

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

# **BMJ Open**

# Use of machine learning to develop a prehospital-stage prediction tool for traumatic brain injury

| Journal:                         | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                    | bmjopen-2021-055918                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Article Type:                    | Original research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Date Submitted by the<br>Author: | 02-Aug-2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Complete List of Authors:        | Choi, Yeong Ho; Seoul National University Hospital, Emergency<br>Department<br>Park, Jeong Ho; Seoul National University Hospital, Emergency<br>Department<br>Hong, Ki Jeong; Seoul National University College of Medicine,<br>Emergency Medicine; Seoul National University Seoul Metropolitan<br>Government Boramae Medical Center, Emergency Medicine<br>Ro, Young Sun; Seoul National University Hospital, Emergency<br>Department<br>Song, Kyoung Jun; Seoul Metropolitan Boramae Hospital, Department of<br>Emergency Medicine<br>Shin, Sang Do; Seoul National University Hospital, Department of<br>Emergency Medicine |
| Keywords:                        | ACCIDENT & EMERGENCY MEDICINE, Neurological injury < NEUROLOGY,<br>Trauma management < ORTHOPAEDIC & TRAUMA SURGERY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |





I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| 1<br>2         |    |                                                                                            |
|----------------|----|--------------------------------------------------------------------------------------------|
| 3<br>4<br>5    | 1  | Title page                                                                                 |
| 6<br>7         | 2  |                                                                                            |
| 8<br>9         | 3  | 1. Title                                                                                   |
| 10<br>11<br>12 | 4  | Use of machine learning to develop a prehospital stage prediction tool for traumatic brain |
| 13<br>14<br>15 | 5  | injury                                                                                     |
| 15<br>16<br>17 | 6  |                                                                                            |
| 18<br>19       | 7  | 2. Authors                                                                                 |
| 20<br>21       | 8  | Yeong Ho Choi, MD                                                                          |
| 22<br>23<br>24 | 9  | Department of Emergency Medicine, Seoul National University College of Medicine and        |
| 25<br>26       | 10 | Hospital, Seoul, Republic of Korea                                                         |
| 27<br>28       | 11 | Laboratory of Emergency Medical Services, Seoul National University Hospital               |
| 29<br>30       | 12 | Biomedical Research Institute, Seoul, Korea                                                |
| 31<br>32<br>33 | 13 | E-mail: d2uk87@gmail.com                                                                   |
| 34<br>35       | 14 |                                                                                            |
| 36<br>37<br>38 | 15 | Jeong Ho Park, MD                                                                          |
| 39<br>40       | 16 | Department of Emergency Medicine, Seoul National University College of Medicine and        |
| 41<br>42       | 17 | Hospital, Seoul, Republic of Korea                                                         |
| 43<br>44<br>45 | 18 | Laboratory of Emergency Medical Services, Seoul National University Hospital               |
| 46<br>47       | 19 | Biomedical Research Institute, Seoul, Korea                                                |
| 48<br>49       | 20 | E-mail: timthe@gmail.com                                                                   |
| 50<br>51       | 21 |                                                                                            |
| 52<br>53<br>54 | 22 | Ki Jeong Hong, MD, PhD                                                                     |
| 55<br>56       | 23 | Department of Emergency Medicine, Seoul National University College of Medicine and        |
| 57<br>58       | 24 | Hospital, Seoul, Republic of Korea                                                         |
| 59<br>60       | 25 | Laboratory of Emergency Medical Services, Seoul National University Hospital               |

