOR werealso highly concentratedwith PSD-95	IP	Synaptoneurosomes Whole Tissue	No increase in activated mTOR irt (2.5), suggesting that the increased sensitivity to ketamine is not due to mTOR/eEF2 activation in the PFC of female rat. Increased sensitivity lost when female rats are OVX. Estrus cycle not taken into account.
(Chang et al., 2018)	Mouse	C57BL/6J	M/F	3, 10 (<i>R</i>)-ketamine	LPS	10, 30, 60, 120, 180	No differences between M/F in terms of acute pharmokinetic profiles.	IP	Plasma Brain (Whole Tissue)	Estrus cycle not taken into account.

Citation	Animal	Strain	M/F	Dose in mg/kg <i>Enantiomer</i>	Stress Model	Time of Testing (after last injection)	Molecular Changes, time (dose)	Injection Method	Tissue Collection Method	Special Notes/Considerations
(Dossat et al., 2018)	Mouse	C57BL/6J	М	1.5, 3 (R,S)-ketamine	Naïve	lh	PFC • = p-CaMKIIα • ↑ p-GluR1 (3) • ↑ BDNF (3) • = p-MAPK • ↑ p-Akt (3) • ↑ p-GSK3β (1.5, 3) • ↑ p-mTOR (3) <i>HC</i> • ↑ CaMKIIα (3) • ↑ p-GluR1 (3) • ↑ p-Akt (3) • ↑ p-Akt (3) • ↑ p-GSK3β (1.5, 3) • ↑ p-mTOR (3)	IP	Whole Tissue	
(Dossat et al., 2018)	Mouse	C57BL/6J	F	1.5, 3 (R,S)-ketamine	Naïve	lh	<i>PFC</i> • = CaMKIIα • ↑ GluR1 (PE: 1.5, 3) • ↑ BDNF (PE: 3) • = p-MAPK • ↑ p-Akt (PE: 1.5, 3) • ↑ p-mTOR (D1: 3) <i>HC</i> • ↑ CaMKIIα (PE: 1.5, 3) • ↑ p-GluR1 (PE: 3) • ↑ p-GluR1 (PE: 3) • ↑ p-MAPK (D1: 1.5, 3; PE: 3) • ↑ p-Akt (PE: 1.5, 3) • ↑ p-Akt (PE: 1.5, 3) • ↑ p-GSK3β (D1: 3; PE: 3) • ↑ p-mTOR (PE: 3)	IP	Whole Tissue	Giving an ERα/β agonist was sufficient to increase behavioural sensitivity in D1 females. Increased sensitivity in PE is mirrored by activation of Akt in the PFC and Akt/CaMKIIα in the HC.
(Franceschelli et al., 2015)	Mouse	C57BL/6J	М	10 (R,S)-ketamine	Naïve	30min, 24h	<i>PFC</i> • = Asp • = 5-HIAA/5-HT <i>HC</i> • ↓ Glu, 30min • = 5-HIAA/5-HT	IP	Whole Tissue	
(Franceschelli et al., 2015)	Mouse	C57BL/6J	F	10 (R,S)-ketamine	Naïve	30min, 24h	<i>PFC</i> • ↑ Asp, 30min • ↓ 5-HIAA/5-HT, 24h <i>HC</i> • = Glu • ↓ 5-HIAA/5-HT, 24h	IP	Whole Tissue	Estrus cycle not taken into account.

