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Abstract 13 

Deciphering microbiota functions is crucial to predict ecosystem sustainability in re-14 

sponse to global change. High-throughput sequencing at the individual or community 15 

level has revolutionized our understanding of microbial ecology, leading to the big data 16 

era and improving our ability to link microbial diversity with microbial functions. Recent 17 

advances in bioinformatics have been key for developing functional prediction tools 18 

based on DNA metabarcoding data and using taxonomic gene information. This 19 

cheaper approach in every aspect serves as an alternative to shotgun sequencing. 20 

Although these tools are increasingly used by ecologists, an objective evaluation of 21 

their modularity, portability and robustness is lacking. Here, we reviewed one hundred 22 

scientific papers on functional inference and ecological trait assignment to rank the 23 

advantages, specificities and drawbacks of these tools, using a scientific benchmark-24 
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ing. To date, inference tools have been mainly devoted to bacterial functions, and eco-25 

logical trait assignment tools to fungal functions. A major limitation is the lack of refer-26 

ence genomes – compared with the human microbiota –, especially for complex eco-27 

systems like soils. In fine, we explore applied research prospects. These tools are very 28 

promising and already provide relevant information on ecosystem functioning, but 29 

standardized indicators and corresponding repositories are still lacking for them to be 30 

used for operational diagnosis. 31 
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1. Background 36 

Microorganisms are present in all habitats on Earth and are essential for 37 

animals, plants, and therefore for the sustainability of human activities [1]. The 38 

extraordinary diversity of microbial communities plays an essential role in the various 39 

biogeochemical cycles, allows aquatic and terrestrial ecosystems to function properly 40 

and ensures their ability to provide ecological services (e.g., soil structuring, organic 41 

matter renewal, nutrient recycling, pollution control, regulation of / barrier to pathogens, 42 

or even plant productivity) [2–4]. Their fabulous capacity to adapt to different 43 

environmental stresses over time is now well known, and the regulation process of 44 

their diversity is better and better deciphered. Despite these tremendous 45 

improvements in the approaches targeting indigenous microbiotas, our understanding 46 

of the link between microbes and their associated functions remains limited [5]. A 47 

workshop hosted by the British Ecological Society’s Microbial Ecology Special Interest 48 

Group (June 2016) recently identified fifty important research questions in microbial 49 



ecology. One of the main ones was “What methods can we use to marry microbial 50 

diversity with function; how do we link transcriptomics, proteomics and metabolomics?" 51 

[6]. This sums up the future challenges facing the scientific community when it comes 52 

to improving our understanding of the regulation of the microbiome diversity and 53 

functions [7].  54 

Microbial functions can be characterized from genomic, proteomic or metabolic data 55 

(Fig. 1) [8–10]. Considering genomics, quantitative PCR (qPCR) and microarrays were 56 

the first technologies used to describe functional genes or taxa from complex 57 

environmental samples [11]. Initially designed to determine the absolute copy number 58 

of a single given gene, the latest technical advances can analyze thousands of 59 

combinations of samples and targets in parallel [12]. Standardized methods even make 60 

it possible to quantify genes of interest (e.g., involved in biogeochemical cycles, 61 

pesticide degradation, etc.) to estimate soil quality [13]. DNA microarrays were the first 62 

high-throughput technologies giving access to gene expression profiles at the 63 

individual or community levels [11,14]. There exist different kinds of microarrays (e.g., 64 

PhyloChip, GeoChip; PathoChip; StressChip; CAZyChip). They provide a snapshot of 65 

microbial diversity (bacteria, fungi, viruses) and / or of the functional genes present in 66 

a given sample (e.g., genes coding for enzymes involved in polysaccharide 67 

degradation) [15–18]. Some of these microarrays have become diagnostic tools in 68 

many fields, in particular for targeting viruses, bacterial or fungal pathogens or harmful 69 

organisms [19]. More recent and cheaper, various high-throughput sequencing (HTS) 70 

alternatives have been developed to explore microbial communities (Fig. 1) [20]. 71 

Genome and metagenome sequencing have changed the microbial ecology field: 72 

thanks to genome sequencing and meta-omics approaches, gene catalogs can be 73 

assessed, and new microorganisms can be discovered [21,22].  74 



For example, by implementing a metabarcoding approach, microbial ecologists 75 

were first very enthusiastic about such huge taxonomic information, but quickly pointed 76 

out the lack of associated functional information [22]. Taxonomic profiles can indeed 77 

change to varying degrees among samples, and predicting to what extent these 78 

changes impact the overall functional capacity of the community has remained a 79 

technical and scientific challenge to date [6,23,24]. Metabarcoding may well be used 80 

to directly target functional genes and classify them by taxonomic group, but 81 

applications remain limited to a few families [25–29]. In the face of these limitations, 82 

two solutions have emerged to indirectly obtain functional information from taxonomic 83 

profiles, i.e. (i) functional inference, and (ii) ecological trait assignment, using 84 

(meta)genome and microbiome big data (Fig. 1). Functional inference predicts the 85 

putative functions (e.g., gene catalogs, metabolic pathways) of microbial communities, 86 

while ecological trait assignment directly retrieves a trait common to all taxa by linking 87 

taxonomic names with a dedicated database. The major difference between these two 88 

solutions for obtaining functional information is that functional inference retrieves 89 

functions even for OTUs without a taxonomic name thanks to phylogenetic placement 90 

of sequences (taxonomic markers) in a reference tree and different evolutionary 91 

models. 92 

Many bioinformatic tools have been developed since the first publication about 93 

a functional prediction tool using metabarcoding data. To date, only one review has 94 

addressed functional inference tools; it is focused on aquaculture and on a limited 95 

subset of all the tools available to predict functions from 16S rDNA metabarcoding 96 

datasets [30]. Therefore, in the present context where new solutions are proposed 97 

regularly to predict putative function profiles, the state of the art needs to be scrutinized 98 

more exhaustively to build a scientific and technical benchmark. More precisely, we 99 



provide a detailed description of each tool and evaluate their advantages, specificities 100 

and drawbacks by paying special attention to their methods, modularity, portability, and 101 

robustness. One of the main objectives of this review is to provide a rationale on the 102 

use of the different tools currently available for prokaryote and fungal communities and 103 

draw perspectives, with a few suggestions to enhance their usefulness in microbial 104 

ecology. Finally, we illustrate the application of these methods with studies focusing 105 

on the soil environment. The choice of this particular system is justified by the fact that 106 

it is the most diverse and complex one in terms of microbial diversity, ecology and 107 

functional reservoir [4,31]; therefore, it represents the most challenging environmental 108 

matrix for linking diversity and functions. We believe that this work will help scientists 109 

working on microbial communities make choices to best take advantage of their high 110 

amount of microbial data. This work also shows that although those approaches are 111 

promising, they still need improvements to make them operational tools for microbial 112 

soil quality diagnosis. A repository using standardized and robust metrics is still lacking 113 

when it comes to interpreting the results.  114 

 115 

2. Historical and recent increase of microbial datasets 116 

The emergence of HTS in the mid 2000’s generated a huge volume of data, leading 117 

to a revolution in our way of describing biodiversity. This rise of microbial data can be 118 

directly linked to the improvement of high-throughput sequencing technologies, 119 

concomitantly with a tremendous drop of sequencing costs (Fig. 2). This was reflected, 120 

with a small time lag, by an increase in the number of sequence read archives (SRAs) 121 

linked to metabarcoding data deposited on the NCBI website (Fig. 2). 122 

Thanks to the contribution of ecologists, microbiologists, taxonomists and computer 123 

scientists, the databases are continuously enriched and are key to enhance our 124 



knowledge about the description and determinism of environmental and human 125 

microbiotas [32,33]. For example, the 16S rDNA sequences data available to analyze 126 

bacterial/archaeal diversity was multiplied by 4 and 10 in the RDP and SILVA 127 

databases, respectively, between 2007 and 2019 (Fig. 3A). The trend is the same for 128 

fungal diversity, with a doubling of ITS sequences in the UNITE/INSD database within 129 

the last five years (Fig. 3B). 16S rDNA sequences are much more numerous than ITS 130 

sequences. However, there were 30 times more fungal species referenced than 131 

bacterial ones in 2017 (Fig. 3A, 3B). The numbers of microbial genomes available, in 132 

particular in the JGI platform, have increased continuously, and they outpaced Moore's 133 

