
Supplementary Material

The Systems Biology Simulation Core Library
Hemil Panchiwala1† , Shalin Shah2,3† , Hannes Planatscher4 ,
Mykola Zakharchuk5 , Matthias König6 , and Andreas Dräger5,7,8,9,*

1Department of Computer Science and Engineering, Indian Institute of Technology, Roorkee, India - 247667
2Department of Electrical and Computer Engineering, Duke University, Durham, NC 27701, United States of America
3Bloomberg LP, New York, NY 10022, United States of America
4Signatope GmbH, 72770 Reutlingen, Germany
5Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
6Institute for Theoretical Biology, Humboldt University of Berlin, 10115 Berlin, Germany
7Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical
Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
8German Center for Infection Research (DZIF), partner site Tübingen, Germany
9Cluster of Excellence ‘Controlling Microbes to Fight Infections,’ University of Tübingen, Tübingen, Germany
†These authors contributed equally to the manuscript.
*Corresponding author: draeger@informatik.uni-tuebingen.de

ABSTRACT

Summary: Studying biological systems generally relies on computational modelling and simulation, e.g., model-driven discovery
and hypothesis testing. Progress in standardisation efforts led to the development of interrelated file formats to exchange and
reuse models in systems biology, such as SBML, the Simulation Experiment Description Markup Language (SED-ML), or the
Open Modeling EXchange format (OMEX). Conducting simulation experiments based on these formats requires efficient and
reusable implementations to make them accessible to the broader scientific community and to ensure the reproducibility of
the results. The Systems Biology Simulation Core Library (SBSCL) provides interpreters and solvers for these standards as
a versatile open-source API in Java™. The library simulates even complex bio-models and supports deterministic Ordinary
Differential Equations (ODEs); Stochastic Differential Equations (SDEs); constraint-based analyses; recent SBML and SED-ML
versions; exchange of results, and visualisation of in silico experiments; open modelling exchange formats (COMBINE archives);
hierarchically structured models; and compatibility with standard testing systems, including the Systems Biology Test Suite and
published models from the BioModels and BiGG databases.
Availability: SBSCL is freely available at https://draeger-lab.github.io/SBSCL/ and via Maven Central.

Keywords: Systems Biology, Numerical Solver, Java™, API Library, SBML, SED-ML, OMEX, Constraint-Based Mod-
elling, Stochastic Simulation, Ordinary Differential Equation Systems

Contents

1 Resources and availability 2
1.1 Installation via Maven . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Use-case examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Fundamentals for working with SBML in Java • Deterministic dynamic simulation • Stochastic simulation • Constraint-based analysis •
Simulating a hierarchically structured model • Simulating SED-ML documents • Simulation of OMEX files

2 Software design and implementation 7

3 Benchmark tests 7
3.1 Support of the SBML Test Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 BioModel simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 BiGG Model simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Comparison to other simulators with SBML support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

AMICI • BioUML • COPASI • FluxBalance • IBIOSIM • LibRoadRunner • LibSBMLSim • ModelBase • Morpheus • WinBEST-KIT

4 Known limitations 20

References 21

Panchiwala and Shah et al. Supplementary Material 1/23

https://orcid.org/0000-0001-9466-1675
https://orcid.org/0000-0002-1406-3577
https://orcid.org/0000-0002-6536-0782
https://orcid.org/0000-0003-2792-0512
https://orcid.org/0000-0003-1725-179X
https://orcid.org/0000-0002-1240-5553
mailto:draeger@informatik.uni-tuebingen.de
https://draeger-lab.github.io/SBSCL/


1 Resources and availability
SBSCL is a freely available open-source library for analysis, simulation, and interpretation of systems biology models in
various modelling frameworks.

â The primary repository of SBSCL is available at �/draeger-lab/SBSCL.

â A demo repository is available at �/draeger-lab/SBSCL-demo.

â The project �/matthiaskoenig/sbscl-simulator-comparison provides benchmarks of SBSCL against
other simulators.

1.1 Installation via Maven
The repository of SBSCL is based on Maven W. Using SBSCL is straightforward when adding it as a dependency to the Project
Object Model (POM) file in a Java™ project, as listing 1 demonstrates. This declaration automatically loads also all transitive
dependencies, i.e., all required third-party libraries.

The version number will increase when new releases of SBSCL become available and will be listed in the README.md
file of the primary repository. A minimal example, demonstrating the use and how a simple POM file could be structured, is
available within the demo repository that is ready to use and try out. The standalone application SBMLsimulator6,8 provides a
Graphical User Interface (GUI) for SBSCL and is freely available W.

For illustration purposes, listing 2 below also shows a template for such a minimal pom.xml file. All that needs
to be changed to make this minimal example work is filling in values for the placeholders [YOUR GROUP ID], [YOUR
ARTIFACT ID], [A MEANINGFUL NAME], [VERSION NUMBER OF YOUR PROJECT].

Listing 1. Declaring SBSCL as a dependency within a Maven POM file
1 <dependency>
2 <groupId>org.draegerlab</groupId>
3 <artifactId>sbscl</artifactId>
4 <version>2.1</version>
5 </dependency>

1.2 Use-case examples
We will now discuss a few use-case examples to demonstrate using SBSCL as a solver engine within an application. Just like
the example POM file above, the examples described in this section can also be found in the demo repository for SBSCL at
�/draeger-lab/SBSCL-demo in the form of fully functioning standalone programs. The online JavaDoc W provides
further information about the details and functioning of the classes below. Trying out the example programs below requires
downloading models in Systems Biology Markup Language (SBML) format from one of the preeminent online databases,
such as BioModels27 or BiGG24,30 . For more general advice in developing larger software projects, we refer to related
publications47.

1.2.1 Fundamentals for working with SBML in Java
To reduce the examples to the main aspects relevant to working with SBSCL directly, we will first discuss a few general
techniques so that the following source-code examples can build upon these. The JSBML library10,34 efficiently parses SBML
files and delivers an object of type SBMLDocument, as listing 3 on the following page demonstrates. In most following
examples, we will assume that the main method is present and that it will just call the constructor of the example class by
passing an SBMLDocument object to it as an argument. By this, we can assume the user needs to specify the path to the
SBML file of interest as a command-line argument following the scheme outlined in listing 4 on the next page. The code below
launches a demo application from the command line with the absolute or relative path to an SBML file as the only argument
(args[0]).

All examples assume the given SBML file to include the necessary extension packages expected for the desired analysis. In
practice, further case distinctions may be necessary to ensure that correct content is loaded. The SBML file will be parsed
via JSBML10,34, and the resulting SBMLDocument will be passed to the constructor of the class for further processing. Any
exception will stop the program and automatically print a stack trace, e.g., if the file cannot be found, parsed, or is invalid.
Finally, we recommend to always initialise a logger for the class to handle output, e.g., warnings, user messages, or more
fine-grained debug information. This method is valuable because the output can be forwarded to the console, a log file, or some
GUI. In our examples, we use the logger shipped within the standard distribution. Other third-party packages may provide
more advanced features. The subsequent examples assume a logger to be bound to the variable logger, as demonstrated in
listing 5 on the following page. We here call the containing class MyClass for demonstration purposes.

Panchiwala and Shah et al. Supplementary Material 2/23

https://github.com/draeger-lab/SBSCL
https://github.com/draeger-lab/SBSCL-demo
https://github.com/matthiaskoenig/sbscl-simulator-comparison
https://maven.apache.org
https://github.com/draeger-lab/SBSCL#readme
https://github.com/draeger-lab/SBSCL-demo
https://github.com/draeger-lab/SBMLsimulator
https://github.com/draeger-lab/SBSCL-demo
https://draeger-lab.github.io/SBSCL/


Listing 2. Example for a minimal Maven POM file
1 <?xml version="1.0" encoding="UTF-8"?>
2 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

↪→ xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.
↪→ xsd">

3
4 <modelVersion>4.0.0</modelVersion>
5
6 <!−− =================================================================== −−>
7 <!−− Genera l p r o j e c t i n f o r m a t i o n −−>
8 <!−− =================================================================== −−>
9

10 <groupId>[YOUR GROUP ID]</groupId>
11 <artifactId>[YOUR ARTIFACT ID]</artifactId>
12 <name>[A MEANINGFUL NAME]</name>
13 <version>[VERSION NUMBER OF YOUR PROJECT]</version>
14
15 <packaging>jar</packaging> <!−− Outpu t t o j a r f o r m a t −−>
16
17 <properties>
18 <jdk.version>1.8</jdk.version>
19 <maven.build.timestamp.format>yyyy</maven.build.timestamp.format>
20 <year>${maven.build.timestamp}</year>
21 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
22 </properties>
23
24 <!−− =================================================================== −−>
25 <!−− Dependenc ie s −−>
26 <!−− =================================================================== −−>
27
28 <dependencies>
29 <dependency>
30 <groupId>org.draegerlab</groupId>
31 <artifactId>sbscl</artifactId>
32 <version>2.1</version>
33 </dependency>
34 </dependencies>
35
36 <!−− =================================================================== −−>
37 <!−− B u i l d i n g −−>
38 <!−− =================================================================== −−>
39
40 <build>
41 <pluginManagement>
42 <plugins>
43 <plugin>
44 <groupId>org.apache.maven.plugins</groupId>
45 <artifactId>maven-compiler-plugin</artifactId>
46 <version>3.3</version>
47 <configuration>
48 <source>${jdk.version}</source>
49 <target>${jdk.version}</target>
50 </configuration>
51 </plugin>
52 </plugins>
53 </pluginManagement>
54 </build>
55
56 </project>

Listing 3. Parsing an SBML file with JSBML
1 SBMLDocument doc = SBMLReader.read(new File("/path/to/my/sbml/file.xml"));

Listing 4. Example for launching the application DemoConstructor with an SBML file as a command line argument
1 public static void main(String[] args) throws Exception {
2 new DemoConstructor(SBMLReader.read(new File(args[0])));
3 }

Listing 5. Initialising a logger for a sample class here called MyClass
1 private static final transient Logger logger = Logger.getLogger(MyClass.class.getName());

Panchiwala and Shah et al. Supplementary Material 3/23



Listing 6. Static import of the format method in the header of a Java class
1 import static java.text.MessageFormat.format;

Listing 7. Example for running a deterministic dynamic simulation
1 public DynamicSimulationDemo(SBMLDocument doc, double timeEnd) throws Exception {
2 SBMLinterpreter interpreter = new SBMLinterpreter(doc.getModel());
3 AbstractDESSolver solver = new RosenbrockSolver();
4 MultiTable solution = solver.solve(interpreter, interpreter.getInitialValues(), 0d, timeEnd);
5 / / P r i n t , p l o t , or d i s p l a y t h e s o l u t i o n as a t a b l e . . .
6 }

It is also recommended to enable localisation support via the standard Java class MessageFormat, whose format
method can be statically imported as listing 6 indicates. Once this is done, it can be directly called from anywhere within the
Java class, just like any other method.