Citation	Animal	Strain	M/F	Dose in mg/kg <i>Enantiomer</i>	Stress Model	Time of Testing (after last injection)	Molecular Changes, time (dose)	Injection Method	Tissue Collection Method	Special Notes/Considerations
(Garcia et al., 2008a)	Rat	Wistar	М	5, 10, 15; 14d Once Daily (<i>R</i> , <i>S</i>)-ketamine	Naïve	Day 14	<i>HC</i> • = BDNF	IP	Whole Tissue	
(Garcia et al., 2008b)	Rat	Wistar	М	5, 10, 15 (R,S)-ketamine	Naïve	60min	<i>HC</i> • ↑ BDNF (15)	IP	Whole Tissue	
(Garcia et al., 2009)	Rat	Wistar	М	15; acute (R,S)-ketamine	Naïve	NS	• = ACTH • = Corticosterone <i>HC</i> • = BDNF	IP	Whole Tissue	
(Garcia et al., 2009)	Rat	Wistar	М	15; 7d Once Daily <i>(R,S)-ketamine</i>	Naïve	NS	• = ACTH • = Corticosterone <i>HC</i> • = BDNF	IP	Whole Tissue	Larger differences in chronic than acute ketamine administration.
(Garcia et al., 2009)	Rat	Wistar	М	15; acute (R,S)-ketamine	CMS	NS	• ↓ ACTH • ↓ Corticosterone <i>HC</i> • = BDNF	IP	Whole Tissue	
(Garcia et al., 2009)	Rat	Wistar	М	15; 7d Once Daily (R,S)-ketamine	CMS	NS	 ↓ ACTH (more than acute) ↓ Corticosterone (more than acute) <i>HC</i> = BDNF 	IP	Whole Tissue	Larger differences in chronic than acute ketamine administration.
(Guo et al., 2016)	Rat	Sprague Dawley	M/F	6-14; 9d (Once daily) (R,S)-ketamine	Naïve	0d, 1d, 3d, 5d, 7d, 9d, 10, 12d, 14d, 16d	"Metabolic trajectory fluctuation of the female rats was relatively larger than that of male rats." "Different metabolites between ketamine- induced male and female rats."	NS	Urine (Metabolics)	Estrus cycle not taken into account.
(Li et al., 2010)	Rat	Sprague Dawley	М	10 (R,S)-ketamine	IES	30min, 1h, 2h, 6h, 72h	<i>PFC</i> • ↑ p-mTOR, 30min-1h • ↑ p-4E-BP, 30min-1h • ↑ p-p7086K, 30min-1h • ↑ p-ERK, 30min-1h • ↑ p-Akt, 30min-1h • ↑ ARC, 1h-2h • ↑ Synapsin-1, 2h-72h • ↑ PSD-95, 2h-72h • ↑ GluR1, 2h-72h	IP	Synaptoneurosomes	Pharmacological inhibition of ERK or Akt blocked ketamine-induction of phosphorylated 4E- BP, mTOR, and p70S6K. Rapamycin blocked ketamine-induction of PSD-95, GluR1, and Synapsin-1.
(Li et al., 2011)	Rat	Sprague Dawley	М	10 (R,S)-ketamine	CUS	8d	<i>PFC</i> • ↑ Synapsin-1, PSD-95, GluR1	IP	Synaptoneurosomes	

Citation	Animal	Strain	M/F	Dose in mg/kg <i>Enantiomer</i>	Stress Model	Time of Testing (after last injection)	Molecular Changes, time (dose)	Injection Method	Tissue Collection Method	Special Notes/Considerations
(Nishitani et al., 2014)	Rat	Wistar/ST	М	1, 5, 25 (R,S)-ketamine	Naïve	Every 10min for 60min	<i>mPFC</i> • ↑ 5-HT, 10min-40min (5) • ↑ 5-HT, 10min-50min (25)	SC	In vivo measurement via cannulation	Increase in 5-HT in the mPFC was through AMPAR activation. NBQX attenuated the increase in ketamine-induced 5-HT.
(Paul et al., 2014)	Rat	Wistar	М	40 (R,S)-ketamine	Naïve	30min, 60min, 240min	<i>PFC</i> • ↑ p-mTOR, 30min- 60min • ↑ p-p70S6K, 30min- 60min • = p-4E-BP • = p-ERK • = p-Akt	IP	Whole tissue	
(Paul et al., 2014)	Rat	Wistar	М	20 (R,S)-NK	Naïve	20min, 60min, 240min	<i>PFC</i> • ↑ p-mTOR, 20min- 60min • ↑ p-p70S6K, 20min- 60min • ↑ p-4E-BP, 60min • ↑ p-ERK, 20-60min • = p-Akt	IP	Whole Tissue	
(Paul et al., 2014)	Rat	Wistar	М	20 (R,S)-HNK	Naïve	20min, 60min, 240min	<i>PFC</i> • ↑ p-mTOR, 20min • ↑ p-p70S6K, 20min- 60min • ↑ p-4E-BP, 20min- 60min • = p-ERK • = p-Akt	IP	Whole Tissue	