Law mostly from 2013 for bacteria and archaea (Fig. 3C, 3D).  134 

The number of known microbial genes, enzymes or metabolic pathways available in 135 

specialized databases has also considerably increased in the last few years [34–36]. 136 

Thousands of functional information files are currently accessible in the KEGG, CAZy 137 

or MetaCyc databases (Table 1). A recent survey predicted the total global estimated 138 

bacterial and fungal functions based on KEGG Orthology to reach 35.5 and 3.2 million, 139 

respectively [37]. The authors also indicated that only a tiny fraction of these functions 140 

is known today, representing 0.02% and 0.14% for bacteria and fungi, respectively. 141 

Although the characterization of gene catalogs using metagenomic approaches was 142 

recently criticized [38], the number of non-redundant genes provides an overview of 143 

the potential functional reservoir available across various ecosystems [39]. The soil by 144 

far appears to harbor the largest pool of functions, followed by the ocean, and then 145 

animal microbiomes (Fig. 4). 146 

The rapid growth of available genomes is a unique opportunity to predict the putative 147 

microbial functions from metabarcoding data by linking taxonomic markers (i.e., rDNA 148 

amplicons) and their reference genomes or ecological traits. Therefore, the next 149 



section is devoted to the different tools and databases dedicated to functional inference 150 

and ecological trait assignment for bacterial and fungal communities.  151 

 152 

3. Overview of the available tools for predicting the potential functions of the 153 

microbiotas  154 

HTS and the presently increasing collection of  functional or ecological traits on a 155 

more regular and rigorous basis are promising cues for linking biodiversity and 156 

associated functions in the near future [24,40]. In the literature, the term "function" is 157 

used in different ways depending on the study model, the time scale, or even the 158 

habitat [41–44]. The notion of function may refer to genes, enzymes, or metabolic 159 

pathways, but may also represent ecological traits that bring together phenotypic and 160 

biochemical notions [45–47].  161 

Based on the analysis of twenty papers since 2013, we classified the databases and 162 

tools according to the granularity of the results (Fig. 5A), from general information such 163 

as ecological traits to more detailed information such as genes or metabolic pathways 164 

(Fig. 5). The tools used to obtain fine results, i.e., at the metabolic pathway or gene 165 

levels for any taxonomic resolution, are known as functional inference tools (Fig. 5B). 166 

On the other hand, we grouped existing tools or databases under the term “ecological 167 

trait assignment” when functional information referred to phenotypic or ecological traits 168 

and was accessible only for a specific taxonomic rank (Fig. 5C). Indeed, there is a 169 

wealth of information often linked to ecological traits in published scientific articles, or 170 

of partially formatted metadata (i.e., partial taxonomy or data not linked to the ID of a 171 

taxonomic database) [48].  172 

Tools or methods exist, known under the term “text mining”, to automatically collect 173 

data from various sources (e.g., a website, a document in pdf format) through 174 



automatic language processing (e.g., natural language processing (NLP)) [49]. For 175 

example, @Minter [50] retrieves information related to microbial interactions from 176 

abstracts of papers thanks to a supervised machine learning model. Other tools are 177 

based on ontologies, i.e., they use a structured set of terms and concepts from a 178 

particular domain by specifying the relationships between these terms and their 179 

properties, and thus have a common reference for the use of a common vocabulary. 180 

For example, OntoBiotope [51] ontology in the food field retrieves the phenotypes and 181 

habitats of microbes from the literature based on the NCBI taxonomy. Another ontology 182 

exists, called Ontology of Microbial Phenotype [52]; it brings together a structured set 183 

of terms and concepts around microbial phenotypes, and specifies the relationships 184 

between these terms and their properties. Tools also based on machine learning such 185 

as ProTraits [53] can automatically annotate prokaryotic species based on phenotypic 186 

or genomic data from scientific articles or online resources (http://protraits.irb.hr). 187 

To date, we have recorded about twenty tools or databases that retrieve functional or 188 

ecological data from microbial taxonomic markers, with two to four developments per 189 

year (Fig. 6 and Table 2). The timeline shows that most of these tools (18/23 in total) 190 

are only dedicated to bacteria/archaea, two are dedicated to bacteria/archaea + fungi, 191 

and only three are specifically dedicated to fungal organisms. It is important to also 192 

underline that most of these tools are devoted to functional inference (13/23). The most 193 

cited tool is PICRUSt v1 [54], which remains on top of all others with more than 4,000 194 

citations in 2020. While FUNGuild [55], Tax4Fun v1 [56] or FAPROTAX [57] are 195 

reasonably cited with a few hundred citations, the others are very less so with only a 196 

dozen citations (Fig. 7A). Interestingly, the articles citing functional inference and 197 

ecological trait assignment tools fall within the same scope as the scopes for which 198 

they were initially developed (Fig 7B.): PICRUSt, FUNGuild and PAPRICA are mainly 199 



cited in papers about human health, the soil and the marine environments, 200 

respectively. 201 

 202 

3.1. Functional Inference 203 

3.1.1. Definition 204 

Functional inference consists in predicting the functional potential of a microbial 205 

community from metabarcoding data. The functional potential of a taxon or of a 206 

microbial community represents the metabolic capacities based on the presence / 207 

absence of genes involved in these pathways. Functional inference methods are based 208 

on the assumption that phylogenetic information from marker gene sequences 209 

correlates well enough with the genomic content to produce accurate predictions when 210 

associated reference genomes are available. In other words, it assumes a significant 211 

relationship between (i) the phylogenetic distance between taxonomic markers and (ii) 212 

the conservation of the genetic content, referring to vertical gene descent during the 213 

evolution of microbial genomes. This is made possible through the relationship 214 

between the phylogenetic relatedness of organisms and their gene content [58,59] 215 

(Fig. 5B). 216 

It should be emphasized that the presence of one or more genes involved in a function 217 

remains “potential” and may not be expressed under environmental conditions. From 218 

this point of view, functional inference results may be similar to shotgun metagenomics 219 

data, which is often observed in the literature, especially when focusing on a family of 220 

genes or a specific biogeochemical cycle [60]. 221 

 222 

3.1.2. Available tools 223 

Picrust 224 



Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 225 

(PICRUSt) v1 [54] is the first tool to have been developed to predict potential functional 226 

genes from 16S rRNA metabarcoding and has been the most popular one since it was 227 

launched in 2013 (Fig. 5B). PICRUSt v1 needs three things: (i) a reference OTU, (ii) a 228 

reference genome, and (iii) a reference phylogenetic tree. As regards the reference 229 

OTU, the file (in BIOM or tabulated format) is expected to contain a standard OTU 230 

abundance table with sequences picked only against the Greengenes taxonomic 231 

reference (18 May 2012 or v13.5/v13.8). This tool based on a modified method of 232 

ancestral state reconstruction (ASR) deduces functional information for taxa without a 233 

match in the reference genomes. The reference genomes are functional proxies that 234 

provide a weighting of the functional profiles for the phylogenetically close taxa within 235 

a reference phylogenetic tree. The PICRUSt method is divided into three main steps 236 

that are necessary to obtain relevant information on functional profiles: (i) genome 237 

prediction, (ii) metagenome prediction, and (iii) analysis of predictions.  238 

The genome prediction step consists in preparing the trees and checking the quality of 239 

the input datasets; then comes the reconstruction of ancestral states in the reference 240 

tree (ASR, 4 methodologies are available). Using the output files, the software program 241 

predicts traits for leaves of the phylogenetic tree lacking sequenced genomes.  242 

During the metagenome prediction step, normalization of the abundance of each OTU 243 

is carried out based on rRNA gene copy numbers to predict the functional category 244 

abundances of the metagenome. The user obtains an abundance table for each 245 

functional category per sample. The correcting step of the rRNA gene copy numbers 246 

(GCNs) allows normalizing to correct the biases towards microorganisms with greater 247 