1.2.2 Deterministic dynamic simulation
Listing 7 demonstrates how to run a deterministic simulation by interpreting an SBML file as an ODE system. We assume the
constructor to be called from the main method with two values: an SBMLDocument and a number that gives the end time for
the simulation. SBML assumes simulations to always start at time t = 0, but SBSCL provides a more general implementation
that allows the solver to work with other initial time points. It is also possible to pass an array with monotonously increasing
double values to the solver to enforce that exact time points are met within the simulation. This technique can be crucial for
model calibration, e.g., to compare the simulation’s output to experimentally obtained values at specific time points. Many
solvers are directly available within SBSCL (see figure 1 on page 7). We here use the RosenbrockSolver solver because
it provides step-size adaptation and fine-grained error estimation, making it most precise and robust against stiff ODEs23.
However, other solvers may have a faster runtime.

The result is a table data structure, which SBSCL calls MultiTable. This table possesses a shared time column for
multiple data blocks. Such data blocks allow the simulation results to be organised in separate spreadsheets for compartments,
reactive species, fluxes, and variable parameters. It is possible to access these values separately, display them as tables, write
them to files, e.g., in Comma-Separated Values (CSV) format, or plot them directly using some suitable plotting framework.

The solve method of the DESSolver interface, from which the class AbstractDESolver inherits, also allows pass-
ing a customised observer as an additional argument. Such an observer needs to implement the PropertyChangeListener
interface from the java.beans package. It can be handy for listening to interim results or or tracking the progress of the
simulation, e.g., to display a progress bar or to plot values as they roll in. More detailed descriptions of the algorithms in this
example can be found in a separate publication23.

It may look surprising that the SBMLinterpreter is asked to deliver initial values for the system. Those might not be
directly stored in the SBML model but might be a target for more complex calculations, e.g., by solving initial assignments or
other more involved operations. Of course, it is possible to pass customised initial conditions to the solver as needed. The
solver also provides several settings, for instance, to adjust the step size as needed.

1.2.3 Stochastic simulation
Listing 8 on the following page shows a minimal example for running a stochastic simulation. Since the stochastic simulation
part of SBSCL originates from the Framework for Evaluation of Reaction Networks (FERN) library13 that uses a custom
internal network to represent the SBML model, the procedure for loading the model diverges slightly from the other examples
in this section. In the background, however, it also uses JSBML10,34 for parsing the file.

To get the simulation result displayed, we need to initialise an observer now and add it to the simulator, in this case, an
enhanced Gillespie solver16. The observer also requires a double value for the interval (comparable to the step size in
deterministic simulation), an integer duration value, and an array of the species to be observed. As a general reference, the class
Start within the package fern provides a fully-featured set of the stochastic simulation capabilities of SBSCL. Example
files are, for instance, located in /src/main/resources/examples/ within the project’s repository.

1.2.4 Constraint-based analysis
Conducting a Flux Balance Analysis (FBA) belongs to the fundamental tasks in constraint-based modelling. Listing 9 on
the next page shows a minimal example of how this can be done. This example assumes the SBML file to be parsed before
launching the constructor of the class, here called FBCdemo. Any output is passed to a logger and displayed using the format

Panchiwala and Shah et al. Supplementary Material 4/23



Listing 8. Example for running a stochastic dynamic simulation
1 public static void main(String args[]) throws Exception {
2 Network net = NetworkTools.loadNetwork(new File(args[0]));
3 Simulator sim = new GillespieEnhanced(net);
4 ((SBMLNetwork) net).registerEvents(sim);
5 String[] species = NetworkTools.getSpeciesNames(sim.getNet(),
6 NumberTools.getNumbersTo(sim.getNet().getNumSpecies() - 1));
7 Observer observer = new AmountIntervalObserver(sim, 0.1d, 5, species);
8 sim.addObserver(observer);
9 sim.start(5d); / / end t i m e

10 observer.setPrintWriter(new PrintWriter(System.out));
11 observer.print();
12 }

Listing 9. Example for running a flux balance analysis
1 public FBCdemo(SBMLDocument doc) throws Exception {
2 FluxBalanceAnalysis solver = new FluxBalanceAnalysis(doc);
3 if (solver.solve()) {
4 logger.info(format("Objective value:\t{0}", solver.getObjectiveValue()));
5 logger.info(format("Fluxes:\t{0}", solver.getSolution()));
6 } else {
7 logger.warning(format("Solver returned null for model {0}.", doc.getModel().getName()));
8 }
9 }

method from the standard Java class MessageFormat. All that needs to be done to conduct an FBA, is instantiating an
object of type FluxBalanceAnalysis by passing an SBMLDocument to it. The objective value and the flux distribution
can then be obtained from this instance. It is also possible to change the actual solver, which is handled by the underlying
SCPSolver W. The BiGG24,30 Models Database provides many example models suitable for flux balance analysis with listing 9.

1.2.5 Simulating a hierarchically structured model
Listing 10 provides a code snippet that demonstrates how to simulate a model that includes the SBML extension package for
the Hierarchical Model Composition (comp) extension. In this example, the result is displayed in the form of a table in a
simple GUI. The path to the SBML file is here given as an argument within the variable args[0]. In the background, the
CompSimulator class uses the so-called “flattening” routine implemented in the JSBML library. Flattening means that the
hierarchically structured model is converted to a non-hierarchical model in memory, i.e., with a “flat” hierarchy of only one
level. Afterwards, a regular solver can be applied to it. This example includes an uncomplicated display of the simulation
results in a table on a dialogue window for illustration purposes. The SBML Test Suite22 comprises some comp models, such
as semantic test № 1128 in 01128-sbml-l3v1.xml, to run the code in listing 10.

1.2.6 Simulating SED-ML documents
The format SED-ML45 has been designed to define the stages of a model’s typical life cycle in a structured way:

1. Formulation of the model’s equations

2. Specification of all necessary numerical values, such as initial conditions and kinetic parameters or boundary values

3. Simulation of the model in a specified framework

4. Post-processing and analysis of the result, e.g., graphical display.

Listing 10. Simulation of a hierarchically structured SBML model with comp extension
1 double timeEnd = 100d, stepSize = 0.1d;
2 CompSimulator compSimulator = new CompSimulator(new File(args[0]));
3 MultiTable solution = compSimulator.solve(timeEnd, stepSize);
4 / / D i s p l a y s i m u l a t i o n r e s u l t t o t h e u s e r
5 JScrollPane resultDisplay = new JScrollPane(new JTable(solution));
6 resultDisplay.setPreferredSize(new Dimension(400, 400));
7 JOptionPane.showMessageDialog(null, resultDisplay, "Comp Results", JOptionPane.INFORMATION_MESSAGE);

Panchiwala and Shah et al. Supplementary Material 5/23

http://www.scpsolver.org


Listing 11. Simulation of an SBML model by interpreting instructions from a SED-ML file
1 public static void main(String[] args) throws Exception {
2 File file = new File(args[0]);
3 SedML sedml = Libsedml.readDocument(file).getSedMLModel();
4 / / We assume our SED−ML f i l e t o have j u s t one o u t p u t . We c o u l d e i t h e r i t e r a t e or g e t t h e u s e r
5 / / t o d e c i d e which one t o run i f t h e r e were s e v e r a l .
6 Output wanted = sedml.getOutputs().get(0);
7 SedMLSBMLSimulatorExecutor exe = new SedMLSBMLSimulatorExecutor(sedml, wanted, file.getParent());
8 / / T h i s g e t s t h e raw s i m u l a t i o n r e s u l t s − one f o r each Task t h a t was run .
9 logger.info("Collecting tasks...");

10 Map<AbstractTask, List<IRawSedmlSimulationResults>> res = exe.run();
11 if ((res == null) || res.isEmpty() || !exe.isExecuted()) {
12 logger.warning(format("Simulatation failed: {0}", exe.getFailureMessages().get(0)));
13 return;
14 }
15 / / Now p r o c e s s : In t h i s case , t h e r e i s no p r o c e s s i n g per fo rmed − we are d i s p l a y i n g t h e raw r e s u l t s .
16 logger.info(format("Outputs wanted: {0}", wanted.getId()));
17 IProcessedSedMLSimulationResults prRes = exe.processSimulationResults(wanted, res);
18
19 if (wanted.isPlot2d()) {
20 Plot2D plots = (Plot2D) wanted;
21 / / P l o t a l l p r o c e s s e d r e s u l t s as per c u r v e d e s c r i p t i o n s .
22 PlotProcessedSedmlResults p = new PlotProcessedSedmlResults(prRes, plots.getListOfCurves(), plots.

↪→ getElementName());
23 p.pack();
24 RefineryUtilities.centerFrameOnScreen(p);
25 p.setVisible(true);
26 }
27 }

The example in listing 11 shows how a SED-ML file can be loaded, interpreted, and executed using SBSCL’s solvers. It makes
extensive use of the execution framework from the jlibsedml library1. This framework performs boiler-plate code for operations
such as post-processing of results and much more. This example is based on SED-ML Level 1 Version 23 elements, such
as RepeatedTasks and FunctionalRange. The directory /src/test/resources/sedml/ within the SBSCL
project contains example SED-ML files to test the code in listing 11.