| 1<br>2         |    |                                                                                     |
|----------------|----|-------------------------------------------------------------------------------------|
| 3<br>4         | 26 | Biomedical Research Institute, Secul, Korea                                         |
| 5<br>6         | 20 |                                                                                     |
| 7<br>8         | 27 | E-mail: emkjnong@gmail.com                                                          |
| 9<br>10        | 28 |                                                                                     |
| 11<br>12       | 29 | Young Sun Ro, MD, DrPH                                                              |
| 13<br>14       | 30 | Department of Emergency Medicine, Seoul National University College of Medicine and |
| 15<br>16       | 31 | Hospital, Seoul, Republic of Korea                                                  |
| 17<br>18<br>19 | 32 | Laboratory of Emergency Medical Services, Seoul National University Hospital        |
| 20<br>21       | 33 | Biomedical Research Institute, Seoul, Korea                                         |
| 22<br>23<br>24 | 34 | E-mail: ro.youngsun@gmail.com                                                       |
| 25             | 35 |                                                                                     |
| 27<br>28       | 36 | Kyoung Jun Song, MD, PhD                                                            |
| 29<br>30       | 37 | Department of Emergency Medicine, Seoul Metropolitan Government Seoul National      |
| 31<br>32<br>33 | 38 | University Boramae Medical Center, Seoul, Republic of Korea                         |
| 34<br>35       | 39 | Laboratory of Emergency Medical Services, Seoul National University Hospital        |
| 36<br>37<br>38 | 40 | Biomedical Research Institute, Seoul, Korea                                         |
| 39<br>40       | 41 | E-mail: skciva@gmail.com                                                            |
| 41<br>42       | 42 |                                                                                     |
| 43<br>44       | 43 | Sang Do Shin, MD, PhD                                                               |
| 45<br>46       | 44 | Department of Emergency Medicine, Seoul National University College of Medicine and |
| 47<br>48<br>49 | 45 | Hospital, Seoul, Republic of Korea                                                  |
| 50<br>51       | 46 | Laboratory of Emergency Medical Services, Seoul National University Hospital        |
| 52<br>53<br>54 | 47 | Biomedical Research Institute, Seoul, Korea                                         |
| 55<br>56       | 48 | E-mail: shinsangdo@gmail.com                                                        |
| 57<br>58       | 49 |                                                                                     |
| 59<br>60       | 50 | 3. Address correspondence and requests for reprints: Jeong Ho Park, MD              |

| 2<br>3                     |    |                                                                                     |
|----------------------------|----|-------------------------------------------------------------------------------------|
| 4<br>5<br>6<br>7<br>8<br>9 | 51 | Address: Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul 03080, |
|                            | 52 | Korea                                                                               |
|                            | 53 | Phone: +82-2-2072-1800                                                              |
| 10<br>11<br>12             | 54 | FAX: +82-2-741-7855                                                                 |
| 13<br>14                   | 55 | E-mail: timthe@gmail.com                                                            |
| 15<br>16                   | 56 |                                                                                     |
| 17<br>18<br>19             | 57 |                                                                                     |
| 20<br>21                   | 58 |                                                                                     |
| 22<br>23                   |    |                                                                                     |
| 24<br>25<br>26             |    |                                                                                     |
| 20<br>27<br>28             |    |                                                                                     |
| 29<br>30                   |    |                                                                                     |
| 31<br>32                   |    |                                                                                     |
| 33<br>34                   |    |                                                                                     |
| 35<br>36<br>37             |    |                                                                                     |
| 38<br>39                   |    |                                                                                     |
| 40<br>41                   |    |                                                                                     |
| 42<br>43                   |    |                                                                                     |
| 44<br>45                   |    |                                                                                     |
| 46<br>47<br>48             |    |                                                                                     |
| 48<br>49<br>50             |    |                                                                                     |
| 50<br>51<br>52             |    |                                                                                     |
| 53<br>54                   |    |                                                                                     |
| 55<br>56                   |    |                                                                                     |
| 57<br>58                   |    |                                                                                     |
| 59<br>60                   |    |                                                                                     |
|                            |    |                                                                                     |