GCNs and improve the estimation of microbial diversity [61]. This step is recommended 248 

when the OTUs are phylogenetically closely linked to the genomes [62]. To assess the 249 



robustness of the predictions, i.e., to obtain the representativeness of the database 250 

towards a community of interest, a nearest sequenced taxon index (NSTI) is generated 251 

for each sample. It is calculated using the average of the branches that separate the 252 

sequences of interest (OTUs, ASVs) in a sample from the reference microbial genome, 253 

with a weighting by their relative abundance in the sample. This confidence score is 254 

one of the major strengths of this tool. Regarding functional categories, information can 255 

be obtained at different levels (genes or metabolic pathways) with more or less detailed 256 

descriptions (EC numbers, KEGG pathway [35], COG). Information about all functional 257 

categories can also be obtained for each OTU. The last step consists in analyzing the 258 

predicted data. This step is essential for interpreting the large number of results 259 

generated from a robust statistical analysis. 260 

The major strength of PICRUSt v1 lies in its evolutionary models that infer functions 261 

for the complete bacterial community. The portability of this tool with the support of a 262 

broad stakeholder community including a forum (google group), blogs, are advantages 263 

that make it a central tool for functional predictions (Table 2). Despite all its benefits, 264 

PICRUSt v1 has drawbacks such as focusing only on the 16S rDNA marker and using 265 

only Greengenes taxonomy (Table 2). Several specialized tools have emerged to 266 

integrate PICRUSt as a sub-layer in order to carry out diagnoses in the medical field 267 

[63] or directly in a pipeline [64]. 268 

 269 

PAPRICA 270 

Pathway Prediction by Phylogenetic Placement (PAPRICA) [65] infers the metabolic 271 

potential of prokaryotic and eukaryotic communities from metabarcoding data based 272 

on rRNA gene amplicons. It was the first tool that allowed for the functional prediction 273 

of 16S and 18S rRNA amplicons. It comes in the form of a pipeline taking the OTU 274 



reads as inputs to place them in an rRNA reference tree built from complete genomes. 275 

To build this tree, a consensus genome is found for each node in the tree, which then 276 

makes it possible to predict metabolic pathways for the sequences of interest without 277 

a match in the complete reference genomes. The abundance of metabolic pathways 278 

is weighted by rRNA gene copy numbers from known genomes. A strength of this tool 279 

is that it also provides an indicator of genomic stability depicting the robustness of the 280 

results. However, PAPRICA, like all the tools using a reference phylogenetic tree and 281 

sequence placement methods, is dependent on the quality of rRNA resolution, and this 282 

represents a drawback when some clades may be affected (Table 2). 283 

 284 

Tax4Fun 285 

Tax4Fun [56] is an R [66] package published in 2015 for predicting functional profiles 286 

from targeted metagenomic 16S rRNA data. However, the algorithm and statistical 287 

efficiency based on a metabolic mixture model in terms of a mixture of pathways (MoP) 288 

was developed in 2013. This R-based architecture is inherently a cross-platform tool, 289 

and it may be more accessible for a large number of users with low experience in 290 

bioinformatics. This tool uses pre-calculated functional profiles like PICRUSt v1 and 291 

taxonomic data formatted from the SILVA database. One of the differences with 292 

PICRUSt the rRNA sequence placement in the reference genomes, which is achieved 293 

by a BLAST search (instead of a tree placement approach for PICRUSt). It is a very 294 

convenient tool because it provides a confidence score (FTU and FSU) to determine 295 

the fraction of OTUs that was not mapped to KEGG organisms or the number of 296 

sequences without KEGG Orthology (KO) hits (Table 2). Like PICRUst v1, it cannot be 297 

used for fungal diversity predictions. 298 

 299 



Piphillin  300 

Piphillin [67] differs from the PICRUSt or PAPRICA approaches because it does not 301 

use a phylogenetic tree or database (16S) but directly maps the OTU sequences on 302 

the rRNA of the reference genomes using a nearest-neighbor algorithm. This 303 

specificity could avoid faulty sequence placements in the reference phylogenetic tree. 304 

It is used online only, which represents both a strength and a weakness: it benefits 305 

from computing power (a strength), whose strength depends on the hosting server 306 

(e.g. quota management, cluster configuration) (a weakness).  A Piphillin sub-layer 307 

also exists to complete the analysis of the results [68]. 308 

 309 

The quality of prediction represents a prerequisite for the application of the above-310 

presented tools to study indigenous microbial communities. It may depend on the tool, 311 

but also on the type of targeted ecosystem. To test the quality of functional prediction 312 

according to the tool and the studied ecosystem, we compiled the NSTI scores for 313 

PICRUSt v1 and the FTUs for Tax4Fun from a subsampling of articles that covered a 314 

range of ecosystems – human, marine, plant, and soil (Fig. 8). Whatever the tool, the 315 

best predictions were obtained for the human microbiotas, and the most approximate 316 

ones for the soil samples. The variability of quality scores across the different soil 317 

studies seemed to be lower with PICRUSt than with Tax4Fun. Nevertheless, some soil 318 

studies using Tax4fun indicate a good-quality survey with only about 30% of OTUs 319 

unmapped to a reference. This likely reflects the discrepancy between human 320 

reference genome availability and soil microbiota genome availability. In addition, 321 

microbial diversity is much more complex in soils than in the human microbiotas. In 322 

this case,  it is essential that the quality scores from functional inference tools should 323 



be taken into account because it is a key to a robust interpretation of the results. 324 

Unfortunately, we found few studies indicating these quality scores. 325 

 326 

3.2. Ecological trait assignment 327 

 328 

3.2.1. Definition 329 

Ecological trait assignment differs from functional inference since it consists in 330 

obtaining information on the life strategy, phenotypic and quantitative genomic traits 331 

(e.g., trophic modes, growth strategy) of a taxon from its nomenclature, whatever its 332 

taxonomic rank. If the taxon is not present in the database, it will not be possible to 333 

know its traits (Fig. 5C). This approach is faster than functional inference for retrieving 334 

an item of functional information, but tools dedicated to metabarcoding outputs are 335 

lacking, and only a few ecological traits are available (Table 2). The main interest is to 336 

get functional information with a possibly not so fine granularity as functional inference 337 

does, but obviously more accurate. Ecological traits are indeed often based on results 338 

with biochemical experimentations from curated databases or scientific publications. 339 

Practically speaking, only the guild will be recovered and for example the fungal 340 

sequences identified as belonging to the Serpula genus will be assigned to a wood 341 

saprotroph when an ecological trait tool is used; with an inference tool, the abundance 342 

of various genes related to polysaccharide degradation will be attributed to all fungal 343 

sequences. 344 

 345 

3.2.2. Tools  346 

FUNGuild 347 



FUNGuild [55] is the pioneer and one of the few tools that assigns ecological traits to 348 

fungi based on their taxonomy (Table 2). These assignments rely on metabarcoding 349 

data. They require providing a contingency table (OTUs or sequence counts per 350 

sample) and the link between each OTU and its taxonomy. To carry out the 351 

assignment, FUNGuild uses its own curated database, and searches it for the taxon. 352 

This database contains several taxonomic levels (e.g., phylum, genus, species). 353 

However, the taxonomic name at the genus or species level is necessary to assign 354 

traits to the taxa of interest. Trait information is available in 66% of the cases at the 355 

genus level, and only in 34% of the cases at the species level [55]. The user obtains a 356 

summary table of the different possible ecological traits for each taxon with a 357 

robustness indicator and a confidence range (“possible”, “probable”, and “highly 358 

probable”). 359 

The strength of this database is that the provided data are based on the literature 360 

(primary research), or on reference websites or their own collective research 361 

experience if the datum is missing. The authors recommend the use of the UNITE 362 

database for taxonomic assignment and therefore the use of the internal transcribed 363 

spacer (ITS) marker, but it can be easily transposed to data based on the 18S rRNA 364 

marker. It just requires creating a wrapper to make a link between the taxonomy of the 365 

data and FUNGuild to retrieve the traits of interest.  366 

A new database called FunFun [69] is now available. It encompasses 80 fungal 367 

ecological traits. In reality, this database is a FUNGuild database overlay with 368 

information on genetic, enzymatic, morphological, stoichiometric, life history, and 369 

physiological aspects. In addition, the authors mention that FunFun will be updated in 370 

terms of taxonomy and associated guilds, which is not necessarily the case with 371 

FUNGuild. However, although this database is promising, a lot of information is missing 372 



because it integrates literature data for the first time ever, and its improvement relies 373 

on the progress of research as well as the contribution of scientists. This caused an 374 

impulse leading to a community of scientists proposing a new database: FungalTraits 375 