1.2.7 Simulation of OMEX files
The Computational Modeling of Biological Networks (COMBINE) archive file format OMEX bundles many diverse files with
a manifest file explaining the content2. This archive file format is most suitable for distributing many standardised files within
one single compressed file. Consequently, an OMEX file may contain both a SED-ML file and an SBML file and possibly
additional information, such as shared metadata29.

Listing 12 indicates how to load an OMEX file directly and to run it with SBSCL. For the sake of simplicity, we here
assume that the given OMEX archive includes a SED-ML file, which does not always have to be the case. Consequently, further
checks may be recommendable for ensuring the stability of end-user software. We also omit any demonstration for further
processing of the individual simulation results but refer the reader to the examples above.

The file /src/test/resources/omex/12859 2014 369 MOESM1 ESM.omexwithin the SBSCL project repos-
itory can be used to test the code in listing 12.

Listing 12. Simulation of an SBML model within a COMBINE archive OMEX file
1 OMEXArchive archive = new OMEXArchive(new File(args[0]));
2
3 if (archive.containsSBMLModel() && archive.containsSEDMLDescp()) {
4 / / E x e c u t e SED−ML f i l e and run s i m u l a t i o n s .
5 SEDMLDocument doc = Libsedml.readDocument(archive.getSEDMLDescription());
6 SedML sedml = doc.getSedMLModel();
7
8 Output wanted = sedml.getOutputs().get(0);
9 SedMLSBMLSimulatorExecutor exe = new SedMLSBMLSimulatorExecutor(sedml, wanted, archive.

↪→ getSEDMLDescription().getParentFile().getAbsolutePath());
10
11 Map<AbstractTask, List<IRawSedmlSimulationResults>> res = exe.run();
12
13 for (List<IRawSedmlSimulationResults> re_list : res.values()) {
14 for (IRawSedmlSimulationResults re : re_list) {
15 MultTableSEDMLWrapper wrapper = (MultTableSEDMLWrapper) re;
16 / / P r o c e s s t h e r e s u l t .
17 }
18 }
19 }

Panchiwala and Shah et al. Supplementary Material 6/23



2 Software design and implementation
Figure 1 provides a simplified overview of the most central classes of SBSCL that are needed for the interpretation and
simulation of systems biology models in different frameworks. Already the first release of SBSCL shipped the solvers for
ODEs. For version 2, the SBML interpreter has been improved to support several new models from the SBML Test Suite22.
Also, several problems were solved, including efficiency improvements and reduction of redundant source code.

Hierarchically structured models that rely on the comp extension package37 for SBML are supported via the so-called
flattening routine of the JSBML library10,34. The term “flattening” means that the model is first converted to a non-hierarchical,
i.e., conventional, model in a pre-processing step, after which it can be directly solved using existing interpreters and solvers.
By this, the support for models of this type strongly depends on the flattening algorithm within JSBML.

The FERN library13 has been updated and incorporated into SBSCL to support stochastic simulation. It is now available as
a separate repository (�/draeger-lab/FERN) for direct use. However, the maintenance continues within SBSCL, in which its
classes have been adjusted for improved compatibility between the different frameworks. In doing so, the FERN package that
initially depended on libSBML5 was also migrated to JSBML.

New is also the package for constraint-based analysis, which currently contains the class FluxBalanceAnalysis
and a linear solver based on the GNU Linear Programming Kit (GLPK). Additional Constraint-Based Reconstruction and
Analysis (COBRA) methods are planned to be added in future releases and access to further linear solvers, which are included
through the abstraction layer called SCPSolver W.

3 Benchmark tests
We will now discuss the performance and accuracy of SBSCL based on the SBML Test Suite collection of edge-case models
and published models from the online databases BioModels27 and BiGG24,30 and compare SBSCL to related software.

Type hierarchy of numerical solvers for ordinary differential equation systems

<<interface>>

DelayValueHolder

<<interface>>

DESSolver

<<interface>>

EventHandler

AbstractDESSolver MultiTable Block

RungeKutta_EventSolver EulerMethod AdaptiveStepsizeIntegrator

RosenbrockSolver FirstOrderSolver HighamHall54Solver

AdamsBashforthSolverAdamsMoultonSolverDormandPrince54SolverDormandPrince853Solver

GraggBulirschStoerSolver

AbstractIntegrator

Column<results> * *

Abstract definition of differential equation systems

<<interface>>

DESystem

<<interface>>

ParameterizedDESystem

<<interface>>

FirstOrderDifferentialEquations

<<interface>>

RichDESystem

<<interface>>

DelayedDESystem

<<interface>>

EventDESystem

<<interface>>

FastProcessDESystem

EventInProgress

<calls>

SBML-specific implementation of an ordinary differential equation framework

EquationSystem<<interface>>

SBMLValueHolder

ASTNodeInterpreterStoichiometryValue FunctionValue

ASTNodeValue

RootFunctionValue NamedValue

SBMLEventInProgress

SBMLEventInProgressWithDelaySBMLinterpreter

Flux Balance Constraints

FluxBalanceAnalysis

NewGLPKSolver

<<interface>>

LinearProgramSolver

GlpkSolver

<uses>

Stochastic Simulation (FERN)

GibsonBruckSimulatorGillespieEnhanced

SimulatorGillespieSimple

HybridMaximalTimeStep

CompositionRejection

AbstractBaseTauLeapingGroupContainer

AbstractTauLeaping
PropensityBound

Simulator

TauLeapingSpecies
PopulationBound

Simulator

IndexPriorityQueueDependencyGraph

TauLeaping
AbsoluteBound

Simulator

TauLeaping
RelativeBound

Simulator

Node

Figure 1. Overview of the type hierarchy of SBSCL (simplified). This Unified Modeling Language (UML) class diagram
indicates that the library’s design separates numerical solvers from equation systems and separately defines interpreters of the
systems biology model format SBML. This abstract design facilitates adding more formats, such as CellML26, as soon as
Java™ parsers become available. In addition, since version 2.0, SBSCL comes with two new packages: for “stochastic
simulation” using the FERN library13 and for “flux balance constraints” based on the SCPSolver W project.

Panchiwala and Shah et al. Supplementary Material 7/23

https://github.com/draeger-lab/FERN
http://www.scpsolver.org
http://www.scpsolver.org


3.1 Support of the SBML Test Suite

When SBSCL version 1.2 was released, it passed all tests from the ever-expanding test suite23. Meanwhile, the number of tests
for the SBML core has increased, as figure 2 shows. In addition, test cases for specific extension packages have been created to
cover more aspects of SBML. Figure 3 on the next page shows that release 2.1 of SBSCL supports and correctly solves the vast
majority of the test cases from the current SBML Test Suite for SBML core, including deterministic and stochastic simulation
tests and all tests for constraint-based simulation. As soon as the so-called “flattening” algorithm for converting hierarchically
structured SBML models into monolithic models in the underlying JSBML library10,34 is completed, SBSCL will immediately
support more test cases for this SBML extension package called comp37.

News Documents Downloads Forums Facilities Community Events About Google Site Search...

Register  Log in

These test results were generated using Simulation Core Library 1.2.
Results were submitted by RolandKeller on Thursday, March 28, 2013.
Results were generated for the following SBML Level+Version: Highest.

    

Tests of SBML Core

 

The maps above shows the results of comparing each uploaded data file to the expected data for that test case. Each
result is represented by a colored icon: green to indicate success, red to indicate test failure, yellow to indicate the
application does not support some aspect(s) of that test, blue to indicate a result not included because the application
does not support some aspect(s) of that test, gray to indicate a result is not included for unspecified reasons, and black
to indicate a non-numeric problem with the result, such as missing data. You can hover your mouse over an icon to find
out its test case number. To get more information about a specific case, click on the icon—the information will be
presented in a new window.

SBML Test Suite Database

Parent pages: SBML.org /  Facilities / SBML Test Suite Database

 

Test Results: Simulation Core Library 1.2

Show all Show passed Show failed Show unsupported Show missing

More about this submission

Figure 2. Test Results of the
Systems Biology Simulation Core
Library (SBSCL) version 1.2.
This overview is accessible at
http://sbml.org/
Facilities/Database/
Submission/Details/67.

Panchiwala and Shah et al. Supplementary Material 8/23

http://sbml.org/Facilities/Database/Submission/Details/67
http://sbml.org/Facilities/Database/Submission/Details/67
http://sbml.org/Facilities/Database/Submission/Details/67


Please contact use our issue tracking system for any questions or suggestions about this website.

News Documents Downloads Forums Facilities Community Events About Google Site Search...

Register  Log in

These test results were generated using Systems Biology Simulation Core Library (SBSCL) 2.1.
Results were submitted by hemilpanchiwala on Monday, August 17, 2020.
Results were generated for the following SBML Level+Version: Highest.
Systems Biology Simulation Core Library (SBSCL) 2.1 supports the following package(s): comp, fbc, fbc_v1, fbc_v2. 

    

Tests of SBML Core

Tests of the Hierarchical Modelling Package

Tests of the Flux Balance Constraints Package Version 1

Tests of the Flux Balance Constraints Package Version 2

 

The maps above shows the results of comparing each uploaded data file to the expected data for that test case. Each
result is represented by a colored icon: green to indicate success, red to indicate test failure, yellow to indicate the
application does not support some aspect(s) of that test, blue to indicate a result not included because the application
does not support some aspect(s) of that test, gray to indicate a result is not included for unspecified reasons, and black
to indicate a non-numeric problem with the result, such as missing data. You can hover your mouse over an icon to find
out its test case number. To get more information about a specific case, click on the icon—the information will be
presented in a new window.

SBML Test Suite Database

Parent pages: SBML.org /  Facilities / SBML Test Suite Database

 

Test Results: Systems Biology Simulation Core Library (SBSCL) 2.1

Show all Show passed Show failed Show unsupported Show missing

More about this submission

Back to list of all results

Figure 3. Test Results of the
Systems Biology Simulation Core
Library (SBSCL) version 2.1.
This overview is available at
http://sbml.org/
Facilities/Database/
Submission/Details/257.

