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ABSTRACT

Summary: Studying biological systems generally relies on computational modelling and simulation, e.g., model-driven discovery
and hypothesis testing. Progress in standardisation efforts led to the development of interrelated file formats to exchange and
reuse models in systems biology, such as SBML, the Simulation Experiment Description Markup Language (SED-ML), or the
Open Modeling EXchange format (OMEX). Conducting simulation experiments based on these formats requires efficient and
reusable implementations to make them accessible to the broader scientific community and to ensure the reproducibility of
the results. The Systems Biology Simulation Core Library (SBSCL) provides interpreters and solvers for these standards as
a versatile open-source API in Java™. The library simulates even complex bio-models and supports deterministic Ordinary
Differential Equations (ODEs); Stochastic Differential Equations (SDEs); constraint-based analyses; recent SBML and SED-ML
versions; exchange of results, and visualisation of in silico experiments; open modelling exchange formats (COMBINE archives);
hierarchically structured models; and compatibility with standard testing systems, including the Systems Biology Test Suite and
published models from the BioModels and BiGG databases.
Availability: SBSCL is freely available at https://draeger-lab.github.io/SBSCL/ and via Maven Central.

Keywords: Systems Biology, Numerical Solver, Java™, API Library, SBML, SED-ML, OMEX, Constraint-Based Mod-
elling, Stochastic Simulation, Ordinary Differential Equation Systems
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1 Resources and availability
SBSCL is a freely available open-source library for analysis, simulation, and interpretation of systems biology models in
various modelling frameworks.

â The primary repository of SBSCL is available at �/draeger-lab/SBSCL.

â A demo repository is available at �/draeger-lab/SBSCL-demo.

â The project �/matthiaskoenig/sbscl-simulator-comparison provides benchmarks of SBSCL against
other simulators.

1.1 Installation via Maven
The repository of SBSCL is based on Maven W. Using SBSCL is straightforward when adding it as a dependency to the Project
Object Model (POM) file in a Java™ project, as listing 1 demonstrates. This declaration automatically loads also all transitive
dependencies, i.e., all required third-party libraries.

The version number will increase when new releases of SBSCL become available and will be listed in the README.md
file of the primary repository. A minimal example, demonstrating the use and how a simple POM file could be structured, is
available within the demo repository that is ready to use and try out. The standalone application SBMLsimulator6,8 provides a
Graphical User Interface (GUI) for SBSCL and is freely available W.

For illustration purposes, listing 2 below also shows a template for such a minimal pom.xml file. All that needs
to be changed to make this minimal example work is filling in values for the placeholders [YOUR GROUP ID], [YOUR
ARTIFACT ID], [A MEANINGFUL NAME], [VERSION NUMBER OF YOUR PROJECT].

Listing 1. Declaring SBSCL as a dependency within a Maven POM file
1 <dependency>
2 <groupId>org.draegerlab</groupId>
3 <artifactId>sbscl</artifactId>
4 <version>2.1</version>
5 </dependency>

1.2 Use-case examples
We will now discuss a few use-case examples to demonstrate using SBSCL as a solver engine within an application. Just like
the example POM file above, the examples described in this section can also be found in the demo repository for SBSCL at
�/draeger-lab/SBSCL-demo in the form of fully functioning standalone programs. The online JavaDoc W provides
further information about the details and functioning of the classes below. Trying out the example programs below requires
downloading models in Systems Biology Markup Language (SBML) format from one of the preeminent online databases,
such as BioModels27 or BiGG24,30 . For more general advice in developing larger software projects, we refer to related
publications47.

1.2.1 Fundamentals for working with SBML in Java
To reduce the examples to the main aspects relevant to working with SBSCL directly, we will first discuss a few general
techniques so that the following source-code examples can build upon these. The JSBML library10,34 efficiently parses SBML
files and delivers an object of type SBMLDocument, as listing 3 on the following page demonstrates. In most following
examples, we will assume that the main method is present and that it will just call the constructor of the example class by
passing an SBMLDocument object to it as an argument. By this, we can assume the user needs to specify the path to the
SBML file of interest as a command-line argument following the scheme outlined in listing 4 on the next page. The code below
launches a demo application from the command line with the absolute or relative path to an SBML file as the only argument
(args[0]).

All examples assume the given SBML file to include the necessary extension packages expected for the desired analysis. In
practice, further case distinctions may be necessary to ensure that correct content is loaded. The SBML file will be parsed
via JSBML10,34, and the resulting SBMLDocument will be passed to the constructor of the class for further processing. Any
exception will stop the program and automatically print a stack trace, e.g., if the file cannot be found, parsed, or is invalid.
Finally, we recommend to always initialise a logger for the class to handle output, e.g., warnings, user messages, or more
fine-grained debug information. This method is valuable because the output can be forwarded to the console, a log file, or some
GUI. In our examples, we use the logger shipped within the standard distribution. Other third-party packages may provide
more advanced features. The subsequent examples assume a logger to be bound to the variable logger, as demonstrated in
listing 5 on the following page. We here call the containing class MyClass for demonstration purposes.