[70] links information from FUNGuild and FunFun. It is very complete, and offers 376 

different levels of life styles. Please note that this database includes species from the 377 

fungal kingdom but also fung-like stramenopiles (e.g., the Oomycota phylum). This 378 

may be especially useful because various species are identified as major plant 379 

pathogens within Oomycota. For example, the genus Phytophthora gathers several 380 

crop pathogens causing important losses and can represent a risk to global food 381 

security [71]. 382 

To conclude, the minor drawbacks of FUNGuild, with rare updates or a tool oriented to 383 

ITS sequences, have been offset by the new FunFun and FungalTraits databases. 384 

To complete the tools concerning fungal communities, DEEMY [72] is an information 385 

system only available online and specialized in ectomycorrhizas 386 

(http://www.deemy.de). This website references 554 species associated with their 387 

respective symbiotic organisms, including 104 genera. To characterize each species, 388 

a summary sheet provides taxonomic nomenclature, bibliographical references and 389 

photographs, as well as information on morphology, anatomy, potential chemical 390 

reactions, or even ecology traits. 391 

 392 

FAPROTAX 393 

Functional Annotation of Prokaryotic Taxa (FAPROTAX) [57] is used to assign 394 

metabolic functions, ecological traits or large functional groups relevant to prokaryotes 395 

(Table 2). This database was built manually from the scientific literature of the 396 

International Journal of Systematic and Evolutionary Microbiology (IJSEM) and 397 

http://www.deemy.de/


Bergey's Manual of Systematic Bacteriology. It contains about 4,700 unique 398 

prokaryotic taxonomies (mostly at the species level) and 90 functional groups. 399 

FAPROTAX is based on the implicit assignment of a trait / function to a taxon (whether 400 

cultivated or not) if all the cultivated members display this trait / function. Its main 401 

limitation is that it is focused on marine prokaryotic organisms, so that communities 402 

from other biomes can be missing. Another point to be considered is that if the taxa of 403 

interest do not have a species name, the tool cannot draw inferences at the upper 404 

levels (e.g., genus) to assign an ecological trait. 405 

 406 

IJSEM phenotypic database 407 

IJSEM [73] compiles phenotypic and environmental tolerance data about more than 408 

5,000 bacterial strains. It is an official and unique reference for publishing and 409 

validating new strains. These strains cover about 23 phyla from various habitats 410 

(mainly soils). The database appears as a TSV file 411 

(https://figshare.com/articles/International_Journal_of_Systematic_and_Evolutionary_412 

Microbiology_IJSEM_phenotypic_database/4272392), and available information can 413 

be grouped into five categories: ancillary data (e.g., article’s digital object identifier; 414 

taxonomic nomenclature), morphology/phenotype (e.g., Gram stain status; motility), 415 

metabolism (e.g., BIOLOG information), environmental preferences (e.g., habitat of 416 

isolation; oxygen requirement), and sequence data (e.g., 16S rRNA accession no.). 417 

 418 

BacDive 419 

BacDive [74] is one of the largest metadatabases (https://bacdive.dsmz.de) 420 

referencing information on bacterial and archaeal diversity  (Table 2). No tool links 421 

taxonomy and phenotypic information directly because the database can only be 422 



browsed on a website or data can be downloaded from it. However, it provides a 423 

complete application programming interface (API) to achieve scripts and retrieve the 424 

desired information. In the first months of 2020, it offered data on 81,827 bacterial and 425 

archaeal strains, including 14,091 type strains, and thereby covered approximately 426 

90% of the described species according to their website. This database is very 427 

interesting because it provides different levels of robust information on taxonomy, 428 

morphology, physiology (API®-tests), molecular data, and cultivation conditions. As for 429 

physiological data, it provides – for example – the main substrates used for culturing a 430 

species and the enzymes present (a link with the EC classification number is available). 431 

These data have been more broadly incorporated into a tool (bacteria-archaea-traits) 432 

that encompasses numerous traits of bacteria and archaea from 26 sources [46]. 433 

 434 

To complete this list, a few specialized databases target only one or a few traits. For 435 

example, Engqvist [75] recently grouped the growth temperatures of 21,498 non-436 

redundant organisms across the whole tree of life. This study showed a strong 437 

correlation between the growth temperature of organisms and enzymatic optima, with 438 

temperature-dependent increases or decreases of enzymatic functions. This 439 

information can be very interesting and complementary to the interpretation of 440 

functional inference results, and can be linked – for example – to environmental 441 

conditions.  442 

 443 

4. Application of these new approaches to the functions of the soil microbial 444 

ecosystem  445 

4.1. Functional Inference 446 



In recent years, meta-omics approaches have been increasingly included in soil 447 

monitoring, whether in fundamental research programs or in more operational projects 448 

[76]. Most studies (about 60% based on keywords in the titles or abstracts of the 449 

publications, see Fig. 7B) have focused on PICRUSt to generate functional predictions 450 

from taxonomic data of the soil microbiota. We summarized the most valuable 451 

outcomes about soils by grouping them into categories: anthropogenic gradient, 452 

agricultural practices, and biogeochemical cycle or soil properties (Fig. 9). For 453 

example, a study showed that plant-bacteria interactions in the rhizosphere were 454 

mainly related to beneficial cooperation [77] involving the release of root exudates by 455 

the plants on the one hand, and hormone production or the ability to break down toxic 456 

chemicals by bacteria on the other hand. Another study investigated the stoichiometric 457 

regulation of soil carbon cycling by comparing functional predictions by metabarcoding 458 

(via PICRUSt) and shotgun sequencing on a wide C:N:P soil gradient in a rice field 459 

[60]. A strong correlation was evidenced between the functional predictions from 460 

metabarcoding and metagenomics as regards the abundance of some metabolic 461 

families involved in the C, N and P cycles. Still using PICRUSt, another study examined 462 

the effects of intercropping by predicting the soil microbial functional profiles. It 463 

evidenced that an intercropping system increased the functional potential in terms of 464 

carbon fixation pathways and the citrate cycle [78]. Finally, a study focused on the 465 

impact of long-term land-use practices (forest, grassland, crops) on soil bacterial 466 

communities [79] showed that forest soils harbored the largest reservoir of genes, 467 

followed by no-till soils and then grasslands. The plowed soils presented the lowest 468 

functional richness.  469 

Based on Tax4Fun predictions, a study investigated the impact of different irrigation 470 

practices with various water qualities (freshwater, treated or untreated wastewater) 471 



along with the different land use systems in drylands [80]. The authors compared the 472 

potential functional and taxonomic profiles of bacteria. Irrigation with wastewater had 473 

an effect on bacterial responses by shaping communities and functional profiles. By 474 

bringing more nitrogen, wastewater favored the response of certain genera, in 475 

particular Nitrosospira, and increased the relative abundance of the genes involved in 476 

nitrification and denitrification.  477 

Among all the functional inference tools available today, two of them stand out, i.e., 478 

PICRUSt and Tax4Fun. A benchmark study of these tools found no major differences 479 

in terms of performance, especially for soil samples [81]. Another benchmark study 480 

indicated that these two tools provided similar functional profiles but could be 481 

complementary for certain gene families found only in one or the other [82]. Moreover, 482 

the characterization of the fungal functional potential by PICRUSt2 is too recent for us 483 

to have any insights into its robustness concerning soil communities. Compared to trait 484 

assignment, the links between diversity and functions still remain tenuous concerning 485 

certain biogeochemical cycles or the impact of climate change and plant diversity (Fig. 486 

9). 487 

 488 

4.2. Ecological trait assignment 489 

The complexity of microbial traits is variable, with simple traits like organic 490 

phosphate utilization, and more complex ones like methanogenesis [24,83]. The 491 

conservation of prokaryotic traits or core genes varies according to phylogenetic depth 492 

[58]. For example, the complex methanogenesis trait appears to be very conserved at 493 

the order and family levels, while  contrastingly with the resistance to specific 494 

bacteriophages appears to vary at the species level due to particular point mutations 495 