BMJ Open

| 3              |    |                                                                                               |
|----------------|----|-----------------------------------------------------------------------------------------------|
| 4<br>5         | 59 | Abstract                                                                                      |
| 6<br>7         | 60 | Objectives: Predicting diagnosis and prognosis of traumatic brain injury (TBI) at the         |
| 8<br>9<br>10   | 61 | prehospital stage is challenging; however, using comprehensive prehospital information and    |
| 10<br>11<br>12 | 62 | machine learning may improve the performance of the predictive model. We developed and        |
| 13<br>14       | 63 | tested predictive models for TBI that use machine learning algorithms using information that  |
| 15<br>16<br>17 | 64 | can be obtained in the prehospital stage.                                                     |
| 17<br>18<br>19 | 65 | Design: This was a multi-center retrospective study.                                          |
| 20<br>21       | 66 | Setting and participants: This study was conducted at three tertiary academic emergency       |
| 22<br>23<br>24 | 67 | departments (EDs) located in an urban area.of South Korea. The data from adult patients with  |
| 25<br>26       | 68 | severe trauma who were assessed by emergency medical service (EMS) providers and              |
| 27<br>28       | 69 | transported to three participating hospitals between 2014 to 2018 were analyzed.              |
| 29<br>30       | 70 | Results: We developed and tested five machine learning algorithms—logistic regression         |
| 32<br>33       | 71 | analyses, extreme gradient boosting, support vector machine, random forest, and elastic net   |
| 34<br>35       | 72 | (EN)-to predict TBI, TBI with intracranial hemorrhage or injury (TBI-I), TBI with             |
| 36<br>37       | 73 | emergency department or admission result of admission or transferred (TBI-ND), and TBI        |
| 38<br>39<br>40 | 74 | with emergency department or admission result of death (TBI-D). Of the 1,169 patients in the  |
| 40<br>41<br>42 | 75 | development cohort, TBI, TBI-I, TBI-ND, and TBI-D was 24.0%, 21.5%, 21.3%, and 3.7%,          |
| 43<br>44       | 76 | respectively. The EN model yielded an AUROC of 0.799 for TBI, 0.844 for TBI-I, 0.811 for      |
| 45<br>46<br>47 | 77 | TBI-ND, and 0.871 for TBI-D. The EN model also yielded the highest specificity, and           |
| 47<br>48<br>49 | 78 | significant reclassification improvement. Variables related to loss of consciousness, Glasgow |
| 50<br>51       | 79 | Coma Scale, and light reflex were the three most important variables to predict all outcomes. |
| 52<br>53       | 80 | Conclusion: Our results inform the diagnosis and prognosis of TBI. Machine learning           |
| 54<br>55<br>56 | 81 | models resulted in significant performance improvement over that with logistic regression     |
| 57<br>58       | 82 | analyses, and the best performing model was EN.                                               |
| 59<br>60       | 83 |                                                                                               |

Keywords: brain injuries; traumatic; outcome; prognosis; machine learning.

| 3        |    |
|----------|----|
| 4        | 84 |
| 5        |    |
| 7        |    |
| 8        | 85 |
| 9        |    |
| 10       | 86 |
| 11       |    |
| 12       |    |
| 14       |    |
| 15       |    |
| 16       |    |
| 1/<br>10 |    |
| 19       |    |
| 20       |    |
| 21       |    |
| 22       |    |
| 23       |    |
| 24<br>25 |    |
| 26       |    |
| 27       |    |
| 28       |    |
| 29<br>30 |    |
| 31       |    |
| 32       |    |
| 33       |    |
| 34<br>25 |    |
| 35<br>36 |    |
| 37       |    |
| 38       |    |
| 39       |    |
| 40       |    |
| 41       |    |
| 43       |    |
| 44       |    |
| 45       |    |
| 46<br>47 |    |
| 48       |    |
| 49       |    |
| 50       |    |
| 51<br>52 |    |
| 52<br>53 |    |
| 54       |    |
| 55       |    |
| 56       |    |
| 57       |    |
| 58       |    |

1 2

59 60

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

to beet terien ont

| 1<br>2                                                                                                                                                                                 |                      |                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3<br>4<br>5                                                                                                                                                                            | 87                   | Strengths and limitations of this study                                                                                                                                                                                                                                               |
| 5<br>6<br>7<br>8<br>9<br>10                                                                                                                                                            | 88<br>89<br>90<br>91 | • By using high dimensional prehospital data, we developed and validated prediction models for the diagnosis and prognosis of traumatic brain injury using machine learning algorithms among patients with severe trauma, identified by emergency medical service providers.          |
| 11<br>12<br>13<br>14<br>15<br>16                                                                                                                                                       | 92<br>93<br>94<br>95 | • Machine learning models showed acceptable-to-excellent discrimination performance (AUROCs were 0.799–0.871 according to outcomes in the best-performing model). When identifying 80% of target patients with traumatic brain injury, the false positive rate was almost 19.7–39.0%. |
| 17<br>18<br>19<br>20<br>21                                                                                                                                                             | 96<br>97<br>98       | • We used retrospective analysis of electronically collected prehospital data. We treated missing status as a separate category for our analysis, however, there could be different reasons for missing data.                                                                         |
| 21<br>22<br>23                                                                                                                                                                         | 99<br>100            | • External validation for other areas should be conducted to generalize the developed prediction model.                                                                                                                                                                               |
| 25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>56<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60 | 101                  |                                                                                                                                                                                                                                                                                       |