Panchiwala and Shah et al. Supplementary Material 2/23

https://github.com/draeger-lab/SBSCL
https://github.com/draeger-lab/SBSCL-demo
https://github.com/matthiaskoenig/sbscl-simulator-comparison
https://maven.apache.org
https://github.com/draeger-lab/SBSCL#readme
https://github.com/draeger-lab/SBSCL-demo
https://github.com/draeger-lab/SBMLsimulator
https://github.com/draeger-lab/SBSCL-demo
https://draeger-lab.github.io/SBSCL/


Listing 2. Example for a minimal Maven POM file
1 <?xml version="1.0" encoding="UTF-8"?>
2 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

↪→ xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.
↪→ xsd">

3
4 <modelVersion>4.0.0</modelVersion>
5
6 <!−− =================================================================== −−>
7 <!−− Genera l p r o j e c t i n f o r m a t i o n −−>
8 <!−− =================================================================== −−>
9

10 <groupId>[YOUR GROUP ID]</groupId>
11 <artifactId>[YOUR ARTIFACT ID]</artifactId>
12 <name>[A MEANINGFUL NAME]</name>
13 <version>[VERSION NUMBER OF YOUR PROJECT]</version>
14
15 <packaging>jar</packaging> <!−− Outpu t t o j a r f o r m a t −−>
16
17 <properties>
18 <jdk.version>1.8</jdk.version>
19 <maven.build.timestamp.format>yyyy</maven.build.timestamp.format>
20 <year>${maven.build.timestamp}</year>
21 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
22 </properties>
23
24 <!−− =================================================================== −−>
25 <!−− Dependenc ie s −−>
26 <!−− =================================================================== −−>
27
28 <dependencies>
29 <dependency>
30 <groupId>org.draegerlab</groupId>
31 <artifactId>sbscl</artifactId>
32 <version>2.1</version>
33 </dependency>
34 </dependencies>
35
36 <!−− =================================================================== −−>
37 <!−− B u i l d i n g −−>
38 <!−− =================================================================== −−>
39
40 <build>
41 <pluginManagement>
42 <plugins>
43 <plugin>
44 <groupId>org.apache.maven.plugins</groupId>
45 <artifactId>maven-compiler-plugin</artifactId>
46 <version>3.3</version>
47 <configuration>
48 <source>${jdk.version}</source>
49 <target>${jdk.version}</target>
50 </configuration>
51 </plugin>
52 </plugins>
53 </pluginManagement>
54 </build>
55
56 </project>

Listing 3. Parsing an SBML file with JSBML
1 SBMLDocument doc = SBMLReader.read(new File("/path/to/my/sbml/file.xml"));

Listing 4. Example for launching the application DemoConstructor with an SBML file as a command line argument
1 public static void main(String[] args) throws Exception {
2 new DemoConstructor(SBMLReader.read(new File(args[0])));
3 }

Listing 5. Initialising a logger for a sample class here called MyClass
1 private static final transient Logger logger = Logger.getLogger(MyClass.class.getName());
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Listing 6. Static import of the format method in the header of a Java class
1 import static java.text.MessageFormat.format;

Listing 7. Example for running a deterministic dynamic simulation
1 public DynamicSimulationDemo(SBMLDocument doc, double timeEnd) throws Exception {
2 SBMLinterpreter interpreter = new SBMLinterpreter(doc.getModel());
3 AbstractDESSolver solver = new RosenbrockSolver();
4 MultiTable solution = solver.solve(interpreter, interpreter.getInitialValues(), 0d, timeEnd);
5 / / P r i n t , p l o t , or d i s p l a y t h e s o l u t i o n as a t a b l e . . .
6 }

It is also recommended to enable localisation support via the standard Java class MessageFormat, whose format
method can be statically imported as listing 6 indicates. Once this is done, it can be directly called from anywhere within the
Java class, just like any other method.

1.2.2 Deterministic dynamic simulation
Listing 7 demonstrates how to run a deterministic simulation by interpreting an SBML file as an ODE system. We assume the
constructor to be called from the main method with two values: an SBMLDocument and a number that gives the end time for
the simulation. SBML assumes simulations to always start at time t = 0, but SBSCL provides a more general implementation
that allows the solver to work with other initial time points. It is also possible to pass an array with monotonously increasing
double values to the solver to enforce that exact time points are met within the simulation. This technique can be crucial for
model calibration, e.g., to compare the simulation’s output to experimentally obtained values at specific time points. Many
solvers are directly available within SBSCL (see figure 1 on page 7). We here use the RosenbrockSolver solver because
it provides step-size adaptation and fine-grained error estimation, making it most precise and robust against stiff ODEs23.
However, other solvers may have a faster runtime.