[24]. Below are a few examples of the possible benefits of ecological traits to the 496 

analysis of the diversity of soil microbial communities (Fig. 9).  497 

Regarding the assignment of fungal traits, FUNGuild is currently and by far the most 498 

implemented tool, if not the only tool implemented by ecologists wishing to supplement 499 

their diversity analyses with data on the ecological traits of fungal communities, and 500 

mainly in studies on soil fungal communities [84–87]. A study on fungal communities 501 

in subtropical forest soils highlighted a negative relationship between the abundance 502 

of pathogenic fungi and the phylogenetic diversity of plant communities [88]. Another 503 

study showed a positive correlation between soil fungal community dissimilarities 504 

(plant pathogens, saprotrophs and ectomycorrhizas) and plant phylogenetic distances 505 

in forest soils [89]. Tropical land uses also impact the functional guild. A massive shift 506 

of fungal trophic modes has been showed – notably a decrease in mycorrhizal fungi 507 

and an increase in saprophytic and pathogenic fungi –along with increased 508 

anthropization levels [90]. Interestingly, several large-scale (national or global) studies 509 

have characterized the distribution of trophic types while identifying the environmental 510 

parameters that influence them [84,91–93]. The distribution of these trophic modes 511 

seems to vary greatly depending on temperature and precipitation [93]. This supports 512 

a recent global study focused on the distribution of pathogens and indicating higher 513 

abundance in warm regions [92]. A recent study compared the trophic modes 514 

(synonym: life strategies) assigned to the ITS and 18S rDNA molecular markers by 515 

FUNGuild [84]. This study indicated that the saprotroph and pathotroph richness levels 516 

were directly and negatively correlated with the organic matter content and elevation, 517 

and positively correlated with the pH and bulk density. For symbiotroph richness, the 518 

relationship differed depending on the molecular marker used: it was positively 519 

correlated with the C:N ratio when ITS sequences were used, but negatively correlated 520 



when 18S rDNA sequences were used. Similarly, the pH was positively correlated 521 

based on 18S rDNA data, but negatively correlated based on ITS data [84]. These 522 

differences may come from the fact that the two molecular markers do not cover the 523 

same taxonomic range. Therefore, the choice of molecular markers and primers is 524 

essential because it impacts the global picture obtained by possibly enhancing or 525 

decreasing the representation of particular functional groups in the community. For 526 

example, arbuscular mycorrhizal fungi are better represented, in particular the 527 

Glomeromycota group, when the 18S rDNA marker is used [94,95]. A study at a 528 

smaller scale also showed that saprotroph richness was directly driven by the soil 529 

physico-chemical parameters and confirmed the results mentioned above. The authors 530 

showed a positive correlation with the pH but a negative one with the C:N ratio [96]. All 531 

these studies used the FUNGuild tool dedicated to characterizing fungal community 532 

traits. 533 

Regarding the assignment of bacterial traits, various databases exist but few tools have 534 

been developed to assign ecological traits from metabarcoding datasets. Only 535 

FAPROTAX stands out as a powerful tool for analyzing the functional potential of soil 536 

communities [97], although it is dedicated to marine organisms. 537 

 538 

5. Technical and conceptual limitations and biases 539 

The metabarcoding approaches have significant advantages for characterizing 540 

indigenous prokaryotic and eukaryotic microbial communities. Standard protocols now 541 

exist, from sample preparation to bioinformatic and statistical analyses, and scientists 542 

have acquired an important feedback on biases, costs, and efficiency [98–100]. 543 

A fundamental limitation of functional inference tools, represented by gene gain and 544 

loss, is due to horizontal gene transfer [101], which is addressed in the literature and 545 



taken into account to some extent in these tools. However, horizontal gene transfer 546 

remains difficult to consider accurately for functional prediction, and its influence on 547 

microbial communities is hard to estimate. Moreover, the horizontal gene transfer rate 548 

varies substantially within the tree of life and according to gene families / pathways 549 

[24,83,101]. This process is mainly described in prokaryotes, but is also found to a 550 

lesser extent in eukaryotes, in particular fungi [102]. Microorganisms can gain a 551 

function through plasmid transfer, but no information was found in the literature about 552 

functional prediction [54]. However, plasmids are extrachromosomal DNA molecules 553 

that play a role in the rapid adaptation of microbial communities to environmental 554 

changes across all microbiomes [103,104]. In particular, they are transferred between 555 

phylogenetically distant populations for them to acquire genes and beneficial traits for 556 

their adaptation (e.g., resistance to antibiotics, biocides, pollutants). This is key for all 557 

environments, especially soils where biotic and abiotic fluctuations are tremendous 558 

[105]. 559 

From a technical point of view, most of the studies on microbial diversity using 560 

metabarcoding approaches are based on the sequencing of one or more hypervariable 561 

regions and remain limited by the size of the amplicon to be sequenced. The most 562 

commonly used Illumina sequencing platforms (MiSeq, HiSeq and NovaSeq) can 563 

provide maximum readings of 600 bp (~550 bp after adapter/tag/primer trimming). 564 

Several studies have questioned the most suitable regions for obtaining the best 565 

taxonomic resolution [106,107]; the use of full-length rRNA (~1,800 bp) seems to be 566 

the most appropriate solution [108]. It would significantly enhance phylogenetic 567 

resolution for prokaryotic and eukaryotic microorganisms [109] (Fig. 10, second box). 568 

Short reads do not allow good enough resolution in taxonomic assignment either (i.e., 569 

not down to the species level) although this point is crucial for placing sequences/taxa 570 



in the phylogenetic tree to achieve functional inference. With third-generation HTS 571 

platforms (e.g., PacBio, Oxford Nanopore), full-length molecular markers can be 572 

sequenced, e.g., 16S/18S rRNA genes or the  full ITS1 and ITS2 sequences [110,111]. 573 

This will considerably improve taxonomic assignment, and make it possible to assign 574 

sequences at the species or even the strain level in certain cases [111]. This way, 575 

functional inference and ecological trait assignment will be improved. However, if the 576 

objective is to obtain the best taxonomic resolution possible, the study of ecological 577 

traits at high taxonomic ranks (e.g., the phylum) remains very promising, especially for 578 

highly conserved traits [112]. For example, the carbon mineralization rate was 579 

positively (e.g., Bacteroidetes) or negatively (e.g., Acidobacteria) correlated with their 580 

relative abundance [113].  581 

A good practice complementary to the use of full-length amplicon sequencing would 582 

be the use of amplicon sequence variants (ASVs, also called ZOTUs) to increase the 583 

rate of inference with a better sequence placement on the reference tree [114,115]. 584 

Indeed, for those using an OTU clustering approach with a similarity threshold, one 585 

solution would be to use all the sequences within the OTUs instead of one 586 

representative sequence for each OTU seed, which could be less accurate. However, 587 

this would also increase the analysis time. 588 

 589 

6. Importance of taxonomy and genome references: from accuracy to resolution 590 

Many tools use taxonomic data to obtain information about microbial functions 591 

through a metabarcoding approach. Therefore, it is very important to check the 592 

bioinformatic strategy used to analyze the amplicon sequences, from the filtering steps 593 

to OTU clustering or not (see ASV), including taxonomic assignment.  594 



The use of tools on ecological traits is highly dependent on taxonomic resolution. For 595 

example, when using FUNGuild, special attention must also be paid to the fact that a 596 

sequence assigned at the genus level may be associated with several trophic types, 597 

and that plant-pathogenic fungi are highly host-specific and may be non-pathogenic in 598 

the context of the study. For the sequences (or OTUs) without any taxonomic 599 

assignment, functions cannot be obtained using tools on ecological traits (Fig. 10, 600 

second box). In order to improve this point, especially for fungal communities, 601 

inferences may be drawn based on phylogeny, as done for bacteria, archaea or 602 

macroorganisms [116–120]. One of the avenues to be explored is the use of ASR tools 603 

such as PICANTE [121] or CASTOR [122], which infer traits for taxa devoid of 604 

ecological data from a phylogenetic tree. 605 

Functional inference tools depend on the reference genomes to establish predictions, 606 

so that the accuracy of the results can vary among samples. Samples with well 607 

described host-associated communities such as the human microbiome have many 608 

reference genomes available, and allow good predictive accuracy (Fig. 8, Fig. 10 third 609 

box). Contrastingly, in more complex and highly biodiverse environments like soils 610 