Citation	Animal	Strain	M/F	Dose in mg/kg <i>Enantiomer</i>	Stress Model	Time of Testing (after last injection)	Molecular Changes, time (dose)	Injection Method	Tissue Collection Method	Special Notes/Considerations
(Saland and Kabbaj, 2018)	Rat	Sprague Dawley	M/F	2.5 (R,S)-ketamine	Naïve	NS	 Peak plasma concentrations of K/NK higher and established earlier in females than males. Peak plasma concentrations of DNHK higher and established earlier in males than females. NK higher in the PFC and HC in females Distribution or permeability of NK into the brain is greater in females than males Males have slower elimination or greater retention of ketamine in the brain. Both K/NK concentrations were higher in the PFC than HC for females; roughly the same for males 	IP	Plasma Whole Tissue (Brain)	Pharmacokinetic study. There were no sig differences in drug/metabolite localization due to stage of the estrus cycle, supporting a dynamic rather than kinetic influence.
(Saland et al., 2016)	Rat	Sprague Dawley	М	2.5; on days 4 and 6 (of 6) (<i>R</i> , <i>S</i>)- <i>ketamine</i>	Naïve	24h-7d Tested once daily	HC • = BDNF • = p-ERK • = p-Akt	IP	Whole Tissue	
(Saland et al., 2016)	Rat	Sprague Dawley	F	2.5; on days 4 and 6 (of 6) (<i>R</i> , <i>S</i>)-ketamine	Naïve	24h-7d Tested once daily	<i>HC</i> • ↑ BDNF, 24h • = p-ERK • = p-Akt	IP	Whole Tissue	Suggests that the increase in response of females to ketamine is not due to ERK/Akt activation in the HC. Differences could be due to organizational differences of E2/P4 w/in the HC. OVX animals with E2/P4 hormone replacement to physiological levels.
(Sarkar and Kabbaj, 2016)	Rat	Sprague Dawley	М	2.5, 5 (<i>R</i> , <i>S</i>)-ketamine	CSIS	lh after FST (3d)	<i>mPFC</i> • ↑ Synapsin-1 (5) • ↑ PSD-95 (5) • ↑ GluR1 (5)	NS	Synaptoneurosomes	

Citation	Animal	Strain	M/F	Dose in mg/kg Enantiomer	Stress Model	Time of Testing (after last injection)	Molecular Changes, time (dose)	Injection Method	Tissue Collection Method	Special Notes/Considerations
(Sarkar and Kabbaj, 2016)	Rat	Sprague Dawley	F	2.5, 5 (R,S)-ketamine	CSIS	1h after FST (3d)	<i>mPFC</i> • = Synapsin-1 • = PSD-95 • = GluR1	NS	Synaptoneurosomes	Females injected with ketamine during D1.
(Schoepfer et al., 2019)	Rat	Sprague Dawley	М	2.5, 5, 10; 10d Every other day (<i>R</i> , <i>S</i>)- <i>ketamine</i>	Naïve	Day 12	<i>NAc</i> • ↑ ΔFosB (2.5, 5, 10)	IP	Whole Tissue	No sex differences in protein expression within each dose level.
(Schoepfer et al., 2019)	Rat	Sprague Dawley	F	2.5, 5, 10; 10d Every other day (<i>R</i> , <i>S</i>)- <i>ketamine</i>	Naïve	Day 12	<i>NAc</i> • ↑ ΔFosB (2.5, 5, 10)	IP	Whole Tissue	ΔFosB expression was greater in females than in males. No sex differences in protein expression within each dose level. Estrus cycle not taken into account.
(Strong et al., 2017)	Rat	Sprague Dawley	М	2.5, 5; 1/wk for 7 wk (<i>R</i> , <i>S</i>)-ketamine	Naïve	2h after ketamine challenge (2wk)	NAc • ↑ ΔFosB (5) • ↑ CaMKIIα (5) • = p-CaMKIIα • ↑ BDNF (5) • ↑ GluR1 (5, trend)	IP	Whole Tissue	Increased expression of proteins associated with sensitization in males but not females.
(Strong et al., 2017)	Rat	Sprague Dawley	F	2.5, 5; 1/wk for 7 wk (<i>R</i> , <i>S</i>)-ketamine	Naïve	2h after ketamine challenge (2wk)	NAc • = Δ FosB • = CaMKII α • = p-CaMKII α • = BDNF • ↑ GluR1 (5)	IP	Whole Tissue	All females were tested in D1.
(Thelen et al., 2016)	Mouse	C57BL/6J	М	3, 5, 10; 21 d Once daily (<i>R</i> , <i>S</i>)- <i>ketamine</i>	Naïve	Day 22	<i>HC</i> • = Glu • = Asp • ↑ 5-HIAA (10) • ↑ 5-HIAA/5-HT (10) • ↑ Synapsin-1 (10) • ↑ SNARE-100 (10)	IP	Synaptoneurosomes	
(Thelen et al., 2016)	Mouse	C57BL/6J	F	3, 5, 10; 21 d Once daily (<i>R</i> , <i>S</i>)- <i>ketamine</i>	Naïve	Day 22	<i>HC</i> • ↓ Glu (10) • ↓ Asp (10) • = 5-HIAA • = 5-HIAA/5-HT • = Synapsin-1 • = SNARE-100	IP	Synaptoneurosomes	Estrus cycle not taken into account.