The result is a table data structure, which SBSCL calls MultiTable. This table possesses a shared time column for
multiple data blocks. Such data blocks allow the simulation results to be organised in separate spreadsheets for compartments,
reactive species, fluxes, and variable parameters. It is possible to access these values separately, display them as tables, write
them to files, e.g., in Comma-Separated Values (CSV) format, or plot them directly using some suitable plotting framework.

The solve method of the DESSolver interface, from which the class AbstractDESolver inherits, also allows pass-
ing a customised observer as an additional argument. Such an observer needs to implement the PropertyChangeListener
interface from the java.beans package. It can be handy for listening to interim results or or tracking the progress of the
simulation, e.g., to display a progress bar or to plot values as they roll in. More detailed descriptions of the algorithms in this
example can be found in a separate publication23.

It may look surprising that the SBMLinterpreter is asked to deliver initial values for the system. Those might not be
directly stored in the SBML model but might be a target for more complex calculations, e.g., by solving initial assignments or
other more involved operations. Of course, it is possible to pass customised initial conditions to the solver as needed. The
solver also provides several settings, for instance, to adjust the step size as needed.

1.2.3 Stochastic simulation
Listing 8 on the following page shows a minimal example for running a stochastic simulation. Since the stochastic simulation
part of SBSCL originates from the Framework for Evaluation of Reaction Networks (FERN) library13 that uses a custom
internal network to represent the SBML model, the procedure for loading the model diverges slightly from the other examples
in this section. In the background, however, it also uses JSBML10,34 for parsing the file.

To get the simulation result displayed, we need to initialise an observer now and add it to the simulator, in this case, an
enhanced Gillespie solver16. The observer also requires a double value for the interval (comparable to the step size in
deterministic simulation), an integer duration value, and an array of the species to be observed. As a general reference, the class
Start within the package fern provides a fully-featured set of the stochastic simulation capabilities of SBSCL. Example
files are, for instance, located in /src/main/resources/examples/ within the project’s repository.

1.2.4 Constraint-based analysis
Conducting a Flux Balance Analysis (FBA) belongs to the fundamental tasks in constraint-based modelling. Listing 9 on
the next page shows a minimal example of how this can be done. This example assumes the SBML file to be parsed before
launching the constructor of the class, here called FBCdemo. Any output is passed to a logger and displayed using the format
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Listing 8. Example for running a stochastic dynamic simulation
1 public static void main(String args[]) throws Exception {
2 Network net = NetworkTools.loadNetwork(new File(args[0]));
3 Simulator sim = new GillespieEnhanced(net);
4 ((SBMLNetwork) net).registerEvents(sim);
5 String[] species = NetworkTools.getSpeciesNames(sim.getNet(),
6 NumberTools.getNumbersTo(sim.getNet().getNumSpecies() - 1));
7 Observer observer = new AmountIntervalObserver(sim, 0.1d, 5, species);
8 sim.addObserver(observer);
9 sim.start(5d); / / end t i m e

10 observer.setPrintWriter(new PrintWriter(System.out));
11 observer.print();
12 }

Listing 9. Example for running a flux balance analysis
1 public FBCdemo(SBMLDocument doc) throws Exception {
2 FluxBalanceAnalysis solver = new FluxBalanceAnalysis(doc);
3 if (solver.solve()) {
4 logger.info(format("Objective value:\t{0}", solver.getObjectiveValue()));
5 logger.info(format("Fluxes:\t{0}", solver.getSolution()));
6 } else {
7 logger.warning(format("Solver returned null for model {0}.", doc.getModel().getName()));
8 }
9 }

method from the standard Java class MessageFormat. All that needs to be done to conduct an FBA, is instantiating an
object of type FluxBalanceAnalysis by passing an SBMLDocument to it. The objective value and the flux distribution
can then be obtained from this instance. It is also possible to change the actual solver, which is handled by the underlying
SCPSolver W. The BiGG24,30 Models Database provides many example models suitable for flux balance analysis with listing 9.