[123], the  genomes representing the total taxonomic diversity are much more difficult 611 

to obtain. The proportion of cultivable terrestrial strains remains very low 612 

(approximately 25%) compared to the human microbiotas (80%) [124]. Thus, the 613 

results estimated for the communities from complex biomes are approximate and 614 

debatable.  615 

In order to improve functional prediction results, it is advisable to provide genomes 616 

specific to the habitat of interest [125]. Considerable efforts have to be made to 617 

increase the number of habitat-specific reference genomes (animal / human, water, 618 

plant, soil), with special attention to the most complex and unknown environments 619 



[126]. Tools to routinely update the databases will also need to be developed [127]. 620 

This is an ongoing dynamic at the international scale. For example, the annotation of 621 

reference genomes in databases is not yet representative of soil microbial diversity 622 

[128]. To fill this gap, an effort has been made by creating the Refsoil database (which 623 

does not seem to be maintained (https://github.com/germs-lab/ref_soil)) [128] or a 624 

Refsoil + plasmid database [104]. 625 

 626 

7. Discussion and future prospects 627 

The possible retrieval of a putative functional potential or ecological traits directly 628 

from taxonomic markers and metabarcoding approaches opens new perspectives for 629 

our understanding of microbial communities, both from a fundamental and/or 630 

operational point of view (e.g., functional redundancies, diagnostic tool) [63,129]. This 631 

information can be used to (i) understand the main functions potentially expressed in 632 

a given environment and identify the possible drivers, (ii) examine the distribution of 633 

functions among taxonomic group, or (iii) supplement the classical diversity metrics 634 

used to evaluate the ecological state of environmental matrices (Fig. 10, first box). 635 

Beyond providing an overview of the putative functions of an ecosystem, prediction 636 

tools could also provide more detailed information than taxonomic markers do for users 637 

to significantly distinguish sample groups from each other in certain habitats  [108] (Fig. 638 

10A, first box).  639 

A new generation of tools solves the main limitations of the previous generation tools 640 

by including improvements in terms of taxonomic marker targeting, methodology and 641 

flexibility. 642 

 643 

Future prospects with second-generation tools 644 



Second-generation tools are currently emerging, e.g. PICRUSt2 [115], 645 

Tax4Fun2 [125] or iVikodak [130] (Fig. 6). Indeed, Langille's team of developers 646 

bridged the gap for the scientific community working on fungal ecology. PICRUSt2 now 647 

includes 18S rDNA and ITS amplicons from the fungal kingdom. Another great 648 

improvement is flexibility: the sequence can be used directly, instead of taxonomy 649 

based on Greengenes nomenclature. Users are no longer dependent on taxonomy to 650 

infer functions; this is a great comfort, and provides better robustness of the analyses. 651 

However, users should be wary of the results because the number of sequenced fungal 652 

genomes currently integrated in the tool is much lower than the number of bacterial 653 

genomes. It is recommended to check the quality score (e.g., NSTI) for the robustness 654 

of the results and interpretation. However, this limitation can be lifted. For example, the 655 

1000 Fungal Genomes Project [131] is aimed at high-quality sequencing and 656 

annotation of fungal genomes so as to build a reference dataset to be used for meta-657 

omics data analysis.  658 

Another downside of these tools is the absence of data support for micro-eukaryotic 659 

communities, which are essential to the soil ecosystem. Protists are abundant and 660 

diverse, with a large range of functional diversity, and are highly involved in soil food 661 

webs and functioning [132,133]. It would be particularly useful to develop tools 662 

dedicated to protists from data on ecological traits available in the literature [134]. 663 

 664 

Challenges: from fundamental research to diagnosis 665 

Switching from fundamental research to practical applications would be really 666 

interesting because although operational microbial diversity bioindicators are 667 

increasingly emerging, there is a huge gap in the functional information of microbial 668 

communities. Even if the number of species can be an indicator of the impact of biotic 669 



and abiotic factors [135,136], the need to characterize the associated functions at the 670 

ecosystem level has become obvious to obtain a complete diagnosis with functional 671 

information on the soil microbial quality [137,138].  672 

As regards human health, identifying taxonomic and functional changes to estimate 673 

the contributions of taxa associated with a disease is an emerging topic [139], but 674 

examples for the soil microbial quality are still scarce. The huge complexity and 675 

diversity of the soil microbial community probably still limits such applications to the 676 

soil ecosystem, along with a lack of genome references. However, initiatives at the 677 

global level are in progress to access the soil biodiversity using taxonomic, functional 678 

and environmental data [140]. We can also note that a real dynamic seems to be 679 

developing at the international scale to collect, standardize and disseminate traits 680 

through the tree of life via an open science tool called the Open Traits Network (OTN) 681 

[83]. 682 

To our knowledge, providing robust and operational indicators based on putative 683 

functions derived from metabarcoding data is impossible today. The main challenges 684 

are to (i) aggregate and summarize the mass of data currently generated, (ii) test the 685 

predictions on datasets and compare them with “real” functional measurements, (iii) 686 

validate these indicators on datasets under diverse experimental conditions (e.g., land 687 

use gradient, agricultural practices) at the local and global scales, and (iv) develop 688 

representative repositories to ensure the validity of the diagnosis made from these new 689 

tools. 690 

Regarding aggregation and data reduction [(i)], a track would be to use a constrained 691 

non-negative matrix factorization approach [141], an alternative to the concept of 692 

community-aggregated traits (CATs) [142]. This method has already been used to 693 

aggregate functional traits from meta-genomes [141]. The authors demonstrated that 694 



significant data reduction made it possible to propose simple models to describe a set 695 

of complex functions at the scale of an ecosystem (here the potential for fiber 696 

degradation in the human intestinal microbiota) while preserving biological data quality 697 

[141]. Concerning [(ii)], it will be interesting, for example, to confront functional 698 

predictions with volatile organic compound emissions or microbial respiration rates 699 

from soil measurements. Moreover, to suggest these tools as robust indicators of the 700 

soil quality [(iii)], it will be essential to use large datasets in order to determine the best 701 

metrics (e.g., functional richness, relative gene abundance, aggregation of traits) and 702 

the most sensitive genes or groups of genes depending on the various scientific issues. 703 

Once these limitations have been lifted, these tools will provide results of great interest 704 

to the scientific community at relatively affordable human, technological and financial 705 

costs. However, maintaining the associated scientific expertise will be essential to 706 

support their transfer for operational applications and avoid erroneous interpretations 707 

that could potentially have disastrous consequences for soil users and soil policy 708 

makers [(iv)]. For example, interpreting trophic types requires strong expertise, with 709 

particular attention to the exploitation of potential pathogenicity information – a highly 710 

sensible task. The responses of the traits vary according to the disturbances applied 711 

to the ecosystem [143], and the results must be contextualized to ensure correct 712 

interpretation.  713 

 714 

Conclusion 715 

The exploration of the microbial functional diversity based on taxonomic marker genes 716 

in order to improve our knowledge of microbial diversity and functions is just starting. 717 

As highlighted in this review, various solutions have emerged over a number of years 718 

and are being improved quickly thanks to technological advances. Functional inference 719 



results are already robust and representative for some ecosystems with low diversity 720 

(specific richness) and with well characterized genomes such as the human 721 

microbiotas. Progress now needs to be made for more complex environments. The 722 

upcoming challenge, notably for environmental samples, will be to establish the link 723 

between functional predictions on reference datasets and environmental 724 

measurements. The new network SoilBON dedicated to monitoring soil biodiversity 725 

and functional ecosystems at a global scale, with particular attention to microbial 726 

diversity, is a step in this direction [3]. This ambitious framework aims to collect and 727 

analyze soil diversity based on soil ecological indicators (i.e., essential biodiversity 728 

variables [144]). One purpose of this framework is to inform policy makers and 729 

stakeholders for them to adapt measures and preserve this biodiversity.  730 
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 1298 

Tables 1299 

Table 1: Numbers of organisms, genes, enzymes and metabolic pathways 1300 

available in the CAZy, KEGG and MetaCyc databases. When possible, we detailed 1301 

the number of organisms for the three domains of the tree of life. CAZy includes 1302 

glycoside hydrolases (GH), glycosyl transferases (GT), carbohydrate esterases (CE), 1303 

polysaccharide lyases (PL), and auxiliary activities (AA). 1304 

 1305 

Databases Organisms 
Metabolic 
Pathways  Enzymes/Genes 

CAZy (Carbohydrate-Active 
Enzymes) 