Panchiwala and Shah et al. Supplementary Material 9/23

http://sbml.org/Facilities/Database/Submission/Details/257
http://sbml.org/Facilities/Database/Submission/Details/257
http://sbml.org/Facilities/Database/Submission/Details/257


3.2 BioModel simulations
The BioModels Database27 is one of the most commonly used online repositories for curated models in various formats from
the community for COMBINE W11. The BioModels Database facilitates collaboration and promotes the reuse, sharing, and
repurposing of computational models in systems biology9.

To assess the usability and performance of SBSCL, we simulated the first 100 curated models from this online repository
with SBSCL version 2.1, COmplex PAthway SImulator (COPASI) version 4.30.24018, and RoadRunner version 2.0.540.
All simulations were executed on the same machine using a single core1. Model load time and simulation time were timed
separately, and the total time was calculated as the sum of load and simulate time. Model loading and simulation were performed
in five independent runs for every simulator. All settings were identically selected for all simulators and all models as follows:

• start = 0

• stop = 100

• steps = 100

• absolute tolerance = 1E-10

• relative tolerance = 1E-6.

for all models. SBSCL used the Rosenbrock solver with step-size adaptation. The comparison project provides the respective
source code at �/matthiaskoenig/sbscl-simulator-comparison.

Model load time is reported in figure 4 on the following page, simulation time in figure 5 on page 12, and total time
in figure 6 on page 13. All 100 models could be executed successfully with SBSCL version 2.1, whereas COPASI ver-
sion 4.30.240 and RoadRunner version 2.0.5 could execute 97 models successfully. However, due to the lacking support for
delays in COPASI and RoadRunner, three models of circadian oscillations (BIOMD000000002435, BIOMD000000002538,
BIOMD000000003439) could not be executed by the respective simulators.

All models loaded substantially faster with SBSCL (see figure 4 on the next page), mainly due to additional just-in-time
compilation steps required in COPASI and RoadRunner. Simulations were overall the fastest with RoadRunner, followed by
COPASI and RoadRunner figure 5 on page 12. Considering the combined load and simulation time for a single simulation
(figure 6 on page 13), SBSCL has a much broader spread than the other simulators. Some models execute faster or slower than
others compared to COPASI version 4.30.240 and RoadRunner version 2.0.5. COPASI and RoadRunner have clear advantages
when executing many simulations after loading the model once. SBSCL could show similar performance for many models for
a single simulation due to the faster model loading times.

3.3 BiGG Model simulations
BiGG24,30 Models W is a genome-scale metabolic network reconstructions database that integrates more than 100 published
genome-scale metabolic networks30. For benchmarking our software suite for the FBA models, we simulated the entire suite
of BiGG24,30 Models using SBSCL version 2.1 and compared it with results obtained from COBRApy version 0.21.0 W, a
package for constraint-based modelling of metabolic networks based on the COBRA methods, which are widely used for
genome-scale modelling of metabolic networks12.

Model load time is reported in figure 7 on page 14, simulation time in figure 8 on page 15 and total time in figure 9 on
page 16. All 100 models could be executed successfully with SBSCL version 2.1 and COBRApy version 0.21.0.

All models loaded substantially faster with SBSCL (see figure 7 on page 14) than with COBRApy. Simulations were
drastically faster with COBRApy than with SBSCL (see figure 8 on page 15). The combined load and simulation time for a
single simulation (figure 9 on page 16) modelling is faster than COBRApy. COBRApy has a clear advantage when executing
many simulations after loading the model once, whereas, for a single simulation, SBSCL has advantages due to the faster model
loading times.

The model simulations result in a predicted growth rate (in mmol/(gDW ·h)). Figure 11 on page 18 displays the overall
divergence between the growth rate predictions of SBSCL and COBRApy, which is on the order of 10−8. For most models, the
difference approaches 0 as it is close to the numerical precision of the machine. Figure 10 on page 17 indicates the individual
differences in growth rates for all models from BiGG24,30 .

1Hardware and software configuration: Acer Notebook of type Predator PH315-52 version 1.06 with an Intel® Core™ i7-9750H CPU at 2.60 GHz and
16 GB of main memory and Ubuntu Linux version 18.04.5 LTS as the operating system with OpenJDK version 1.8.0 232.

Panchiwala and Shah et al. Supplementary Material 10/23

http://co.mbine.org
https://github.com/matthiaskoenig/sbscl-simulator-comparison
https://identifiers.org/biomodels.db/BIOMD0000000024
https://identifiers.org/biomodels.db/BIOMD0000000025
https://identifiers.org/biomodels.db/BIOMD0000000034
http://bigg.ucsd.edu
https://github.com/opencobra/cobrapy


10 5 10 4 10 3 10 2 10 1 100

load_time [s]

BIOMD0000000001
BIOMD0000000002
BIOMD0000000003
BIOMD0000000004
BIOMD0000000005
BIOMD0000000006
BIOMD0000000007
BIOMD0000000008
BIOMD0000000009
BIOMD0000000010
BIOMD0000000011
BIOMD0000000012
BIOMD0000000013
BIOMD0000000014
BIOMD0000000015
BIOMD0000000016
BIOMD0000000017
BIOMD0000000018
BIOMD0000000019
BIOMD0000000020
BIOMD0000000021
BIOMD0000000022
BIOMD0000000023
BIOMD0000000024
BIOMD0000000025
BIOMD0000000026
BIOMD0000000027
BIOMD0000000028
BIOMD0000000029
BIOMD0000000030
BIOMD0000000031
BIOMD0000000032
BIOMD0000000033
BIOMD0000000034
BIOMD0000000035
BIOMD0000000036
BIOMD0000000037
BIOMD0000000038
BIOMD0000000039
BIOMD0000000040
BIOMD0000000041
BIOMD0000000042
BIOMD0000000043
BIOMD0000000044
BIOMD0000000045
BIOMD0000000046
BIOMD0000000047
BIOMD0000000048
BIOMD0000000049
BIOMD0000000050
BIOMD0000000051
BIOMD0000000052
BIOMD0000000053
BIOMD0000000054
BIOMD0000000055
BIOMD0000000056
BIOMD0000000057
BIOMD0000000058
BIOMD0000000059
BIOMD0000000060
BIOMD0000000061
BIOMD0000000062
BIOMD0000000063
BIOMD0000000064
BIOMD0000000065
BIOMD0000000066
BIOMD0000000067
BIOMD0000000068
BIOMD0000000069
BIOMD0000000070
BIOMD0000000071
BIOMD0000000072
BIOMD0000000073
BIOMD0000000074
BIOMD0000000075
BIOMD0000000076
BIOMD0000000077
BIOMD0000000078
BIOMD0000000079
BIOMD0000000080
BIOMD0000000081
BIOMD0000000082
BIOMD0000000083
BIOMD0000000084
BIOMD0000000085
BIOMD0000000086
BIOMD0000000087
BIOMD0000000088
BIOMD0000000089
BIOMD0000000090
BIOMD0000000091
BIOMD0000000092
BIOMD0000000093
BIOMD0000000094
BIOMD0000000095
BIOMD0000000096
BIOMD0000000097
BIOMD0000000098
BIOMD0000000099
BIOMD0000000100

m
od

el

ODE load time
SBSCL-v1.2
COPASI-v4.30.240
roadrunner-2.0.5

Figure 4. BioModels load time (in s).
Displayed is mean and standard
deviation for five repeats and the
individual repeats for loading the first
100 models from BioModels Database27

with SBSCL version 2.1, COPASI
version 4.30.24018, and RoadRunner
version 2.0.540.

Panchiwala and Shah et al. Supplementary Material 11/23



10 3 10 2 10 1 100 101 102

simulate_time [s]

BIOMD0000000001
BIOMD0000000002
BIOMD0000000003
BIOMD0000000004
BIOMD0000000005
BIOMD0000000006
BIOMD0000000007
BIOMD0000000008
BIOMD0000000009
BIOMD0000000010
BIOMD0000000011
BIOMD0000000012
BIOMD0000000013
BIOMD0000000014
BIOMD0000000015
BIOMD0000000016
BIOMD0000000017
BIOMD0000000018
BIOMD0000000019
BIOMD0000000020
BIOMD0000000021
BIOMD0000000022
BIOMD0000000023
BIOMD0000000024
BIOMD0000000025
BIOMD0000000026
BIOMD0000000027
BIOMD0000000028
BIOMD0000000029
BIOMD0000000030
BIOMD0000000031
BIOMD0000000032
BIOMD0000000033
BIOMD0000000034
BIOMD0000000035
BIOMD0000000036
BIOMD0000000037
BIOMD0000000038
BIOMD0000000039
BIOMD0000000040
BIOMD0000000041
BIOMD0000000042
BIOMD0000000043
BIOMD0000000044
BIOMD0000000045
BIOMD0000000046
BIOMD0000000047
BIOMD0000000048
BIOMD0000000049
BIOMD0000000050
BIOMD0000000051
BIOMD0000000052
BIOMD0000000053
BIOMD0000000054
BIOMD0000000055
BIOMD0000000056
BIOMD0000000057
BIOMD0000000058
BIOMD0000000059
BIOMD0000000060
BIOMD0000000061
BIOMD0000000062
BIOMD0000000063
BIOMD0000000064
BIOMD0000000065
BIOMD0000000066
BIOMD0000000067
BIOMD0000000068
BIOMD0000000069
BIOMD0000000070
BIOMD0000000071
BIOMD0000000072
BIOMD0000000073
BIOMD0000000074
BIOMD0000000075
BIOMD0000000076
BIOMD0000000077
BIOMD0000000078
BIOMD0000000079
BIOMD0000000080
BIOMD0000000081
BIOMD0000000082
BIOMD0000000083
BIOMD0000000084
BIOMD0000000085
BIOMD0000000086
BIOMD0000000087
BIOMD0000000088
BIOMD0000000089
BIOMD0000000090
BIOMD0000000091
BIOMD0000000092
BIOMD0000000093
BIOMD0000000094
BIOMD0000000095
BIOMD0000000096
BIOMD0000000097
BIOMD0000000098
BIOMD0000000099
BIOMD0000000100

m
od

el

ODE simulate time
SBSCL-v1.2
COPASI-v4.30.240
roadrunner-2.0.5

Figure 5. BioModels simulate time (in
s). Displayed is mean and standard
deviation for five repeats and the
individual repeats for simulating the first
100 models from BioModels Database27

with SBSCL version 2.1, COPASI
version 4.30.24018, and RoadRunner
version 2.0.540.