1.2.5 Simulating a hierarchically structured model
Listing 10 provides a code snippet that demonstrates how to simulate a model that includes the SBML extension package for
the Hierarchical Model Composition (comp) extension. In this example, the result is displayed in the form of a table in a
simple GUI. The path to the SBML file is here given as an argument within the variable args[0]. In the background, the
CompSimulator class uses the so-called “flattening” routine implemented in the JSBML library. Flattening means that the
hierarchically structured model is converted to a non-hierarchical model in memory, i.e., with a “flat” hierarchy of only one
level. Afterwards, a regular solver can be applied to it. This example includes an uncomplicated display of the simulation
results in a table on a dialogue window for illustration purposes. The SBML Test Suite22 comprises some comp models, such
as semantic test № 1128 in 01128-sbml-l3v1.xml, to run the code in listing 10.

1.2.6 Simulating SED-ML documents
The format SED-ML45 has been designed to define the stages of a model’s typical life cycle in a structured way:

1. Formulation of the model’s equations

2. Specification of all necessary numerical values, such as initial conditions and kinetic parameters or boundary values

3. Simulation of the model in a specified framework

4. Post-processing and analysis of the result, e.g., graphical display.

Listing 10. Simulation of a hierarchically structured SBML model with comp extension
1 double timeEnd = 100d, stepSize = 0.1d;
2 CompSimulator compSimulator = new CompSimulator(new File(args[0]));
3 MultiTable solution = compSimulator.solve(timeEnd, stepSize);
4 / / D i s p l a y s i m u l a t i o n r e s u l t t o t h e u s e r
5 JScrollPane resultDisplay = new JScrollPane(new JTable(solution));
6 resultDisplay.setPreferredSize(new Dimension(400, 400));
7 JOptionPane.showMessageDialog(null, resultDisplay, "Comp Results", JOptionPane.INFORMATION_MESSAGE);

Panchiwala and Shah et al. Supplementary Material 5/23

http://www.scpsolver.org


Listing 11. Simulation of an SBML model by interpreting instructions from a SED-ML file
1 public static void main(String[] args) throws Exception {
2 File file = new File(args[0]);
3 SedML sedml = Libsedml.readDocument(file).getSedMLModel();
4 / / We assume our SED−ML f i l e t o have j u s t one o u t p u t . We c o u l d e i t h e r i t e r a t e or g e t t h e u s e r
5 / / t o d e c i d e which one t o run i f t h e r e were s e v e r a l .
6 Output wanted = sedml.getOutputs().get(0);
7 SedMLSBMLSimulatorExecutor exe = new SedMLSBMLSimulatorExecutor(sedml, wanted, file.getParent());
8 / / T h i s g e t s t h e raw s i m u l a t i o n r e s u l t s − one f o r each Task t h a t was run .
9 logger.info("Collecting tasks...");

10 Map<AbstractTask, List<IRawSedmlSimulationResults>> res = exe.run();
11 if ((res == null) || res.isEmpty() || !exe.isExecuted()) {
12 logger.warning(format("Simulatation failed: {0}", exe.getFailureMessages().get(0)));
13 return;
14 }
15 / / Now p r o c e s s : In t h i s case , t h e r e i s no p r o c e s s i n g per fo rmed − we are d i s p l a y i n g t h e raw r e s u l t s .
16 logger.info(format("Outputs wanted: {0}", wanted.getId()));
17 IProcessedSedMLSimulationResults prRes = exe.processSimulationResults(wanted, res);
18
19 if (wanted.isPlot2d()) {
20 Plot2D plots = (Plot2D) wanted;
21 / / P l o t a l l p r o c e s s e d r e s u l t s as per c u r v e d e s c r i p t i o n s .
22 PlotProcessedSedmlResults p = new PlotProcessedSedmlResults(prRes, plots.getListOfCurves(), plots.

↪→ getElementName());
23 p.pack();
24 RefineryUtilities.centerFrameOnScreen(p);
25 p.setVisible(true);
26 }
27 }

The example in listing 11 shows how a SED-ML file can be loaded, interpreted, and executed using SBSCL’s solvers. It makes
extensive use of the execution framework from the jlibsedml library1. This framework performs boiler-plate code for operations
such as post-processing of results and much more. This example is based on SED-ML Level 1 Version 23 elements, such
as RepeatedTasks and FunctionalRange. The directory /src/test/resources/sedml/ within the SBSCL
project contains example SED-ML files to test the code in listing 11.

1.2.7 Simulation of OMEX files
The Computational Modeling of Biological Networks (COMBINE) archive file format OMEX bundles many diverse files with
a manifest file explaining the content2. This archive file format is most suitable for distributing many standardised files within
one single compressed file. Consequently, an OMEX file may contain both a SED-ML file and an SBML file and possibly
additional information, such as shared metadata29.

Listing 12 indicates how to load an OMEX file directly and to run it with SBSCL. For the sake of simplicity, we here
assume that the given OMEX archive includes a SED-ML file, which does not always have to be the case. Consequently, further
checks may be recommendable for ensuring the stability of end-user software. We also omit any demonstration for further
processing of the individual simulation results but refer the reader to the examples above.

