Supplementary Table S3. Structural and Functional Effects of Ketamine in Preclinical Models

Citation	Animal	Strain	M/F	Dose in mg/kg <i>Enantiomer</i>	Stress Model	Time of Testing (after last injection)	Structural/Functional Changes, time (dose)	Injection Method	Special Notes/Considerations
(Garcia et al., 2009)	Rat	Wistar	М	15; acute (R,S)-ketamine	Naïve	NS	 ↑ Body weight • = Adrenal weight 	IP	
(Garcia et al., 2009)	Rat	Wistar	М	15; 7d Once Daily <i>(R,S)-ketamine</i>	Naïve	NS	 ↑ Body weight • = Adrenal weight 	IP	
(Garcia et al., 2009)	Rat	Wistar	М	15; acute (R,S)-ketamine	CMS	NS	 ↑ Body weight ↓ Adrenal weight (reversed CMS-induced increase) 	IP	
(Garcia et al., 2009)	Rat	Wistar	М	15; 7d Once Daily <i>(R,S)-ketamine</i>	CMS	NS	 ↑ Body weight ↓ Adrenal weight (reversed CMS-induced increase) 	IP	
(Gopinath et al., 2016)	Monkey	Rhesus	F	0.345 (1min infusion) + 0.256 (53min infusion) (<i>R-S</i>)-ketamine	Naïve	lh	 ↑ Functional connectivity to the dIPFC in several (sub/)cortical regions Hyperconnectivity in functional brain networks associated with emotional regulation, cognitive control, and motivation 	IV	Consistent with human imaging studies that showed similar results.
(Li et al., 2010)	Rat	Sprague Dawley	М	10 (R,S)-ketamine	IES	24h	 <i>PFC</i> ↑ Spine density ↑ Mushroom spines 	IP	
(Li et al., 2011)	Rat	Sprague Dawley	М	10 (R,S)-ketamine	CUS	8d (Molecular)	<i>PFC</i> •↑ Spine density	IP	
(Sarkar and Kabbaj, 2016)	Rat	Sprague Dawley	М	2.5, 5 (R,S)-ketamine	CSIS	lh after FST (3d)	 mPFC ↑ Spine density (5) ↑ Thin spines (5) = Mushroom spines = Stubby spines 	NS	
(Sarkar and Kabbaj, 2016)	Rat	Sprague Dawley	F	2.5, 5 (R,S)-ketamine	CSIS	lh after FST (3d)	 mPFC = Spine Density = Thin spines = Mushroom spines = Stubby spines 	NS	Females injected with ketamine during D1.
(Strong et al., 2017)	Rat	Sprague Dawley	М	2.5, 5; 1/wk for 7 wk (<i>R</i> , <i>S</i>)-ketamine	Naïve	2h after ketamine challenge (2wk)	NAcSh (Shell) • ↑ Spine density (2.5, 5) NAcC (Core) • = Spine density	IP	Males who sensitized to ketamine show an increase in spine density in the NAcSh but not NAcC
(Strong et al., 2017)	Rat	Sprague Dawley	F	2.5, 5; 1/wk for 7 wk (<i>R</i> , <i>S</i>)-ketamine	Naïve	2h after ketamine challenge (2wk)	NAcSh • ↑ Spine density (5) NAcC • ↑ Spine density (5)	IP	All females were tested in D1.

Citation	Animal	Strain	M/F	Dose in mg/kg <i>Enantiomer</i>	Stress Model	Time of Testing (after last injection)	Structural/Functional Changes, time (dose)	Injection Method	Special Notes/Considerations
(Thelen et al., 2019)	Mouse	C57BL/6J	М	10 (R,S)-ketamine	Naïve	2h, 24h, 3d, 7d	<i>mPFC</i> • ↑ Spine density, 24h-7d <i>HC</i> • ↑ CA1/CA3 spine density, 24h	IP	
(Thelen et al., 2019)	Mouse	C57BL/6J	F	10 (R,S)-ketamine	Naïve	2h, 24h, 3d, 7d	<i>mPFC</i> • = Spine density <i>HC</i> • ↑ CA1/CA3 spine density, 24h-3d	IP	Estrus cycle not taken into account. Increase in spine density in the HC lasted longer in female mice.
(Yang et al., 2015)	Mouse	C57BL/6	М	10 (R)-ketamine (S)-ketamine	SDS	8d	 mPFC ↑ Spine density HC ↑ CA3/DG spine density (R)-ketamine more potent in the DG than (S)-ketamine. 	IP	

List of Abbreviations				
Stress Model Abbreviations	Other Abbreviations			
CMS: Chronic Mild Stress	(m)(dl)PFC: (medial)(dorsolateral) Prefrontal Corte			
CSDS: Chronic Social Defeat Stress	D1: Diestrus			
CSIS: Chronic Social Isolation Stress	HC: Hippocampus			
CUS: Chronic Unpredictable Stress	IP: Intraperitoneal			
ES: Emotional/Psychological Stress	IV: Intravenous			
IES: Inescapable Shock	NAcC: Nucleus Accumbens Core			
LPS: Lipopolysaccharide Inflammation	NAcSh: Nucleus Accumbens Shell			
SDS: Social Defeat Stress	NS: Not Specified			
US: Uncontrollable Stress	PE: Proestrus			

References

- Garcia LS, Comim CM, Valvassori SS, Réus GZ, Stertz L, Kapczinski F, Gavioli EC, Quevedo J (2009) Ketamine treatment reverses behavioral and physiological alterations induced by chronic mild stress in rats. Prog Neuro-Psychopharmacol Biol Psychiatry 33:450–455.
- Gopinath K, Maltbie E, Urushino N, Kempf D, Howell L (2016) Ketamine-induced changes in connectivity of functional brain networks in awake female nonhuman primates: a translational functional imaging model. Psychopharmacology 233:3673–3684.
- Li N, Lee B, Liu R-J, Banasr M, Dwyer JM, Iwata M, Li X-Y, Aghajanian G, Duman RS (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329:959–964.
- Li N, Liu R-J, Dwyer JM, Banasr M, Lee B, Son H, Li X-Y, Aghajanian G, Duman RS (2011) Glutamate NMDA receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry 69:754–761.
- Sarkar A, Kabbaj M (2016) Sex Differences in Effects of Ketamine on Behavior, Spine Density, and Synaptic Proteins in Socially Isolated Rats. Biol Psychiatry 80:448–456.
- Strong CE, Schoepfer KJ, Dossat AM, Saland SK, Wright KN, Kabbaj M (2017) Locomotor sensitization to intermittent ketamine administration is associated with nucleus accumbens plasticity in male and female rats. Neuropharmacology 121:195–203.
- Thelen C, Flaherty E, Saurine J, Sens J, Mohamed S, Pitychoutis PM (2019) Sex Differences in the Temporal Neuromolecular and Synaptogenic Effects of the Rapid-acting Antidepressant Drug Ketamine in the Mouse Brain. Neuroscience 398:182–192.
- Yang C, Shirayama Y, Zhang J-C, Ren Q, Yao W, Ma M, Dong C, Hashimoto K (2015) R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl Psychiatry 5:e632–e632.