Panchiwala and Shah et al. Supplementary Material 12/23



10 3 10 2 10 1 100 101 102

total_time [s]

BIOMD0000000001
BIOMD0000000002
BIOMD0000000003
BIOMD0000000004
BIOMD0000000005
BIOMD0000000006
BIOMD0000000007
BIOMD0000000008
BIOMD0000000009
BIOMD0000000010
BIOMD0000000011
BIOMD0000000012
BIOMD0000000013
BIOMD0000000014
BIOMD0000000015
BIOMD0000000016
BIOMD0000000017
BIOMD0000000018
BIOMD0000000019
BIOMD0000000020
BIOMD0000000021
BIOMD0000000022
BIOMD0000000023
BIOMD0000000024
BIOMD0000000025
BIOMD0000000026
BIOMD0000000027
BIOMD0000000028
BIOMD0000000029
BIOMD0000000030
BIOMD0000000031
BIOMD0000000032
BIOMD0000000033
BIOMD0000000034
BIOMD0000000035
BIOMD0000000036
BIOMD0000000037
BIOMD0000000038
BIOMD0000000039
BIOMD0000000040
BIOMD0000000041
BIOMD0000000042
BIOMD0000000043
BIOMD0000000044
BIOMD0000000045
BIOMD0000000046
BIOMD0000000047
BIOMD0000000048
BIOMD0000000049
BIOMD0000000050
BIOMD0000000051
BIOMD0000000052
BIOMD0000000053
BIOMD0000000054
BIOMD0000000055
BIOMD0000000056
BIOMD0000000057
BIOMD0000000058
BIOMD0000000059
BIOMD0000000060
BIOMD0000000061
BIOMD0000000062
BIOMD0000000063
BIOMD0000000064
BIOMD0000000065
BIOMD0000000066
BIOMD0000000067
BIOMD0000000068
BIOMD0000000069
BIOMD0000000070
BIOMD0000000071
BIOMD0000000072
BIOMD0000000073
BIOMD0000000074
BIOMD0000000075
BIOMD0000000076
BIOMD0000000077
BIOMD0000000078
BIOMD0000000079
BIOMD0000000080
BIOMD0000000081
BIOMD0000000082
BIOMD0000000083
BIOMD0000000084
BIOMD0000000085
BIOMD0000000086
BIOMD0000000087
BIOMD0000000088
BIOMD0000000089
BIOMD0000000090
BIOMD0000000091
BIOMD0000000092
BIOMD0000000093
BIOMD0000000094
BIOMD0000000095
BIOMD0000000096
BIOMD0000000097
BIOMD0000000098
BIOMD0000000099
BIOMD0000000100

m
od

el

ODE total time
SBSCL-v1.2
COPASI-v4.30.240
roadrunner-2.0.5

Figure 6. BioModels load and simulate
time (in s). Displayed is mean and
standard deviation for five repeats and
the individual repeats for loading and
simulating the first 100 models from
BioModels Database27 with SBSCL
version 2.1, COPASI version 4.30.24018,
and RoadRunner version 2.0.540.

Panchiwala and Shah et al. Supplementary Material 13/23



10 1 100 101

load_time [s]

RECON1
Recon3D

STM_v1_0
e_coli_core

iAB_RBC_283
iAF1260

iAF1260b
iAF692
iAF987

iAM_Pb448
iAM_Pc455
iAM_Pf480
iAM_Pk459
iAM_Pv461

iAPECO1_1312
iAT_PLT_636

iB21_1397
iBWG_1329

iCHOv1
iCHOv1_DG44

iCN718
iCN900

iE2348C_1286
iEC042_1314

iEC1344_C
iEC1349_Crooks

iEC1356_Bl21DE3
iEC1364_W

iEC1368_DH5a
iEC1372_W3110
iEC55989_1330
iECABU_c1320

iECBD_1354
iECB_1328

iECDH10B_1368
iECDH1ME8569_1439

iECD_1391
iECED1_1282

iECH74115_1262
iECIAI1_1343

iECIAI39_1322
iECNA114_1301

iECO103_1326
iECO111_1330
iECO26_1355
iECOK1_1307

iECP_1309
iECS88_1305

iECSE_1348
iECSF_1327
iECSP_1301

iECUMN_1333
iECW_1372
iECs_1301

iEK1008
iEKO11_1354

iETEC_1333
iEcDH1_1363

iEcE24377_1341
iEcHS_1320

iEcSMS35_1347
iEcolC_1368

iG2583_1286
iHN637
iIS312

iIS312_Amastigote
iIS312_Epimastigote

iIS312_Trypomastigote
iIT341
iJB785

iJN1463
iJN678
iJN746

iJO1366
iJR904

iLB1027_lipid
iLF82_1304

iLJ478
iML1515
iMM1415
iMM904
iND750
iNF517
iNJ661

iNRG857_1313
iPC815

iRC1080
iSB619

iSBO_1134
iSDY_1059
iSFV_1184

iSF_1195
iSFxv_1172

iSSON_1240
iS_1188

iSbBS512_1146
iSynCJ816

iUMN146_1321
iUMNK88_1353

iUTI89_1310
iWFL_1372
iY75_1357

iYL1228
iYO844

iYS1720
iYS854

iZ_1308
ic_1306

m
od

el

FBA load time
cobrapy-v0.21.0
SBSCL-v1.2

Figure 7. Biochemically, Genomically,
Genetically structured (BiGG) Models
load time (in s). Displayed is mean and
standard deviation for five repeats and
the individual repeats for loading all
models from the BiGG Models
Database30 with SBSCL version 2.1 and
COBRApy version 0.21.012.

Panchiwala and Shah et al. Supplementary Material 14/23



10 2 10 1 100 101

simulate_time [s]

RECON1
Recon3D

STM_v1_0
e_coli_core

iAB_RBC_283
iAF1260

iAF1260b
iAF692
iAF987

iAM_Pb448
iAM_Pc455
iAM_Pf480
iAM_Pk459
iAM_Pv461

iAPECO1_1312
iAT_PLT_636

iB21_1397
iBWG_1329

iCHOv1
iCHOv1_DG44

iCN718
iCN900

iE2348C_1286
iEC042_1314

iEC1344_C
iEC1349_Crooks

iEC1356_Bl21DE3
iEC1364_W

iEC1368_DH5a
iEC1372_W3110
iEC55989_1330
iECABU_c1320

iECBD_1354
iECB_1328

iECDH10B_1368
iECDH1ME8569_1439

iECD_1391
iECED1_1282

iECH74115_1262
iECIAI1_1343

iECIAI39_1322
iECNA114_1301

iECO103_1326
iECO111_1330
iECO26_1355
iECOK1_1307

iECP_1309
iECS88_1305

iECSE_1348
iECSF_1327
iECSP_1301

iECUMN_1333
iECW_1372
iECs_1301

iEK1008
iEKO11_1354

iETEC_1333
iEcDH1_1363

iEcE24377_1341
iEcHS_1320

iEcSMS35_1347
iEcolC_1368

iG2583_1286
iHN637
iIS312

iIS312_Amastigote
iIS312_Epimastigote

iIS312_Trypomastigote
iIT341
iJB785

iJN1463
iJN678
iJN746

iJO1366
iJR904

iLB1027_lipid
iLF82_1304

iLJ478
iML1515
iMM1415
iMM904
iND750
iNF517
iNJ661

iNRG857_1313
iPC815

iRC1080
iSB619

iSBO_1134
iSDY_1059
iSFV_1184

iSF_1195
iSFxv_1172

iSSON_1240
iS_1188

iSbBS512_1146
iSynCJ816

iUMN146_1321
iUMNK88_1353

iUTI89_1310
iWFL_1372
iY75_1357

iYL1228
iYO844

iYS1720
iYS854

iZ_1308
ic_1306

m
od

el

FBA simulate time
cobrapy-v0.21.0
SBSCL-v1.2

Figure 8. BiGG Models simulate time
(in s). Displayed is mean and standard
deviation for five repeats and the
individual repeats for simulating all
models from the BiGG Models
Database30 with SBSCL version 2.1 and
COBRApy version 0.21.012.

Panchiwala and Shah et al. Supplementary Material 15/23



10 1 100 101

total_time [s]

RECON1
Recon3D

STM_v1_0
e_coli_core

iAB_RBC_283
iAF1260

iAF1260b
iAF692
iAF987

iAM_Pb448
iAM_Pc455
iAM_Pf480
iAM_Pk459
iAM_Pv461

iAPECO1_1312
iAT_PLT_636

iB21_1397
iBWG_1329

iCHOv1
iCHOv1_DG44

iCN718
iCN900

iE2348C_1286
iEC042_1314

iEC1344_C
iEC1349_Crooks

iEC1356_Bl21DE3
iEC1364_W

iEC1368_DH5a
iEC1372_W3110
iEC55989_1330
iECABU_c1320

iECBD_1354
iECB_1328

iECDH10B_1368
iECDH1ME8569_1439

iECD_1391
iECED1_1282

iECH74115_1262
iECIAI1_1343

iECIAI39_1322
iECNA114_1301

iECO103_1326
iECO111_1330
iECO26_1355
iECOK1_1307

iECP_1309
iECS88_1305

iECSE_1348
iECSF_1327
iECSP_1301

iECUMN_1333
iECW_1372
iECs_1301

iEK1008
iEKO11_1354

iETEC_1333
iEcDH1_1363

iEcE24377_1341
iEcHS_1320

iEcSMS35_1347
iEcolC_1368

iG2583_1286
iHN637
iIS312

iIS312_Amastigote
iIS312_Epimastigote

iIS312_Trypomastigote
iIT341
iJB785

iJN1463
iJN678
iJN746

iJO1366
iJR904

iLB1027_lipid
iLF82_1304

iLJ478
iML1515
iMM1415
iMM904
iND750
iNF517
iNJ661

iNRG857_1313
iPC815

iRC1080
iSB619

iSBO_1134
iSDY_1059
iSFV_1184

iSF_1195
iSFxv_1172

iSSON_1240
iS_1188

iSbBS512_1146
iSynCJ816

iUMN146_1321
iUMNK88_1353

iUTI89_1310
iWFL_1372
iY75_1357

iYL1228
iYO844

iYS1720
iYS854

iZ_1308
ic_1306

m
od

el

FBA total time
cobrapy-v0.21.0
SBSCL-v1.2

Figure 9. BiGG Models load and
simulate time (in s). Displayed is mean
and standard deviation for five repeats
and the individual repeats for loading
and simulating all models from the
BiGG Models Database30 with SBSCL
version 2.1 and COBRApy
version 0.21.012.