The file /src/test/resources/omex/12859 2014 369 MOESM1 ESM.omexwithin the SBSCL project repos-
itory can be used to test the code in listing 12.

Listing 12. Simulation of an SBML model within a COMBINE archive OMEX file
1 OMEXArchive archive = new OMEXArchive(new File(args[0]));
2
3 if (archive.containsSBMLModel() && archive.containsSEDMLDescp()) {
4 / / E x e c u t e SED−ML f i l e and run s i m u l a t i o n s .
5 SEDMLDocument doc = Libsedml.readDocument(archive.getSEDMLDescription());
6 SedML sedml = doc.getSedMLModel();
7
8 Output wanted = sedml.getOutputs().get(0);
9 SedMLSBMLSimulatorExecutor exe = new SedMLSBMLSimulatorExecutor(sedml, wanted, archive.

↪→ getSEDMLDescription().getParentFile().getAbsolutePath());
10
11 Map<AbstractTask, List<IRawSedmlSimulationResults>> res = exe.run();
12
13 for (List<IRawSedmlSimulationResults> re_list : res.values()) {
14 for (IRawSedmlSimulationResults re : re_list) {
15 MultTableSEDMLWrapper wrapper = (MultTableSEDMLWrapper) re;
16 / / P r o c e s s t h e r e s u l t .
17 }
18 }
19 }

Panchiwala and Shah et al. Supplementary Material 6/23



2 Software design and implementation
Figure 1 provides a simplified overview of the most central classes of SBSCL that are needed for the interpretation and
simulation of systems biology models in different frameworks. Already the first release of SBSCL shipped the solvers for
ODEs. For version 2, the SBML interpreter has been improved to support several new models from the SBML Test Suite22.
Also, several problems were solved, including efficiency improvements and reduction of redundant source code.

Hierarchically structured models that rely on the comp extension package37 for SBML are supported via the so-called
flattening routine of the JSBML library10,34. The term “flattening” means that the model is first converted to a non-hierarchical,
i.e., conventional, model in a pre-processing step, after which it can be directly solved using existing interpreters and solvers.
By this, the support for models of this type strongly depends on the flattening algorithm within JSBML.

The FERN library13 has been updated and incorporated into SBSCL to support stochastic simulation. It is now available as
a separate repository (�/draeger-lab/FERN) for direct use. However, the maintenance continues within SBSCL, in which its
classes have been adjusted for improved compatibility between the different frameworks. In doing so, the FERN package that
initially depended on libSBML5 was also migrated to JSBML.

New is also the package for constraint-based analysis, which currently contains the class FluxBalanceAnalysis
and a linear solver based on the GNU Linear Programming Kit (GLPK). Additional Constraint-Based Reconstruction and
Analysis (COBRA) methods are planned to be added in future releases and access to further linear solvers, which are included
through the abstraction layer called SCPSolver W.

3 Benchmark tests
We will now discuss the performance and accuracy of SBSCL based on the SBML Test Suite collection of edge-case models
and published models from the online databases BioModels27 and BiGG24,30 and compare SBSCL to related software.
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Figure 1. Overview of the type hierarchy of SBSCL (simplified). This Unified Modeling Language (UML) class diagram
indicates that the library’s design separates numerical solvers from equation systems and separately defines interpreters of the
systems biology model format SBML. This abstract design facilitates adding more formats, such as CellML26, as soon as
Java™ parsers become available. In addition, since version 2.0, SBSCL comes with two new packages: for “stochastic
simulation” using the FERN library13 and for “flux balance constraints” based on the SCPSolver W project.
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3.1 Support of the SBML Test Suite

When SBSCL version 1.2 was released, it passed all tests from the ever-expanding test suite23. Meanwhile, the number of tests
for the SBML core has increased, as figure 2 shows. In addition, test cases for specific extension packages have been created to
cover more aspects of SBML. Figure 3 on the next page shows that release 2.1 of SBSCL supports and correctly solves the vast
majority of the test cases from the current SBML Test Suite for SBML core, including deterministic and stochastic simulation
tests and all tests for constraint-based simulation. As soon as the so-called “flattening” algorithm for converting hierarchically
structured SBML models into monolithic models in the underlying JSBML library10,34 is completed, SBSCL will immediately
support more test cases for this SBML extension package called comp37.
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These test results were generated using Simulation Core Library 1.2.
Results were submitted by RolandKeller on Thursday, March 28, 2013.
Results were generated for the following SBML Level+Version: Highest.
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The maps above shows the results of comparing each uploaded data file to the expected data for that test case. Each
result is represented by a colored icon: green to indicate success, red to indicate test failure, yellow to indicate the
application does not support some aspect(s) of that test, blue to indicate a result not included because the application
does not support some aspect(s) of that test, gray to indicate a result is not included for unspecified reasons, and black
to indicate a non-numeric problem with the result, such as missing data. You can hover your mouse over an icon to find
out its test case number. To get more information about a specific case, click on the icon—the information will be
presented in a new window.
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More about this submission