Eukaryotes (344), Bacteria 
(20,421), Archaea (413)  NA 

GH (171), GT (114), PL (41), 
CE (19), AA (16) 

KEGG (Kyoto Encyclopedia 
of Genes and Genomes) 

Eukaryotes (557), Bacteria 
(6,317), Archaea (344) 547 

KEGG Orthology (KO) 
groups 24,402 

MetaCyc (metabolic path-
ways and enzymes) Total (3,295) 2,937 13,356 

 1306 



Table 2: List of the functional inference tools, ecological trait assignment tools and databases. 1307 

 1308 

Tools 
Implemen-

tation 
Targeted 

genes 
Functional Predic-

tion 
Ap-

proaches Methods Inputs used 
Strengths and Specifici-

ties Limitations 

PanFP 
Perl (re-

cently Py-
thon) 

16S 
rRNA 

KEGG Orthology; 
Gene Ontology; 
Pfam; TIGRFAM 

Functional 
inference 

builds a pangenome 
NCBI 

taxonomy 

- uses functional profile of 
the pangenome so could 
be less sensitive to hori-
zontal gene transfer 

- evolutionary models 
are not taken into ac-
count 
- no confidence score 
generated 
- not yet available for 
microbial eukaryotes 

PAPRICA Python 
16S/18S 

rRNA 
MetaCyc ontology 

Functional 
inference 

phylogenetic place-
ment 

based on rDNA 
amplicon se-

quences 

- 18S rRNA amplicons 
are taken into account 
- examples on the deve-
loper's blog 

- errors may occur 
with sequence place-
ment due to poor re-
solution of rRNA am-
plicons in some 
clades 

PICRUSt Python 
16S 

rRNA 

KEGG Orthology; 
KEGG Pathway; 

COG; CAZy* 

Functional 
inference 

ASR (Wagner Parsi-
mony, ACE ML, ACE 

REML, ACE PIC) 

Greengenes 
taxonomy 

(18may2012 or 
v13.5/v13.8) 

- evolutionary models are 
taken into account 
- confidence score gene-
rated (NSTI) 
- correction of OTU copy 
numbers 

- based on specific 
taxonomy (Green-
Genes identifiers) 
- KEGG database not 
updated since 2011 
- no pre-calculated 
table of fungal 
genomes available 



PICRUSt2 Python / R 
16S/18S 
rRNA/ 

ITS 

MetaCyc; KEGG Or-
thology; EC number, 

COGS, Pfam, 
TIGRFAM 

Functional 
inference 

HSP (maximum par-
cimony, empirical 

probabilities, subtree 
averaging, SCP) 

based on rDNA 
amplicon se-

quences 

- evolutionary models are 
taken into account 
- confidence score gene-
rated (NSTI) 
- twice as many KO 
scores 
- multiple HSP methods 
can be implemented 
(takes branch length 
weighting into account) 
- 18S rRNA and ITS am-
plicons are taken into ac-
count 
- extensive documenta-
tion and active commu-
nity 

- errors may occur 
with sequence place-
ment due to poor re-
solution of rRNA am-
plicons in some 
clades 

Piphillin Web-based 
16S 

rRNA 
BioCyc; KEGG 

Functional 
inference 

Nearest-neighbor 
matching of 16S 

rRNA gene ampli-
cons with genomes 
from reference data-

bases 

based on rDNA 
amplicon se-

quences 

- regular updates of func-
tional databases 
- rRNA copy number ad-
justement 

- available online only 
- available for 16S 
rRNA only 

SINAPS USEARCH 
16S 

rRNA 

Trait annotation 
(e.g., energy meta-
bolism, Gram-posi-
tive staining, pre-

sence of a flagellum) 

Functional 
inference 

word counting 
Greengenes; 

SILVA 

- confidence is estimated 
by boostrapping 
- integrated to USEARCH 
tool 

- no peer-reviewed 
publication (biorxiv 
preprint) 
- detailed explanation 
is missing (e.g., how 
was protrait input 
created?) 



Tax4Fun R package 
16S 

rRNA 
KEGG Orthology 

Functional 
inference 

nearest-neighbour 
search based on a 

minimum 16S rRNA 
sequence similarity 

SILVA 
taxonomy 

- uses R (multiplatform) 
with pre-calculated files 
- confidence score gene-
rated (FTU and FSU) 
- the algorithm could bet-
ter predict poorly charac-
terized taxa compared to 
approaches based on 
ASR with possible large 
distances in the tree, 
thanks to a minimum of 
similarity between se-
quences 

- based on specific 
taxonomy (SILVA 
identifiers) 
- KEGG database not 
updated since 2011 

Tax4Fun2 R package 
16S 

rRNA 
KEGG Orthology 

Functional 
inference 

BLAST 
based on rDNA 

amplicon se-
quences 

- algorithm with a minimal 
sequence similarity 
- uses R (multiplatform) 
with pre-calculated, 
highly memory-efficient 
platform-independent 
files 
- confidence score gene-
rated (FTU and FSU) 
- KO update from 2018 
- calculates the redun-
dancy of specific func-
tions directly  
- builds its own habitat-
specific reference 

- not yet available for 
microbial eukaryotes 

Vikodak 
Web-based 
(not longer 
available) 

16S 
rRNA 

KEGG pathway, EC 
number 

Functional 
inference 

microbial co-exis-
tence patterns 

RDP, SILVA 

- pathway exclusion cut-
off value is available to 
provide the minimum per-
centage of genes/en-
zymes belonging to a me-
tabolic pathway required 
to consider the pathway 
as functional. 
- compares two datasets 

- not longer available 
- not yet available for 
microbial eukaryotes 



iVikodak Web-based 
16S 

rRNA 
KEGG; Pfam; COG; 

TIGRfam 
Functional 
inference 

microbial co-inhabi-
tance patterns  

RDP, Green-
genes, SILVA 

- user-friendly for non-ex-
pert bioinformaticians 
- integrated tools for sta-
tistical comparisons 
- graphical visualizations 

- available online only 
- not yet available for 
microbial eukaryotes 

FUNGuild 
Python / 

Web-based 
ITS Guild type 

Trait as-
signment 

not applicable 
based on 
UNITE 

taxonomy (ITS) 

- trait quality for taxon as-
signment 

- no regular update 
- 18S rRNA taxonomy 
with related database 
not included. Howe-
ver, the database is 
open-access, and a 
homemade wrapper 
can be used for 18S 
metabarcoding output 

FAPRO-
TAX 

Python; flat 
file 

16S 
rRNA 

Ecological functions 
(e.g., nitrification, de-

nitrification or fer-
mentation) 

Trait as-
signment; 
Database 

If all type strains of a 
species at the genus 
level share the func-
tion, FAPROTAX as-
sumes that all uncul-
tured organisms of 
this genus possess 
the putative function 

SILVA (128, 
132) 

- based on the literature 
of cultured taxa 
- availability of all litera-
ture to create the data-
base 
- functions easily added 
to the tool 

- implicit assumption 
(see algorithm co-
lumn) could be false 
with the increase of 
newly cultured orga-
nisms 
- does not infer upper 
rank when taxonomic 
resolution is poor 

BacDive 
Python and 

R API, R 
package 

/ 

Morphology, physio-
logy (API®-tests), 

molecular data, and 
cultivation conditions 

Database not applicable 
NCBI 

taxonomy 

- provides links to ENA, 
GenBank, SILVA, 
BRENDA, GBIF, ChEBI, 
Straininfo website data 
- a match with 16S rRNA 
sequences is available 
from SILVA 

- does not provide a 
tool for metabarcoding 
output 

BugBase R / Python 
16S 

rRNA 
KEGG 

Functional 
inference 

PICRUSt; custom 
trait assignment 

Greengenes 

- biologically interpretable 
traits (Gram staining, oxy-
gen tolerance, biofilm for-
mation, pathogenicity, 
mobile element content 
and oxidative stress tole-
rance) 

- no peer-reviewed 
publication (biorxiv 
preprint) 