Panchiwala and Shah et al. Supplementary Material 16/23



10−1210−1110−1010−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100 101 102 103 104

RECON1
Recon3D

STM v1 0
e coli core

iAB RBC 283
iAF1260

iAF1260b
iAF692
iAF987

iAM Pb448
iAM Pc455
iAM Pf480
iAM Pk459

iAM Pv461

iAPECO1 1312
iAT PLT 636

iB21 1397
iBWG 1329

iCHOv1
iCHOv1 DG44

iCN718
iCN900

iE2348C 1286
iEC042 1314

iEC1344 C
iEC1349 Crooks

iEC1356 Bl21DE3
iEC1364 W

iEC1368 DH5a
iEC1372 W3110
iEC55989 1330
iECABU c1320

iECBD 1354
iECB 1328

iECDH10B 1368
iECDH1ME8569 1439

iECD 1391
iECED1 1282

iECH74115 1262
iECIAI1 1343

iECIAI39 1322
iECNA114 1301

iECO103 1326
iECO111 1330
iECO26 1355
iECOK1 1307

iECP 1309
iECS88 1305
iECSE 1348
iECSF 1327
iECSP 1301

iECUMN 1333
iECW 1372

iECs 1301
iEK1008

iEKO11 1354
iETEC 1333

iEcDH1 1363
iEcE24377 1341

iEcHS 1320
iEcSMS35 1347

iEcolC 1368
iG2583 1286

iHN637
iIS312

iIS312 Amastigote
iIS312 Epimastigote

iIS312 Trypomastigote
iIT341
iJB785

iJN1463
iJN678
iJN746

iJO1366
iJR904

iLB1027 lipid

iLF82 1304

iLJ478
iML1515

iMM1415
iMM904
iND750

iNF517

iNJ661
iNRG857 1313

iPC815
iRC1080

iSB619
iSBO 1134
iSDY 1059
iSFV 1184

iSF 1195

iSFxv 1172
iSSON 1240

iS 1188
iSbBS512 1146

iSynCJ816
iUMN146 1321
iUMNK88 1353

iUTI89 1310
iWFL 1372
iY75 1357

Growth Rate (in mmol/(gDW ·h))

B
iG

G
M

od
el

ID
SBSCL

COBRApy

Figure 10. The difference in the objective values between SBSCL and COBRApy for all BiGG models.

Panchiwala and Shah et al. Supplementary Material 17/23



Absolute Difference

0

2

4

·10−8

Figure 11. Divergence of the simulation results
between SBSCL and COBRApy for all 108 models
from BiGG.

3.4 Comparison to other simulators with SBML support
The SBML software guide W lists several tools that solve and simulate SBML models in various frameworks. We selected all
those tools from this list, for which a report on supported SBML test cases is provided in the SBML Test Suite Database W
(on April 23rd, 2021) and that are not superseded or replaced by a reimplementation (i.e., with a newer version of the same
software). For example, libRoadRunner replaces the earlier software RoadRunner40. Table 1 on the following page presents an
overview of all tools with their main features, which are subsequently described in more detail.

3.4.1 AMICI
The Advanced Multilanguage Interface for CVODES and IDAS (AMICI) W supports differential equation models encoded in
the formats PySB or SBML. It automatically compiles such models into executable formats for simulation. The supported
output formats include Python modules, C++ libraries, or Matlab files in .mex format14. The compiled simulation files also
facilitate forward sensitivity analysis, steady-state sensitivity analysis, and adjoint sensitivity analysis for likelihood-based
output functions19.

3.4.2 BioUML
BioUML W is an integrated environment for systems biology and collaborative analysis of biomedical data25. It comes with the
support of SBML33, Systems Biology Graphical Notation (SBGN)4,43, the Biological Pathway Exchange (BioPAX) format7,
PSI-MI, Open Biological and Biomedical Ontologies (OBO), and CellML26 standards, along with providing different solvers
for differential equations and methods for data analysis.

3.4.3 COPASI
COPASI W is a standalone program designed for simulating and analysing biochemical networks and their dynamics18. This
software application supports models in the SBML format (even with arbitrary discrete events). To simulate the behaviour of
these models, COPASI provides implementations of ODEs solvers or Gillespie’s stochastic simulation algorithm17.

3.4.4 FluxBalance
This teaching tool for FBA W supports the fbc31,32 for SBML Level 320,21, including mapping flux distributions to SBML
layouts15. Other simulation frameworks are not supported.

3.4.5 IB IOS IM

The computer-aided design (CAD) tool IBIOSIM W aims to model, analyse, and design genetic circuits46. It primarily targets
genetic circuits and analyses models representing metabolic networks, cell-signalling pathways, and other biological and
chemical systems28. It supports importing all levels and versions of SBML and can export up to SBML Level 3 Version 121.

3.4.6 LibRoadRunner
LibRoadRunner W is a high-performance and portable simulation engine for systems and synthetic biology19,40. It comes up
with the support of ODE solver, code for structural analysis, steady-state analyses, event handling, stochastic simulation with a
significant C and C++ Application Programming Interface (API), and Python bindings.

Panchiwala and Shah et al. Supplementary Material 18/23

http://sbml.org/SBML_Software_Guide
http://sbml.org/Facilities/Database/Simulator
https://github.com/AMICI-dev/AMICI/
http://wiki.biouml.org
http://copasi.org
https://fbergmann.github.io/FluxBalance/
https://async.ece.utah.edu/tools/ibiosim/
http://libroadrunner.org


Ta
bl

e
1.

To
ol

co
m

pa
ri

so
n

So
ft

w
ar

e
V

er
si

on
O

pe
ra

tin
g

Sy
st

em
s

L
an

gu
ag

e
G

U
I

SB
M

L
Su

pp
or

t
SB

M
L

Te
st

Su
ite

D
at

ab
as

e
R

es
ul

ts
SE

D
-M

L
Su

pp
or

t
St

oc
ha

st
ic

Te
st

s

A
M

IC
I

0.
11

.1
6

q
±


In

te
rf

ac
es

fo
r

C
++

,
Py

th
on

,
M

A
T

L
A

B

�
SB

M
L

im
po

rt
in

Py
th

on
an

d
M

A
T

L
A

B
in

te
rf

ac
es

W
�

�

B
io

U
M

L
in

de
pe

nd
en

t
�

Su
pp

or
ts

SB
M

L
L

ev
el

1
V

er
-

si
on

s
1-

2,
L

ev
el

2
V

er
si

on
s

1-
4,

L
ev

el
3

V
er

si
on

1

W
�

Pa
ss

es
D

SM
T

S
te

st
su

ite
C

O
PA

SI
4.

30
.2

40
q

±


C
++

w
ith

m
ul

-
tip

le
bi

nd
in

gs
�

Im
po

rt
an

d
ex

po
rt

of
m

od
el

s
fr

om
L

ev
el

1
to

L
ev

el
3

W
�

Fl
ux

B
al

an
ce

1.
10

q
C

#
�

SB
M

L
w

ith
L

ay
ou

ta
nd

SB
M

L
ex

te
ns

io
n

pa
ck

ag
e

fo
rF

lu
x

B
al

-
an

ce
C

on
st

ra
in

ts
(f
b
c

)p
ac

ka
ge

in
ve

rs
io

n
1

an
d

2

W
�

�

IB
IO

SI
M

3.
0.

0
q

±


Ja
va

™
�

Im
po

rt
s

al
ll

ev
el

s
of

SB
M

L
,e

x-
po

rt
s

up
to

L
3V

1.
Su

pp
or

t
fo

rf
as

tr
ea

ct
io

ns
,c
o
m
p

,l
ay

ou
t,

f
b
c

,a
nd

ar
ra

ys

W
�

�

lib
R

oa
dR

un
ne

r
2.

0.
1

q
±


C

++
,

C
w

ith
Py

th
on

bi
nd

-
in

gs

�
SB

M
L

L
ev

el
2

to
3,

ex
cl

ud
in

g
al

ge
br

ai
c

ru
le

s
an

d
de

la
y

di
ff

er
-

en
tia

le
qu

at
io

ns

W

L
ib

SB
M

L
Si

m
1.

4.
0

in
de

pe
nd

en
t

C
�

SB
M

L
co

re
W

�
�

m
od

el
ba

se
1.

3.
1

in
de

pe
nd

en
t

Py
th

on
SB

M
L

co
re

W
�

�
M

or
ph

eu
s

2.
2.

1
q

±


C
++

�
SB

M
L

co
re

,c
o
m
p

W
�

�
SB

SC
L

2.
1

in
de

pe
nd

en
t

Ja
va

™
�

A
ll

le
ve

ls
of

SB
M

L
(c

or
e)

,f
b
c

ve
rs

io
n

1
an

d
2,
c
o
m
p

(t
hr

ou
gh

JS
B

M
L

fla
tte

ni
ng

)

W
�

�

W
in

B
E

ST
-K

IT
2.