Figure 2. Test Results of the
Systems Biology Simulation Core
Library (SBSCL) version 1.2.
This overview is accessible at
http://sbml.org/
Facilities/Database/
Submission/Details/67.
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These test results were generated using Systems Biology Simulation Core Library (SBSCL) 2.1.
Results were submitted by hemilpanchiwala on Monday, August 17, 2020.
Results were generated for the following SBML Level+Version: Highest.
Systems Biology Simulation Core Library (SBSCL) 2.1 supports the following package(s): comp, fbc, fbc_v1, fbc_v2. 
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The maps above shows the results of comparing each uploaded data file to the expected data for that test case. Each
result is represented by a colored icon: green to indicate success, red to indicate test failure, yellow to indicate the
application does not support some aspect(s) of that test, blue to indicate a result not included because the application
does not support some aspect(s) of that test, gray to indicate a result is not included for unspecified reasons, and black
to indicate a non-numeric problem with the result, such as missing data. You can hover your mouse over an icon to find
out its test case number. To get more information about a specific case, click on the icon—the information will be
presented in a new window.
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Figure 3. Test Results of the
Systems Biology Simulation Core
Library (SBSCL) version 2.1.
This overview is available at
http://sbml.org/
Facilities/Database/
Submission/Details/257.
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3.2 BioModel simulations
The BioModels Database27 is one of the most commonly used online repositories for curated models in various formats from
the community for COMBINE W11. The BioModels Database facilitates collaboration and promotes the reuse, sharing, and
repurposing of computational models in systems biology9.

To assess the usability and performance of SBSCL, we simulated the first 100 curated models from this online repository
with SBSCL version 2.1, COmplex PAthway SImulator (COPASI) version 4.30.24018, and RoadRunner version 2.0.540.
All simulations were executed on the same machine using a single core1. Model load time and simulation time were timed
separately, and the total time was calculated as the sum of load and simulate time. Model loading and simulation were performed
in five independent runs for every simulator. All settings were identically selected for all simulators and all models as follows:

• start = 0

• stop = 100

• steps = 100

• absolute tolerance = 1E-10

• relative tolerance = 1E-6.

for all models. SBSCL used the Rosenbrock solver with step-size adaptation. The comparison project provides the respective
source code at �/matthiaskoenig/sbscl-simulator-comparison.

Model load time is reported in figure 4 on the following page, simulation time in figure 5 on page 12, and total time
in figure 6 on page 13. All 100 models could be executed successfully with SBSCL version 2.1, whereas COPASI ver-
sion 4.30.240 and RoadRunner version 2.0.5 could execute 97 models successfully. However, due to the lacking support for
delays in COPASI and RoadRunner, three models of circadian oscillations (BIOMD000000002435, BIOMD000000002538,
BIOMD000000003439) could not be executed by the respective simulators.

All models loaded substantially faster with SBSCL (see figure 4 on the next page), mainly due to additional just-in-time
compilation steps required in COPASI and RoadRunner. Simulations were overall the fastest with RoadRunner, followed by
COPASI and RoadRunner figure 5 on page 12. Considering the combined load and simulation time for a single simulation
(figure 6 on page 13), SBSCL has a much broader spread than the other simulators. Some models execute faster or slower than
others compared to COPASI version 4.30.240 and RoadRunner version 2.0.5. COPASI and RoadRunner have clear advantages
when executing many simulations after loading the model once. SBSCL could show similar performance for many models for
a single simulation due to the faster model loading times.

3.3 BiGG Model simulations
BiGG24,30 Models W is a genome-scale metabolic network reconstructions database that integrates more than 100 published
genome-scale metabolic networks30. For benchmarking our software suite for the FBA models, we simulated the entire suite
of BiGG24,30 Models using SBSCL version 2.1 and compared it with results obtained from COBRApy version 0.21.0 W, a
package for constraint-based modelling of metabolic networks based on the COBRA methods, which are widely used for
genome-scale modelling of metabolic networks12.

Model load time is reported in figure 7 on page 14, simulation time in figure 8 on page 15 and total time in figure 9 on
page 16. All 100 models could be executed successfully with SBSCL version 2.1 and COBRApy version 0.21.0.