Citation	Animal	Strain	M/F	Dose in mg/kg <i>Enantiomer</i>	Stress Model	Time of Testing (after last injection)	Molecular Changes, time (dose)	Injection Method	Tissue Collection Method	Special Notes/Considerations
(Thelen et al., 2019)	Mouse	C57BL/6J	М	10 (R,S)-ketamine	Naïve	Every 10min for 60min (Glu) 0.5h, 4h, 24h, 3d, 7d (Proteins)	<i>mPFC</i> • ↑ Glu, 10min; burst • ↑ p-mTOR, 0.5h-24h • ↑ GluR1, 4h • ↑ GluR2, 4h-24h <i>HC</i> • = p-mTOR • ↑ GluR1, 4h	IP	Synaptoneurosomes	
(Thelen et al., 2019)	Mouse	C57BL/6J	F	10 (R,S)-ketamine	Naïve	Every 10min for 60min (Glu) 0.5h, 4h, 24h, 3d, 7d (Proteins)	$mPFC$ • = Glu release • \downarrow p-mTOR, 4h • = GluR1 • = GluR2 HC • = p-mTOR • = GluR1	IP	Synaptoneurosomes	Estrus cycle not taken into account.
(Tizabi et al., 2012)	Rat	Wistar- Kyoto (WKY)	F	0.5; 10d Once daily (<i>R</i> , <i>S</i>)-ketamine	Naïve	20h	<i>HC</i> • ↑ AMPAR densities • ↑ AMPAR/NMDAR ratio	IP	Whole Tissue	
(Tizabi et al., 2012)	Rat	Wistar	F	0.5; 10d Once daily (<i>R</i> , <i>S</i>)-ketamine	Naïve	20h	HC • = AMPAR densities • = AMPAR/NMDAR ratio	IP	Whole Tissue	
(Yang et al., 2015)	Mouse	C57BL/6	М	10 (R)-ketamine (S)-ketamine	SDS	7d	<i>mPFC</i> • ↑ BDNF • ↑ GluR1 <i>HC</i> • ↑ CA3/DG BDNF • ↑ GluR1 (R)-ketamine more potent on altering BDNF, but have similar effects on GluR1	IP	Whole Tissue	(R)-ketamine more potent than (S)- ketamine.
(Yang et al., 2018)	Mice	C57BL/6	М	10 (R)-ketamine	CSDS	30min	PFC • = p-mTOR • = p-p70S6K • = GluR1 • = BDNF • ↓ p-eEF2 • ↑ p-ERK • ↑ p-MEK HC • = CA3/DG p-mTOR • ↓ DG p-mTOR • = p-p70S6K • ↑ CA3/DG p-ERK • ↑ DG p-MEK	IP	Whole Tissue	ERK may play a role in the AD effects of (R)-ketamine, but not (S)-ketamine, in the CSDS model.