0.
10

q
C

lo
se

d
so

ur
ce

�
SB

M
L

co
re

W
�

�

Panchiwala and Shah et al. Supplementary Material 19/23

http://sbml.org/Facilities/Database/Submission/Details/258
http://sbml.org/Facilities/Database/Submission/Details/74
http://sbml.org/Facilities/Database/Submission/Details/101
http://sbml.org/Facilities/Database/Submission/Details/86
http://sbml.org/Facilities/Database/Submission/Details/53
http://sbml.org/Facilities/Database/Submission/Details/91
http://sbml.org/Facilities/Database/Submission/Details/52
http://sbml.org/Facilities/Database/Submission/Details/278
http://sbml.org/Facilities/Database/Submission/Details/254
http://sbml.org/Facilities/Database/Submission/Details/257
http://sbml.org/Facilities/Database/Submission/Details/252


3.4.7 LibSBMLSim
LibSBMLSim W provides a C implementation of SBML core with support for Ordinary Differential Equations (ODEs),
Differential Algebraic Equations (DAEs), and Delay Differential Equations (DDEs) and bindings to many languages (including
Java™, C#, Python, and Ruby)19,42.

3.4.8 ModelBase
ModelBase W is a free and expandable Python implementation for dynamic modelling, simulation, and analysis with SBML
support44.

3.4.9 Morpheus
Morpheus W is an environment for modelling, simulation, and studying multi-scale as well as multicellular systems41.

3.4.10 WinBEST-KIT
WinBEST-KIT W is a simulator of biochemical reaction networks based on a GUI36.

4 Known limitations
The project’s issue tracker at �/draeger-lab/SBSCL/issues is available online to request new features or report any
problems and limitations of SBSCL.

Version 2.1 of SBSCL correctly solves the vast majority of the SBML Test Suite core test cases, as section 3.1 on page 8
indicates. A few test cases exist in which SBSCL currently fails to simulate correctly due to the following reasons:

â missing support for the delay property for the newly added rateOf function in SBML Level 3 Version 2 (see issue 46).

â some tests trigger events before the event condition is fulfilled (see issue 44).

In addition, some test cases have a stochastic nature which can fail sporadically. A compromise between runtime for the
continuous integration and accuracy of the simulation results (depending on the number of runs used for averaging) had to be
chosen.

Most failing test cases are related to the SBML extension package for the Hierarchical Model Composition (comp)
package37 for SBML Level 3. SBSCL uses the JSBML library10,34 to flatten comp models and subsequently simulate the
flattened models. Due to issues in JSBML with flattening the models, the comp package test cases fail to simulate. The issue is
tracked via an issue in the JSBML repository at �/sbmlteam/jsbml/issues/213. After resolving the flattening issue,
the remaining comp tests will pass. Importantly, this is not a simulation issue with SBSCL, which supports all mathematical
features in the comp model, but solely a problem of converting the hierarchical model to a non-hierarchical one.

All mentioned issues are tracked on the issue tracker and will be resolved in future versions of SBSCL.

Acknowledgements
The authors acknowledge contributions by Nicolas Rodriguez, Alexander Dörr, Roland Keller, Dieudonné M. Wouamba, Akito
Tabira, Akira Funahashi, Michael J. Ziller, Richard Adams, Nicolas Rodriguez, Noriko Hiroi, and the Harvey Mudd College for
the ODEToolkit W.

Funding: The National Resource for Network Biology (NRNB) and Google Inc. supported this work as part of their summer
of code programs (GSoC). AD was funded by the German Center for Infection Research (DZIF), grant № 8020708703, and
supported by infrastructural funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Cluster
of Excellence EXC 2124 Controlling Microbes to Fight Infections. MK is supported by the Federal Ministry of Education and
Research (BMBF, Germany) within the research network Systems Medicine of the Liver (LiSyM, grant № 031L0054) and by
the DFG within the Research Unit Programme FOR 5151 “QuaLiPerF (Quantifying Liver Perfusion–Function Relationship in
Complex Resection––A Systems Medicine Approach)” by grant № 436883643.

Conflict of interest: None

Abbreviations
API Application Programming Interface
AMICI Advanced Multilanguage Interface for CVODES and IDAS
BiGG Biochemically, Genomically, Genetically structured
BioPAX Biological Pathway Exchange

Panchiwala and Shah et al. Supplementary Material 20/23

https://fun.bio.keio.ac.jp/software/libsbmlsim/
https://gitlab.com/qtb-hhu/modelbase-software
https://morpheus.gitlab.io
http://www.winbest-kit.org
https://github.com/draeger-lab/SBSCL/issues
https://github.com/draeger-lab/SBSCL/issues/46
https://github.com/draeger-lab/SBSCL/issues/44
https://github.com/sbmlteam/jsbml/issues/213
https://odetoolkit.hmc.edu


BMBF Federal Ministry of Education and Research
CAD computer-aided design
COMBINE Computational Modeling of Biological Networks
comp SBML extension package for the Hierarchical Model Composition
COPASI COmplex PAthway SImulator
COBRA Constraint-Based Reconstruction and Analysis
CSV Comma-Separated Values
DAE Differential Algebraic Equation
DDE Delay Differential Equation
DFG Deutsche Forschungsgemeinschaft, German Research Foundation
DZIF German Center for Infection Research
FBA Flux Balance Analysis
fbc SBML extension package for Flux Balance Constraints
FERN Framework for Evaluation of Reaction Networks
GLPK GNU Linear Programming Kit
GSoC Google Summer of Code
GUI Graphical User Interface
NRNB National Resource for Network Biology
OBO Open Biological and Biomedical Ontologies
ODE Ordinary Differential Equation
OMEX Open Modeling EXchange format
POM Project Object Model
SBGN Systems Biology Graphical Notation
SBML Systems Biology Markup Language
SBSCL Systems Biology Simulation Core Library
SDE Stochastic Differential Equation
SED-ML Simulation Experiment Description Markup Language
UML Unified Modeling Language

References
1. Adams, R., Moraru, I. et al. jlibSEDML-a Java library for working with SED-ML. Nature Precedings, pp. 1–1, 2010.
2. Bergmann, F.T., Adams, R. et al. COMBINE archive and OMEX format: one file to share all information to reproduce a

modeling project. BMC Bioinformatics, 15:369, December 2014 doi: 10.1186/s12859-014-0369-z.
3. Bergmann, F.T., Cooper, J. et al. Simulation experiment description markup language (sed-ml) level 1 version 2. Journal

of integrative bioinformatics, 12:262, September 2015 doi: 10.2390/biecoll-jib-2015-262.
4. Bergmann, F.T., Czauderna, T. et al. Systems biology graphical notation markup language (SBGNML) version 0.3. Journal

of Integrative Bioinformatics, 17(2-3):20200016, June 2020 doi: 10.1515/jib-2020-0016.
5. Bornstein, B.J., Keating, S.M. et al. LibSBML: an API Library for SBML. Bioinformatics, 24(6):880–881, March 2008

doi: 10.1093/bioinformatics/btn051.
6. Buchweitz, L.F., Yurkovich, J.T. et al. Visualizing metabolic network dynamics through time-series metabolomic data.

BMC Bioinformatics, 21(1):130, April 2020 doi: 10.1186/s12859-020-3415-z.
7. Demir, E., Cary, M.P. et al. The BioPAX community standard for pathway data sharing. Nature biotechnology, 28(9):935–

942, December 2010 doi: 10.1038/nbt.1666.
8. Dörr, A., Keller, R. et al. SBMLsimulator: a Java tool for model simulation and parameter estimation in systems biology.

Computation, 2(4):246–257, December 2014 doi: 10.3390/computation2040246.
9. Dräger, A. and Palsson, B.Ø. Improving collaboration by standardization efforts in systems biology. Frontiers in

Bioengineering, 2(61), December 2014 doi: 10.3389/fbioe.2014.00061.
10. Dräger, A., Rodriguez, N. et al. JSBML: a flexible Java library for working with SBML. Bioinformatics, 27(15):2167–2168,

June 2011 doi: 10.1093/bioinformatics/btr361.
11. Dräger, A. and Waltemath, D. Overview: Standards for Modeling in Systems Medicine. In Wolkenhauer, O., editor,

Systems Medicine, volume 3, pp. 345–353. Academic Press, Oxford, September 2020.

Panchiwala and Shah et al. Supplementary Material 21/23

https://doi.org/10.1186/s12859-014-0369-z
https://doi.org/10.2390/biecoll-jib-2015-262
https://doi.org/10.1515/jib-2020-0016
https://doi.org/10.1093/bioinformatics/btn051
https://doi.org/10.1186/s12859-020-3415-z
https://doi.org/10.1038/nbt.1666
https://doi.org/10.3390/computation2040246
https://doi.org/10.3389/fbioe.2014.00061
https://doi.org/10.1093/bioinformatics/btr361


12. Ebrahim, A., Lerman, J.A. et al. COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC Systems
Biology, 7:74, August 2013 doi: 10.1186/1752-0509-7-74.

13. Erhard, F., Friedel, C.C. et al. FERN – a Java framework for stochastic simulation and evaluation of reaction networks.
BMC Bioinformatics, 9:356, August 2008 doi: 10.1186/1471-2105-9-356.

14. Fröhlich, F., Weindl, D. et al. AMICI: High-Performance Sensitivity Analysis for Large Ordinary Differential Equation
Models, 2020.

15. Gauges, R., Rost, U. et al. The Systems Biology Markup Language (SBML) Level 3 Package: Layout, Version 1 Core. J.
Integr. Bioinform., 12(2), 2015 doi: 10.2390/biecoll-jib-2015-267.

16. Gillespie, D.T. A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical
Reactions. Journal of Computational Physics, 22(4):403–434, December 1976 doi: 10.1016/0021-9991(76)90041-3.

17. Gillespie, D.T. Exact Stochastic Simulation of Coupled Chemical Reactions. The Journal of Physical Chemistry,
81(25):2340–2361, 1977 doi: 10.1021/j100540a008.