# 102 Introduction

Traumatic brain injury (TBI) is a significant health burden worldwide.<sup>12</sup> It is the leading cause of mortality and disability among young individuals.<sup>3</sup> Patients with TBI are vulnerable to hypoxia and hypotension in the early period of their course and these insults are associated with poor outcomes.<sup>4-6</sup> Prehospital assessment and management of patients with TBI is important,<sup>78</sup> as early prediction of TBI and correcting hypoxia and hypotension during the prehospital stage could be beneficial.<sup>910</sup> However, the identification of TBI can often be challenging in the prehospital area.<sup>7</sup> Vulnerable patients, including the elderly or patients who take medications like anti-platelet or anticoagulant drugs, often have TBI owing to low energy insults.<sup>11</sup> Prehospital clinical signs are also reported to have poor sensitivity for raised intracranial pressure following TBI.<sup>12</sup> 

Several prediction models to target patients with TBI have been reported.<sup>13-15</sup> However, most incorporated information that is available only in the hospital, such as laboratory results or image findings.<sup>13 14 16</sup> In addition, most previous prediction models focused on the outcomes of patients with TBI, not the identification of TBI. Previously, predictors of older adult patients with TBI who required transport to a trauma center were identified. However, this was consensus-based; therefore, there is a lack of clinical data.<sup>17</sup> Accurate prehospital prediction of TBI and its severity could prevent delays to definite care for patients with TBI. Most emergency medical service (EMS) providers collect various information including demographics, past medical history, circumstances of the trauma, and clinical signs including vital signs; but those variables have not been evaluated together as predictors of TBI and its severity. Using a variety of prehospital information, and adapting newly emerging machine learning algorithms for predicting diagnosis, disposition, and outcome of TBI, might improve the accuracy of identification of TBI and its severity.<sup>18</sup> 

#### **BMJ** Open

The aim of this study was to develop and test prediction models for the diagnosis and prognosis of TBI using prehospital information and machine learning algorithms among patients with severe trauma. We hypothesized that incorporating prehospital information could achieve acceptable performance in predicting TBI, and machine learning algorithms could contribute to performance improvement.

## 131 Materials and Methods

132 Study design and settings

This was a multi-center retrospective study conducted at three tertiary academic emergency
departments (EDs) located in an urban area (Seoul and Bundang) of South Korea. These EDs
received 50,000–90,000 visits annually. We adhered to the Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) statement
on reporting predictive models.<sup>19</sup>

The EMS system in South Korea is operated by the National Fire Agency. The EMS level is considered intermediate, as EMS providers can perform bleeding control, spinal motion restriction, immobilization and splintage, advanced airway management, and administer fluid intravenously. As only physicians can declare death in South Korea, EMS providers cannot stop resuscitation and must transport all patients including those in cardiac arrest to the ED. For all EMS transport, EMS providers record an ambulance run-sheet by law. Since 2012, the National Fire Agency adapted the United States Centers for Disease Control and Prevention of the United States field triage decision scheme to evaluate patients with trauma,<sup>20</sup> and they developed an EMS severe trauma in-depth registry. For said patients, EMS providers evaluate whether patients met trauma center transport criteria in the field triage decision scheme. If they did, the in-depth registry should be recorded, and EMS

transport protocol recommends that patients are transferred to a near regional trauma center;
but it is not mandatory.
The Ministry of Health and Welfare designated three ED levels according to the

resources and functional requirements; level 1 (n = 36) and level 2 (n = 118) EDs have more resources and better facilities for emergency care and must be staffed by emergency physicians 24 hours a day/365 days a year; whereas level 3 EDs (n = 248) can be staffed by general physicians. In accordance with the EMS Act, all EDs participated annually in a nationwide functional performance evaluation program, which was administered by the Ministry of Health and Welfare. The three participating hospitals in this study were all level 1 EDs that can perform acute trauma care for patients with TBI 24 hours a day/365 days a year—including emergency neurosurgical operation and angiographic interventions.