Citation	Animal	Strain	M/F	Dose in mg/kg Enantiomer	Stress Model	Time of Testing (after last injection)	Molecular Changes, time (dose)	Injection Method	Tissue Collection Method	Special Notes/Considerations
(Yang et al., 2018)	Mice	C57BL/6	М	10 (S)-ketamine	CSDS	30min	PFC • ↑ p-mTOR • ↑ p-p70S6K • = GluR1 • = BDNF • ↓ p-eEF2 • = p-ERK • = p-MEK <i>HC</i> • ↑ CA3/DG p-mTOR • = DG p-mTOR • = p-p7086K • = CA3/DG p-ERK • = DG p-MEK	IP	Whole Tissue	mTOR may play a role in the AD effects of (S)-ketamine, but not (R)-ketamine, in the CSDS model.
(Zanos et al., 2016)	Mouse	C57BL/6J	M/F	10 (R,S)-ketamine	CSDS	1h, 24h	 Equivalent levels of ketamine and norketamine in males and females 3x higher (2S,6S;2R,6R)-HNK in (2S,6S;2R,6R)-HNK in the brains of females than males Males: <i>PFC</i> = p-mTOR = p-eEF2 = BDNF = GluR1 = GluR2 <i>HC</i> = p-mTOR ↓ p-eEF2, 1h, 24h ↑ GluR1, 24h ↑ GluR2, 24h 	IP	Synaptoneurosomes	Estrus cycle not taken into account.

Citation	Animal	Strain	M/F	Dose in mg/kg Enantiomer	Stress Model	Time of Testing (after last injection)	Molecular Changes, time (dose)	Injection Method	Tissue Collection Method	Special Notes/Considerations
(Zanos et al., 2016)	Mouse	C57BL/6J	M/F	10 (2R,6R)-HNK (2S, 6S)-HNK	CSDS	1h, 24h	(2R,6R)-HNK PFC • = p-mTOR • = p-eEF2 • = GluR1 • = GluR2 HC • = p-mTOR • \downarrow p-eEF2, 1h, 24h • \uparrow BDNF, 24h • \uparrow GluR1, 24h • \uparrow GluR2	IP	Synaptoneurosomes	(2R,6R)-HNK more potent than (2S,6S)- HNK. (2R,6R)-HNK does not inhibit NMDARs. (2R,6R)-HNK requires AMPARs for its antidepressant effects (abolished by NBQX). (2R,6R)-HNK lacks ketamine's side effects. Estrus cycle not taken into account.

Stress Model Abbreviations	Other Abbreviations
CMS: Chronic Mild Stress	(m)(dl)PFC: (medial)(dorsolateral) Prefrontal Cortex
CSDS: Chronic Social Defeat Stress	D1: Diestrus
CSIS: Chronic Social Isolation Stress	HC: Hippocampus
CUS: Chronic Unpredictable Stress	IP: Intraperitoneal
ES: Emotional/Psychological Stress	IV: Intravenous
IES: Inescapable Shock	NAcC: Nucleus Accumbens Core
LPS: Lipopolysaccharide Inflammation	NAcSh: Nucleus Accumbens Shell
SDS: Social Defeat Stress	NS: Not Specified
US: Uncontrollable Stress	PE: Proestrus

List of Abbreviations

References

Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng P, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91–95.

Carrier N, Kabbaj M (2013) Sex differences in the antidepressant-like effects of ketamine. Neuropharmacology 70:27–34.

- Chang L, Toki H, Qu Y, Fujita Y, Mizuno-Yasuhira A, Yamaguchi J-I, Chaki S, Hashimoto K (2018) No Sex-Specific Differences in the Acute Antidepressant Actions of (R)-Ketamine in an Inflammation Model. Int J Neuropsychopharmacol 21:932–937.
- Dossat AM, Wright KN, Strong CE, Kabbaj M (2018) Behavioral and biochemical sensitivity to low doses of ketamine: influence of estrous cycle in C57BL/6 mice. Neuropharmacology 130:30–41.
- Franceschelli A, Sens J, Herchick S, Thelen C, Pitychoutis PM (2015) Sex differences in the rapid and the sustained antidepressant-like effects of ketamine in stress-naïve and "depressed" mice exposed to chronic mild stress. Neuroscience 290:49–60.
- Garcia LS, Comim CM, Valvassori SS, Réus GZ, Andreazza AC, Stertz L, Fries GR, Gavioli EC, Kapczinski F, Quevedo J (2008a) Chronic Administration of Ketamine Elicits Antidepressant-Like Effects in Rats without Affecting Hippocampal Brain-Derived Neurotrophic Factor Protein Levels. Basice Clin Pharmacol Toxicol 103:502–506.
- Garcia LS, Comim CM, Valvassori SS, Réus GZ, Barbosa LM, Andreazza AC, Stertz L, Fries GR, Gavioli EC, Kapczinski F, Quevedo J (2008b) Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Prog Neuro-Psychopharmacol Biol Psychiatry 32:140–144.
- Garcia LS, Comim CM, Valvassori SS, Réus GZ, Stertz L, Kapczinski F, Gavioli EC, Quevedo J (2009) Ketamine treatment reverses behavioral and physiological alterations induced by chronic mild stress in rats. Prog Neuro-Psychopharmacol Biol Psychiatry 33:450–455.
- Guo R, Tang Q, Ye Y, Lu X, Chen F, Dai X, Yan Y, Liao L (2016) Effects of gender on ketamine-induced conditioned placed preference and urine metabonomics. Regul Toxicol Pharmacol 77:263–274.