All models loaded substantially faster with SBSCL (see figure 7 on page 14) than with COBRApy. Simulations were
drastically faster with COBRApy than with SBSCL (see figure 8 on page 15). The combined load and simulation time for a
single simulation (figure 9 on page 16) modelling is faster than COBRApy. COBRApy has a clear advantage when executing
many simulations after loading the model once, whereas, for a single simulation, SBSCL has advantages due to the faster model
loading times.

The model simulations result in a predicted growth rate (in mmol/(gDW ·h)). Figure 11 on page 18 displays the overall
divergence between the growth rate predictions of SBSCL and COBRApy, which is on the order of 10−8. For most models, the
difference approaches 0 as it is close to the numerical precision of the machine. Figure 10 on page 17 indicates the individual
differences in growth rates for all models from BiGG24,30 .

1Hardware and software configuration: Acer Notebook of type Predator PH315-52 version 1.06 with an Intel® Core™ i7-9750H CPU at 2.60 GHz and
16 GB of main memory and Ubuntu Linux version 18.04.5 LTS as the operating system with OpenJDK version 1.8.0 232.
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Figure 4. BioModels load time (in s).
Displayed is mean and standard
deviation for five repeats and the
individual repeats for loading the first
100 models from BioModels Database27

with SBSCL version 2.1, COPASI
version 4.30.24018, and RoadRunner
version 2.0.540.
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Figure 5. BioModels simulate time (in
s). Displayed is mean and standard
deviation for five repeats and the
individual repeats for simulating the first
100 models from BioModels Database27

with SBSCL version 2.1, COPASI
version 4.30.24018, and RoadRunner
version 2.0.540.
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Figure 6. BioModels load and simulate
time (in s). Displayed is mean and
standard deviation for five repeats and
the individual repeats for loading and
simulating the first 100 models from
BioModels Database27 with SBSCL
version 2.1, COPASI version 4.30.24018,
and RoadRunner version 2.0.540.
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Figure 7. Biochemically, Genomically,
Genetically structured (BiGG) Models
load time (in s). Displayed is mean and
standard deviation for five repeats and
the individual repeats for loading all
models from the BiGG Models
Database30 with SBSCL version 2.1 and
COBRApy version 0.21.012.
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Figure 8. BiGG Models simulate time
(in s). Displayed is mean and standard
deviation for five repeats and the
individual repeats for simulating all
models from the BiGG Models
Database30 with SBSCL version 2.1 and
COBRApy version 0.21.012.
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Figure 9. BiGG Models load and
simulate time (in s). Displayed is mean
and standard deviation for five repeats
and the individual repeats for loading
and simulating all models from the
BiGG Models Database30 with SBSCL
version 2.1 and COBRApy
version 0.21.012.
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Figure 10. The difference in the objective values between SBSCL and COBRApy for all BiGG models.
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Figure 11. Divergence of the simulation results
between SBSCL and COBRApy for all 108 models
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3.4 Comparison to other simulators with SBML support
The SBML software guide W lists several tools that solve and simulate SBML models in various frameworks. We selected all
those tools from this list, for which a report on supported SBML test cases is provided in the SBML Test Suite Database W
(on April 23rd, 2021) and that are not superseded or replaced by a reimplementation (i.e., with a newer version of the same
software). For example, libRoadRunner replaces the earlier software RoadRunner40. Table 1 on the following page presents an
overview of all tools with their main features, which are subsequently described in more detail.

3.4.1 AMICI
The Advanced Multilanguage Interface for CVODES and IDAS (AMICI) W supports differential equation models encoded in
the formats PySB or SBML. It automatically compiles such models into executable formats for simulation. The supported
output formats include Python modules, C++ libraries, or Matlab files in .mex format14. The compiled simulation files also
facilitate forward sensitivity analysis, steady-state sensitivity analysis, and adjoint sensitivity analysis for likelihood-based
output functions19.

3.4.2 BioUML
BioUML W is an integrated environment for systems biology and collaborative analysis of biomedical data25. It comes with the
support of SBML33, Systems Biology Graphical Notation (SBGN)4,43, the Biological Pathway Exchange (BioPAX) format7,
PSI-MI, Open Biological and Biomedical Ontologies (OBO), and CellML26 standards, along with providing different solvers
for differential equations and methods for data analysis.

3.4.3 COPASI
COPASI W is a standalone program designed for simulating and analysing biochemical networks and their dynamics18. This
software application supports models in the SBML format (even with arbitrary discrete events). To simulate the behaviour of
these models, COPASI provides implementations of ODEs solvers or Gillespie’s stochastic simulation algorithm17.

3.4.4 FluxBalance
This teaching tool for FBA W supports the fbc31,32 for SBML Level 320,21, including mapping flux distributions to SBML
layouts15. Other simulation frameworks are not supported.