### 160 Data source

We used an EMS ambulance run-sheet, EMS trauma in-depth registry, and ED administrative database. The EMS database information, including ambulance run-sheet and trauma in-depth registry, was collected electronically by EMS providers using tablets. The EMS record review for each severe trauma has been performed by EMS medical directors of each fire department since 2012. The ED administrative database contains patients' demographic characteristics, route of visit, time of visit, and diagnosis and disposition. We merged the EMS database with the ED administrative database based on patients' arrival time, age, and sex.

*Study population* 

170We included adult (age  $\geq$  15) EMS users who were transported to participating hospitals with171severe trauma from January 1, 2014 to December 31, 2018. Severe trauma was assessed by

EMS providers and defined as patients who fulfilled trauma center transport criteria (physiologic criteria, anatomic criteria, mechanism of injury criteria, or special patients or system consideration criteria) in the field triage decision scheme.<sup>21</sup> Patients were excluded if they had out-of-hospital cardiac arrest or their main cause of EMS call was medical or nontraumatic injury including choking, drowning, fire, flame, heat, cold, poisoning, chemical, sexual assault, weather, or natural disaster. Patients with an unknown outcome were also excluded.

#### *Outcome measure*

The primary outcome measure was the diagnosis of TBI. TBI diagnosis was defined as patients whose diagnostic code, according to the International Statistical Classification of Diseases and Related Health Problems (ICD-10), was between S06.0 and S06.9.<sup>22 23</sup> The ED administrative database has two types of primary diagnostic codes: the final diagnostic codes at ED discharge and at hospital discharge. We extracted up to 20 codes for each. We defined the diagnostic code as positive for TBI if a confirmative diagnostic code was found in any level of the discharge record. A secondary outcome measure was the diagnosis of TBI with intracranial hemorrhage or injury (TBI-I), defined as ED discharge or hospital discharge diagnosis ICD-10 code S06.1-S06.9. Concussion (ICD-10 code with S06.0) was excluded in TBI-I. A tertiary outcome was TBI with non-discharge (TBI-ND). Non-discharge was defined as patients whose ED discharge disposition included admission, transfer, or death. Quaternary outcome measure was TBI with death (TBI-D). Death was defined as patients whose ED discharge disposition or hospital discharge disposition was death.

Variables and preprocessing

We collected patients' demographic data, circumstances of trauma, chief complaints, EMS

vital sign assessment, EMS management and hospital outcomes. The detailed descriptions of
each variable are described in Supplementary Table 1. Categorical variables were
preprocessed with the one-hot encoding (dummy variable encoding) method. Continuous
variables were divided into four quantiles and unknown or missing values were categorized
as a fifth category. One-hot encoding was also applied to discretized continuous variables.
Preprocessing measures including discretization results of continuous variables are presented
in Supplementary Table 1.

# 202 Model development

We developed prediction models for outcomes by using five machine learning algorithms: logistic regression analyses (LR), extreme gradient boost (XGB), random forest (RF), support vector machine (SVM), and elastic net (EN). The LR algorithm was chosen as baseline comparison algorithm because it is widely used in the medical field and has been used for previous prediction model development in TBI studies.<sup>14 24</sup> Backward stepwise LR was selected for feature selection. The other four algorithms were selected based on their ability to model nonlinear associations, their relative ease of implementation, and their general acceptance in the machine learning community.<sup>25-29</sup> All algorithms have a method to calculate the probability of the outcome occurring and algorithms other than LR need hyperparameter tuning for proper training and prediction.

The study population was split into training cohorts that included development, validation, and test cohorts. The development cohort included a training cohort from which each of the machine learning prediction models were derived and a validation cohort in which the prediction models were applied to adjust the hyperparameters of the algorithm. The test cohort was used for the final evaluation of the performance of the prediction models. Chronological split was used for data split. Patients enrolled from January 1, 2014 to

#### **BMJ** Open

December 31, 2016 were used as the training cohort; patients from January 1, 2017 to December 31, 2017 were used as the validation cohort; and patients from January 1, 2018 to December 31, 2018 were used as the test cohort. Hyperparameter tuning using validation data was conducted by, first, a random search within 10,000 randomly generated hyperparameters; then, grid search hyperparameters chosen around from random search with five candidates per each hyperparameter. Finally, hyperparameter with best area under receiver-operation curve (AUROC) in validation cohorts were selected. Test data were separated during training and tuning processes and used to measure algorithm performance.