- Li N, Lee B, Liu R-J, Banasr M, Dwyer JM, Iwata M, Li X-Y, Aghajanian G, Duman RS (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329:959–964.
- Li N, Liu R-J, Dwyer JM, Banasr M, Lee B, Son H, Li X-Y, Aghajanian G, Duman RS (2011) Glutamate NMDA receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry 69:754–761.
- Nishitani N, Nagayasu K, Asaoka N, Yamashiro M, Shirakawa H, Nakagawa T, Kaneko S (2014) Raphe AMPA receptors and nicotinic acetylcholine receptors mediate ketamine-induced serotonin release in the rat prefrontal cortex. Int J Neuropsychopharmacol 17:1321–1326.
- Paul RK, Singh NS, Khadeer M, Moaddel R, Sanghvi M, Green CE, O'Loughlin K, Torjman MC, Bernier M, Wainer IW (2014) (R,S)-Ketamine metabolites (R,S)-norketamine and (2S,6S)-hydroxynorketamine increase the mammalian target of rapamycin function. Anesthesiology 121:149–159.
- Saland SK, Kabbaj M (2018) Sex Differences in the Pharmacokinetics of Low-dose Ketamine in Plasma and Brain of Male and Female Rats. J Pharmacol Exp Ther 367:393–404.
- Saland SK, Schoepfer KJ, Kabbaj M (2016) Hedonic sensitivity to low-dose ketamine is modulated by gonadal hormones in a sex-dependent manner. Sci Rep 6:21322.
- Sarkar A, Kabbaj M (2016) Sex Differences in Effects of Ketamine on Behavior, Spine Density, and Synaptic Proteins in Socially Isolated Rats. Biol Psychiatry 80:448–456.
- Schoepfer KJ, Strong CE, Saland SK, Wright KN, Kabbaj M (2019) Sex- and dose-dependent abuse liability of repeated subanesthetic ketamine in rats. Physiol Behav 203:60–69.
- Strong CE, Schoepfer KJ, Dossat AM, Saland SK, Wright KN, Kabbaj M (2017) Locomotor sensitization to intermittent ketamine administration is associated with nucleus accumbens plasticity in male and female rats. Neuropharmacology 121:195–203.
- Thelen C, Flaherty E, Saurine J, Sens J, Mohamed S, Pitychoutis PM (2019) Sex Differences in the Temporal Neuromolecular and Synaptogenic Effects of the Rapid-acting Antidepressant Drug Ketamine in the Mouse Brain. Neuroscience 398:182–192.

- Thelen C, Sens J, Mauch J, Pandit R, Pitychoutis PM (2016) Repeated ketamine treatment induces sex-specific behavioral and neurochemical effects in mice. Behav Brain Res 312:305–312.
- Tizabi Y, Bhatti BH, Manaye KF, Das JR, Akinfiresoye L (2012) Antidepressant-like effects of low ketamine dose is associated with increased hippocampal AMPA/NMDA receptor density ratio in female Wistar–Kyoto rats. Neuroscience 213:72–80.
- Yang C, Ren Q, Qu Y, Zhang J-C, Ma M, Dong C, Hashimoto K (2018) Mechanistic Target of Rapamycin–Independent Antidepressant Effects of (R)-Ketamine in a Social Defeat Stress Model. Biol Psychiatry 83:18–28.
- Yang C, Shirayama Y, Zhang J-C, Ren Q, Yao W, Ma M, Dong C, Hashimoto K (2015) R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl Psychiatry 5:e632–e632.
- Zanos P et al. (2016) NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533:481-486.