3.4.5 IB IOS IM

The computer-aided design (CAD) tool IBIOSIM W aims to model, analyse, and design genetic circuits46. It primarily targets
genetic circuits and analyses models representing metabolic networks, cell-signalling pathways, and other biological and
chemical systems28. It supports importing all levels and versions of SBML and can export up to SBML Level 3 Version 121.

3.4.6 LibRoadRunner
LibRoadRunner W is a high-performance and portable simulation engine for systems and synthetic biology19,40. It comes up
with the support of ODE solver, code for structural analysis, steady-state analyses, event handling, stochastic simulation with a
significant C and C++ Application Programming Interface (API), and Python bindings.
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3.4.7 LibSBMLSim
LibSBMLSim W provides a C implementation of SBML core with support for Ordinary Differential Equations (ODEs),
Differential Algebraic Equations (DAEs), and Delay Differential Equations (DDEs) and bindings to many languages (including
Java™, C#, Python, and Ruby)19,42.

3.4.8 ModelBase
ModelBase W is a free and expandable Python implementation for dynamic modelling, simulation, and analysis with SBML
support44.

3.4.9 Morpheus
Morpheus W is an environment for modelling, simulation, and studying multi-scale as well as multicellular systems41.

3.4.10 WinBEST-KIT
WinBEST-KIT W is a simulator of biochemical reaction networks based on a GUI36.

4 Known limitations
The project’s issue tracker at �/draeger-lab/SBSCL/issues is available online to request new features or report any
problems and limitations of SBSCL.

Version 2.1 of SBSCL correctly solves the vast majority of the SBML Test Suite core test cases, as section 3.1 on page 8
indicates. A few test cases exist in which SBSCL currently fails to simulate correctly due to the following reasons:

â missing support for the delay property for the newly added rateOf function in SBML Level 3 Version 2 (see issue 46).

â some tests trigger events before the event condition is fulfilled (see issue 44).

In addition, some test cases have a stochastic nature which can fail sporadically. A compromise between runtime for the
continuous integration and accuracy of the simulation results (depending on the number of runs used for averaging) had to be
chosen.

Most failing test cases are related to the SBML extension package for the Hierarchical Model Composition (comp)
package37 for SBML Level 3. SBSCL uses the JSBML library10,34 to flatten comp models and subsequently simulate the
flattened models. Due to issues in JSBML with flattening the models, the comp package test cases fail to simulate. The issue is
tracked via an issue in the JSBML repository at �/sbmlteam/jsbml/issues/213. After resolving the flattening issue,
the remaining comp tests will pass. Importantly, this is not a simulation issue with SBSCL, which supports all mathematical
features in the comp model, but solely a problem of converting the hierarchical model to a non-hierarchical one.

All mentioned issues are tracked on the issue tracker and will be resolved in future versions of SBSCL.
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14. Fröhlich, F., Weindl, D. et al. AMICI: High-Performance Sensitivity Analysis for Large Ordinary Differential Equation
Models, 2020.

15. Gauges, R., Rost, U. et al. The Systems Biology Markup Language (SBML) Level 3 Package: Layout, Version 1 Core. J.
Integr. Bioinform., 12(2), 2015 doi: 10.2390/biecoll-jib-2015-267.

16. Gillespie, D.T. A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical
Reactions. Journal of Computational Physics, 22(4):403–434, December 1976 doi: 10.1016/0021-9991(76)90041-3.

17. Gillespie, D.T. Exact Stochastic Simulation of Coupled Chemical Reactions. The Journal of Physical Chemistry,
81(25):2340–2361, 1977 doi: 10.1021/j100540a008.

18. Hoops, S., Sahle, S. et al. COPASI–a COmplex PAthway SImulator. Bioinformatics, 22(24):3067–3074, December 2006
doi: 10.1093/bioinformatics/btl485.

19. Hucka, M., Bergmann, Frank T., D.A. et al. SBML Test Suite Database. http://sbml.org/Facilities/
Database/Simulator, August 2021.

20. Hucka, M., Bergmann, F.T. et al. Systems Biology Markup Language (SBML) Level 3 Version 2 Core Release 2. Journal
of Integrative Bioinformatics, 16(2):1, June 2019 doi: 10.1515/jib-2019-0021.

21. Hucka, M., Bergmann, F.T. et al. Systems Biology Markup Language (SBML) Level 3 Version 1 Core. Journal of
Integrative Bioinformatics, 15(1):1, April 2018 doi: 10.1515/jib-2017-0080.

22. Hucka, M., Smith, L.P. et al. SBML Test Suite release 3.3.0. https://doi.org/10.5281/zenodo.1112521,
December 2017.
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