IJSEM 
flat file with 
R script for 

curation 
/ IJSEM Database not applicable not applicable 

- 16S rRNA accession 
numbers available 

- does not provide a 
tool for metabarcoding 
output 

ProTraits 
Web-based; 

flat files 
/ 

Wikipedia; Mi-
crobeWiki; HAMAP 
proteomes; PubMed 
abstracts and publi-
cations; Bacmap; 
Genoscope; JGI, 
KEGG, NCBI; Ka-

ryn’s Genomes 

Database not applicable not applicable 

- phenotypic inference 
- large ressource 
(~545,000 phenotypes 
scanning 424 traits 
across 3,046 species) 
- NCBI taxonomy avai-
lable 

- does not provide a 
tool for metabarcoding 
output 

BURRITO Web-based 
16S 

rRNA 
KEGG Orthology  

Functional 
inference 

PICRUSt Greengenes 

- explores simultaneous 
and integrative studies of 
taxonomic and functional 
profiles  

- based on PICRUSt 
v1 

MACA-
DAM 

Python / 
web imple-
mentation 

16S 
rRNA 

MetaCyc, MicroCyc, 
FAPROTAX; IJSEM 

Functional 
inference; 
Trait as-
signment 

custom methods 
(provides functional 

information about up-
per-rank taxa when 

organism name is not 
found) 

NCBI 
taxonomy 

- pathway score and 
pathway frequency score 
are provided, allowing 
knowledge of number of 
enzymes present in the 
pathway 

- not yet available for 
microbial eukaryotes 

FunFun 
R package; 

flat file 
/ Ecological traits 

Trait as-
signment 

not applicable 
based on 
UNITE 

taxonomy (ITS) 

- uses R (multiplatform) 
- complementary to FUN-
Guild 

 

Fungal-
Traits  

flat files / 
Guild type, body 

type, habitat 
Trait as-
signment 

not applicable 
based on 
UNITE 

taxonomy (ITS) 

- expert work to propose 
traits at the genus level 
- merges the FUNGuild 
and FunFun tools 
- an excel file with 
vlookup function is avai-
lable to assign guilds or 
trait data 

- does not provide a 
tool for metabarcoding 
output 



DEEMY  Web-based / 

Morphology, ana-
tomy, potential for 

chemical reactions, 
or even ecology 

traits  

Database not applicable not applicable 
- link to tree species as-
sociated 
- includes images 

- specialized in ecto-
mycorrhizas only  

Bacteria-
archaea-
traits 

R package; 
flat file 

16S 
rRNA 

Traits, phenotypic 
traits, quantitative 

genomic traits 
Database not applicable 

NCBI 
taxonomy, 

GTDB 
taxonomy 

- groups the major bacte-
rial and archaeal data-
bases into one database 
- traits and species data 
condensed  
- R workflow available to 
retrieve condensed trait 
and species data  

 

OntoBio-
tope 

Web-based / 
Habitats and pheno-

types  
Database 

ToMap (Text to onto-
logy mapping)  

NCBI 
taxonomy 

- term relevance is eva-
luated by the semantic 
search engine PubMed-
Biotope 
- maintained by around 
30 microbiology experts 

- dedicated to the food 
domain 

@Minter Python / 
Microbial interac-

tions 
Machine 
learning 

Support-vector ma-
chine (SVM)-based 

classifier 

No specific 
taxonomy, just 
species level 

- original approach to get 
information on microbial 
interactions rapidly 

- species name requi-
red 
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Figures 

 

Figure 1:  Schematic diagram of the various strategies available for exploring the 

functional diversity of the microbiota. Green frames, metabarcoding approaches 

for retrieving putative functions from taxonomic genes by functional inference and 

ecological trait assignment. 

 

 

Figure 2: Evolution of costs (dollars) per raw megabase of DNA sequence (black 

line with logarithmic scale), and evolution of the number of SRA metabarcoding 

data deposited in the NCBI website. The data used to draw this figure is described 

in Additional file 1. 
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Figure 3: Annual cumulative growth of databases in terms of bacterial/archaeal 

(A) and fungal (B) sequences, and species/subspecies deposited per year. 

Comparison of the annual cumulative growth of bacterial/archaeal (C) and fungal 

(D) genomes compared to simulations of Moore’s law. The plot is in logarithmic 

scale. Three databases were compared for 16S rRNA gene sequences: RDP (blue), 

SILVA (orange), Greengenes (green). Information is based on the List of Prokaryotic 

names with Standing in Nomenclature (LPSN [125], http://www.bacterio.net) website 

for bacterial and archaeal species, and on the MycoBank database for fungal species 

([126], http://www.mycobank.org). Information about the bacterial, archaeal and fungal 

genomes is based on the Genome OnLine Database (GOLD) [127].  

http://www.mycobank.org/


 

Figure 4: Global microbial gene catalogs from various ecosystems. The 

references are listed in Additional file 1. 

 



 

Figure 5:  Diagram of the granularity of the data (A) that can be obtained by 

functional inference (B) or ecological trait assignment (C). 

 

 

 

Figure 6: Timeline depicting the historical record of the major tools developed 

for functional inference or ecological trait assignment. The first version of the 

DEEMY database dates back to 1996; it was not included for aesthetic reasons. 

 



 

Figure 7: Annual cumulative number of citations of the major tools (A) and their 

scope (B). The keywords used for “scope” were retrieved from the titles and abstracts 

of the papers listed in Additional file 1. 

 

 

 

 



 

Figure 8: Overview of the quality of functional prediction based on a subsampling 

of articles for PICRUSt (A) and Tax4Fun (B) across various ecosystems. For 

PICRUSt, colors were assigned according NSTI results: < 0.06, quite good; 0.06 to 

0.10, good; 0.10 to 0.15, reasonable but probably approximate; and > 0.20, probably 

unreliable. For Tax4Fun, we split the fraction of OTUs that could not be mapped to 

KEGG organisms in 5 harmonious groups. References are listed in Additional file 1. 

 



 

 

Figure 9: Summary diagram of the most relevant microbial soil functions results 

based on functional inference and ecological trait assignment.  

The figure is made up of two parts: studies on bacterial communities based on 

functional inference on the left, and studies on fungal communities based on ecological 

trait assignment on the right. For all studies (climate change, anthropogenic gradient, 

agricultural practices, plant diversity or the biogeochemical cycle), if an impact or a 

correlation was found on the gene reservoir or on microbial communities with a 

particular ecological trait, a colored arrow indicates the effect and a cross indicates no 

significant effect. A triangle indicates either a decrease or an increase of the gene 

reservoir or microbial communities with a particular trait. References are listed in 

Additional file 1. 

 

 



 

 

Figure 10: Summary diagram of the expected results (first box), the functional 

prediction prospects (second box) and the limits of the microbial genomic data 

available for different habitats (third box). The first box illustrates a comparative 

example of data results of community structures and functional structures through a 

PCA (A). This example illustrates the case when the functional community structure 

differentiates experimental conditions better than it differentiates the microbial 

community structure. Illustrative heat maps showing the relative abundance of genes 

per sample (B) or per OTU (C). 
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Dear Editor, 

  

We would like to submit the paper entitled “Inferring microbiota functions from taxonomic 

genes: a review” by Christophe Djemiel, Pierre-Alain Maron, Sébastien Terrat, Samuel 

Dequiedt, Aurélien Cottin, and Lionel Ranjard for publication in GigaScience. 

In this paper we review the tools and methods dedicated to functional inference and 

ecological trait assignment to explore the functional potential of microbial ecosystems. These 

approaches have been developed after the recent surge of big data in microbial ecology 

studies thanks to high-throughput sequencing. Some tools have become quite popular 

thanks to the popularization of metabarcoding, but studies allowing an overview, an 

evaluation and a ranking of the advantages, specificities and drawbacks of these tools are 

still blatantly lacking in current literature, both for bacterial and fungal communities. 

Overall, our scientific and technical benchmarks show that functional inference and trait 

assignment are powerful methods for describing changes in the functional potential of 

complex microbial communities metabarcoding approaches. However, making them a 

robust diagnostic tool in various fields (e.g. soil studies) still remains a challenge. 

We believe that this work will help scientists working on microbial communities make the 

appropriate choices to best take advantage of the high amounts of microbial data made 

available. 

The work presented in this manuscript is original and has not been published or 

considered for publication by another journal. 

We thank you for considering this manuscript for publication in GigaScience. 

Yours sincerely, 

Lionel RANJARD and Christophe DJEMIEL  
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