227 Statistical analysis

The demographic findings and outcomes of the study population were described in this study. Additionally, the baseline characteristics of the training cohort and the validation cohort were compared. The continuous variables were compared by using Student's T-test or the Wilcoxon rank sum test, and the categorical variables were compared by using the chisquared test or the Fisher exact test, as appropriate.

We assessed discrimination performance by comparing the AUROC for each model in the test cohort. We considered an AUROC of 0.5 as no discrimination, 0.7 to 0.8 as acceptable, 0.8 to 0.9 as excellent, and more than 0.9 is considered outstanding.<sup>30</sup> Area under the precision-recall curve (AUPRC) was assessed for each model in the test cohort. We assessed the calibration power by using the Hosmer–Lemeshow test, the scaled Brier score, and a calibration plot in the test cohort.<sup>31</sup> For the delineation of test characteristics, the sensitivity, specificity, and positive and negative predictive values with 95% CIs were determined using a cutoff probability at a sensitivity of 80%. Given that poor sensitivity of clinical predictors for TBI in previous studies,<sup>12 32</sup> and almost 75% sensitivity level for other severe disease prediction in prehospital settings,<sup>33 34</sup> we thought that 80% sensitivity was an 

appropriate target for our prediction model. We calculated false positive rate as 1 - 1specificity. The added prognostic power of each prediction model compared to the LR model was also evaluated by continuous net reclassification index (NRI). NRI is a statistical method to quantify how well a new model correctly reclassifies the study population with the other models. Details of NRI are described elsewhere.35 By using a model-specific metric, the variable importance of each model was assessed, except for the SVM algorithm. The variable importance was determined by the coefficient effect sizes for the LR model. The XGB and RF models were ranked by variable importance on the selection frequency of the variable as a decision node. The absolute value of the coefficients corresponding to the tuned model were used for the measurement of variable importance in the EN algorithm.<sup>36</sup> To compare the variable importance of each prediction models efficiently, top 5 variables of each model was presented. All statistical analyses were performed with R Statistical Software (version 4.0.1; R Foundation for Statistical Computing, Vienna, Austria). Packages included caret, e1071, xgboost, randomForest, and glmnet for the analysis of the machine learning algorithms. No patient and public involvement This research was done without patient involvement. Patients were not invited to comment on the study design and were not consulted to develop patient relevant outcomes or interpret the results. Patients were not invited to contribute to the writing or editing of this document for readability or accuracy. 

BMJ Open

| 2                    |     |                                                                                                    |
|----------------------|-----|----------------------------------------------------------------------------------------------------|
| 3<br>4<br>5<br>6     | 264 | Result                                                                                             |
| 7<br>8<br>9          | 265 | Demographic findings                                                                               |
| )<br>10<br>11        | 266 | Among the 157,134 EMS users transported to three hospitals from 2014 to 2018, 1,169                |
| 12<br>13             | 267 | patients were included in the final analysis (Figure 1). Patients were split into 2 datasets: data |
| 14<br>15<br>16       | 268 | from 2014 to 2017, consisting of 867 patients (74.2%) in the development cohort; and the           |
| 17<br>18             | 269 | remaining data from 2018 consisting of 302 patients (25.8%) in the test cohort (Figure 1).         |
| 19<br>20             | 270 | Among the development cohort, data from 2014 to 2016—consisting of 661 patients—were               |
| 21<br>22<br>23       | 271 | used as the training cohort, and 2017 data—consisting of 206 patients—were used as the             |
| 25<br>24<br>25       | 272 | validation cohort in the model.                                                                    |
| 26<br>27             | 273 | Table 1 shows key demographic findings of the development and test cohorts. Median                 |
| 28<br>29             | 274 | (IQR) age was 52 years (35–66) in the development cohort and 56 years (40–69) in the test          |
| 30<br>31<br>32       | 275 | cohort. Traffic accident was most common mechanism of trauma (43.3% for the development            |
| 33<br>34             | 276 | cohort and 41.4% for the test cohort). The proportion of patients with alert mental status was     |
| 35<br>36             | 277 | 58.1% for the development cohort and 69.5% in the test cohort. Overall, TBI, TBI-I, TBI-           |
| 37<br>38<br>39       | 278 | ND, TBI-D occurred in 215 (24.8%), 195 (22.5%), 192 (22.1%), and 32 (3.7%) in the                  |
| 40<br>41             | 279 | development cohort; and 66 (21.9%), 56 (18.5%), 57 (18.9%), and 11 (3.6%) in the test              |
| 42<br>43             | 280 | cohort. All demographic characteristics of the development and test cohorts are described in       |
| 44<br>45<br>46       | 281 | Supplementary Table 2.                                                                             |
| 47<br>48<br>49<br>50 | 282 | Main analysis                                                                                      |
| 51<br>52             | 283 | The discrimination and NRI of the prediction models on the test cohort are presented in Table      |
| 53<br>54             | 284 | 2. The AUROC for outcomes were 0.770–0.806 for TBI, 0.820–0.844 for TBI-I, 0.767–0.811             |
| 55<br>56<br>57       | 285 | for TBI-ND, and 0.664–0.889 for TBI-D (Table 2 and Supplementary Figure 1). Compared to            |
| 58<br>59<br>60       | 286 | LR, XGB performed significantly well in predicting TBI, and RF and EN performed well in            |