18. Hoops, S., Sahle, S. et al. COPASI–a COmplex PAthway SImulator. Bioinformatics, 22(24):3067–3074, December 2006
doi: 10.1093/bioinformatics/btl485.

19. Hucka, M., Bergmann, Frank T., D.A. et al. SBML Test Suite Database. http://sbml.org/Facilities/
Database/Simulator, August 2021.

20. Hucka, M., Bergmann, F.T. et al. Systems Biology Markup Language (SBML) Level 3 Version 2 Core Release 2. Journal
of Integrative Bioinformatics, 16(2):1, June 2019 doi: 10.1515/jib-2019-0021.

21. Hucka, M., Bergmann, F.T. et al. Systems Biology Markup Language (SBML) Level 3 Version 1 Core. Journal of
Integrative Bioinformatics, 15(1):1, April 2018 doi: 10.1515/jib-2017-0080.

22. Hucka, M., Smith, L.P. et al. SBML Test Suite release 3.3.0. https://doi.org/10.5281/zenodo.1112521,
December 2017.

23. Keller, R., Dörr, A. et al. The systems biology simulation core algorithm. BMC Systems Biology, 7:55, July 2013 doi:
10.1186/1752-0509-7-55.

24. King, Z.A., Lu, J.S. et al. BiGG Models: A platform for integrating, standardizing, and sharing genome-scale models.
Nucleic Acids Research, October 2015 doi: 10.1093/nar/gkv1049.

25. Kolpakov, F., Akberdin, I. et al. BioUML: an integrated environment for systems biology and collaborative analysis of
biomedical data. Nucleic Acids Research, 47(W1):W225–W233, May 2019 doi: 10.1093/nar/gkz440.

26. Lloyd, C.M., Halstead, M.D.B. et al. CellML: its future, present and past. Prog Biophys Mol Bio, 85(2-3):433–450, 2004
doi: 10.1016/j.pbiomolbio.2004.01.004.

27. Malik-Sheriff, R.S., Glont, M. et al. BioModels—15 years of sharing computational models in life science. Nucleic Acids
Research, 48:D407–D415, January 2020 doi: 10.1093/nar/gkz1055.

28. Myers, C.J., Barker, N. et al. iBioSim: a tool for the analysis and design of genetic circuits. Bioinformatics, 25(21):2848–
2849, November 2009 doi: 10.1093/bioinformatics/btp457.

29. Neal, M.L., König, M. et al. Harmonizing semantic annotations for computational models in biology. Briefings in
Bioinformatics, 20(2):540—-550, November 2018 doi: 10.1093/bib/bby087.

30. Norsigian, C.J., Pusarla, N. et al. BiGG Models 2020: multi-strain genome-scale models and expansion across the
phylogenetic tree. Nucleic Acids Res., 11 2019 doi: 10.1093/nar/gkz1054, gkz1054.

31. Olivier, B.G. and Bergmann, F.T. The Systems Biology Markup Language (SBML) Level 3 Package: Flux Balance
Constraints. Journal of Integrative Bioinformatics, 12:269, September 2015 doi: 10.2390/biecoll-jib-2015-269.

32. Olivier, B.G. and Bergmann, F.T. SBML Level 3 Package: Flux Balance Constraints version 2. Journal of Integrative
Bioinformatics, 15, March 2018 doi: 10.1515/jib-2017-0082.

33. Renz, A., Mostolizadeh, R. et al. Clinical Applications of Metabolic Models in SBML Format. In Wolkenhauer, O., editor,
Systems Medicine, volume 3, pp. 362–371. Academic Press, Oxford, January 2020.

34. Rodriguez, N., Thomas, A. et al. JSBML 1.0: providing a smorgasbord of options to encode systems biology models.
Bioinformatics, June 2015 doi: 10.1093/bioinformatics/btv341.

35. Scheper, T., Klinkenberg, D. et al. A mathematical model for the intracellular circadian rhythm generator. The Journal of
neuroscience : the official journal of the Society for Neuroscience, 19:40–47, January 1999.

36. Sekiguchi, T., Hamada, H. et al. WinBEST-KIT: Biochemical reaction simulator that can define and customize algebraic
equations and events as GUI components. Journal of bioinformatics and computational biology, 17:1950036, December
2019 doi: 10.1142/S0219720019500367.

37. Smith, L.P., Hucka, M. et al. SBML Level 3 package: Hierarchical Model Composition, Version 1 Release 3. Journal of
Integrative Bioinformatics, 12:268, September 2015 doi: 10.2390/biecoll-jib-2015-268.

38. Smolen, P., Baxter, D.A. et al. A reduced model clarifies the role of feedback loops and time delays in the Drosophila
circadian oscillator. Biophysical journal, 83:2349–2359, November 2002 doi: 10.1016/S0006-3495(02)75249-1.

Panchiwala and Shah et al. Supplementary Material 22/23

https://doi.org/10.1186/1752-0509-7-74
https://doi.org/10.1186/1471-2105-9-356
https://doi.org/10.2390/biecoll-jib-2015-267
https://doi.org/10.1016/0021-9991(76)90041-3
https://doi.org/10.1021/j100540a008
https://doi.org/10.1093/bioinformatics/btl485
http://sbml.org/Facilities/Database/Simulator
http://sbml.org/Facilities/Database/Simulator
https://doi.org/10.1515/jib-2019-0021
https://doi.org/10.1515/jib-2017-0080
https://doi.org/10.5281/zenodo.1112521
https://doi.org/10.1186/1752-0509-7-55
https://doi.org/10.1186/1752-0509-7-55
https://doi.org/10.1093/nar/gkv1049
https://doi.org/10.1093/nar/gkz440
https://doi.org/10.1016/j.pbiomolbio.2004.01.004
https://doi.org/10.1093/nar/gkz1055
https://doi.org/10.1093/bioinformatics/btp457
https://doi.org/10.1093/bib/bby087
https://doi.org/10.1093/nar/gkz1054
https://doi.org/10.2390/biecoll-jib-2015-269
https://doi.org/10.1515/jib-2017-0082
https://doi.org/10.1093/bioinformatics/btv341
https://doi.org/10.1142/S0219720019500367
https://doi.org/10.2390/biecoll-jib-2015-268
https://doi.org/10.1016/S0006-3495(02)75249-1


39. Smolen, P., Hardin, P.E. et al. Simulation of Drosophila circadian oscillations, mutations, and light responses by a model
with VRI, PDP-1, and CLK. Biophysical journal, 86:2786–2802, May 2004 doi: 10.1016/S0006-3495(04)74332-5.

40. Somogyi, E.T., Bouteiller, J.M. et al. libRoadRunner: a high performance SBML simulation and analysis library.
Bioinformatics, 31:3315–3321, October 2015 doi: 10.1093/bioinformatics/btv363.

41. Starruß, J., de Back, W. et al. Morpheus: a user-friendly modeling environment for multiscale and multicellular systems
biology. Bioinformatics, 30:1331–1332, May 2014 doi: 10.1093/bioinformatics/btt772.

42. Takizawa, H., Nakamura, K. et al. LibSBMLSim: A reference implementation of fully functional SBML simulator.
Bioinformatics, April 2013 doi: 10.1093/bioinformatics/btt157.

43. Touré, V., Dräger, A. et al. The Systems Biology Graphical Notation: Current Status and Applications in Systems Medicine.
In Wolkenhauer, O., editor, Systems Medicine, volume 3, pp. 372–381. Academic Press, Oxford, January 2020.

44. van Aalst, M., Ebenhöh, O. et al. Constructing and analysing dynamic models with modelbase v1.2.3: a software update.
BMC bioinformatics, 22:203, April 2021 doi: 10.1186/s12859-021-04122-7.

45. Waltemath, D., Adams, R. et al. Reproducible computational biology experiments with SED-ML-the simulation experiment
description markup language. BMC Systems Biology, 5(1):1–10, 2011 doi: 10.1186/1752-0509-5-198.

46. Watanabe, L., Nguyen, T. et al. IBIOSIM 3: A Tool for Model-Based Genetic Circuit Design. ACS Synthetic Biology,
8(7):1560–1563, 2019 doi: 10.1021/acssynbio.8b00078, PMID: 29944839.

47. Yurkovich, J.T., J., Y.B. et al. A Padawan Programmer’s Guide to Developing Software Libraries. Cell Systems, 5(5):P431–
437, October 2017 doi: 10.1016/j.cels.2017.08.003.

Panchiwala and Shah et al. Supplementary Material 23/23

https://doi.org/10.1016/S0006-3495(04)74332-5
https://doi.org/10.1093/bioinformatics/btv363
https://doi.org/10.1093/bioinformatics/btt772
https://doi.org/10.1093/bioinformatics/btt157
https://doi.org/10.1186/s12859-021-04122-7
https://doi.org/10.1186/1752-0509-5-198
https://doi.org/10.1021/acssynbio.8b00078
https://doi.org/10.1016/j.cels.2017.08.003

	1 Resources and availability
	1.1 Installation via Maven
	1.2 Use-case examples
	1.2.1 Fundamentals for working with SBML in Java
	1.2.2 Deterministic dynamic simulation
	1.2.3 Stochastic simulation
	1.2.4 Constraint-based analysis
	1.2.5 Simulating a hierarchically structured model
	1.2.6 Simulating SED-ML documents
	1.2.7 Simulation of OMEX files


	2 Software design and implementation
	3 Benchmark tests
	3.1 Support of the SBML Test Suite
	3.2 BioModel simulations
	3.3 BiGG Model simulations
	3.4 Comparison to other simulators with SBML support
	3.4.1 AMICI
	3.4.2 BioUML
	3.4.3 COPASI
	3.4.4 FluxBalance
	3.4.5 iBioSim
	3.4.6 LibRoadRunner
	3.4.7 LibSBMLSim
	3.4.8 ModelBase
	3.4.9 Morpheus
	3.4.10 WinBEST-KIT


	4 Known limitations
	References