| 287 | predicting TBI-ND and TBI-D. EN model generally performed well on all outcomes. The        |
|-----|--------------------------------------------------------------------------------------------|
| 288 | AUROC of the EN model for outcomes were 0.799 (95% CI: 0.732–0.867), 0.844 (95% CI:        |
| 289 | 0.779–0.910), 0.811 (95% CI: 0.741–0.882), and 0.871 (95% CI: 0.764–0.978) for TBI, TBI-   |
| 290 | I, TBI-ND, and TBI-D, respectively. Machine learning models generally resulted in          |
| 291 | significant reclassification improvement compared to LR for TBI, TBI-I, and TBI-ND. For    |
| 292 | prediction TBI-D, AUROC difference, and reclassification improvement compared to LR        |
| 293 | was non-significant in all machine learning models. The precision-recall curve is shown in |
| 294 | Supplementary Figure 2. AUPRC were 0.479-0.564 for TBI, 0.469-0.606 for TBI-I, 0.477-      |
| 295 | 0.551 for TBI-ND and 0.094–0.140 for TBI-D. EN model showed highest AUPRC among all        |
| 296 | prediction models. Supplementary Figure 3 shows the calibration plot of prediction models  |
| 297 | according to outcomes. All prediction models generally showed poor calibration. Given the  |
| 298 | high AUROC and AUPRC among prediction models, and reclassification improvement             |
| 299 | compared to LR, we determined EN as a best-performing prediction model in our analysis.    |
| 300 | Using cutoff of 80% sensitivity, specificity was 47.5–68.2% for TBI, 71.1–81.3% for        |
| 301 | TBI-I, 46.1–74.3% for TBI-ND, and 42.60 for TBI-D. EN showed the highest specificity       |
| 302 | and PPV among all outcomes. False positive rate (1 – specificity) was almost 19.7–39.0%    |
| 303 | according to outcomes in the EN model. The 95% CI of specificity of the EN model was not   |
| 304 | overlapped with LR in TBI, TBI-ND, and TBI-D predictions. NPV was almost 89–99% for        |
| 305 | all outcomes in the prediction models (Table 3).                                           |
| 306 | Table 4 shows the top 5 variable importance of prediction models according to              |

outcomes. Variables related to patients' symptom of loss of consciousness, Glasgow Coma
Scale component, and light reflex were the three most important variables to predict all
outcomes. Compared to other outcomes, the difference between variable importance for TBID was prominent, and the mechanism of injury, heart rate, and age showed the highest
importance for predicting TBI-D.

| 1<br>2         |     |
|----------------|-----|
| 3<br>4<br>5    | 312 |
| 6<br>7<br>8    | 31  |
| 9<br>10        | 31  |
| 11<br>12       | 31  |
| 13<br>14       | 31  |
| 15<br>16<br>17 | 31  |
| 18<br>19       | 31  |
| 20<br>21       | 31  |
| 22<br>23       | 32  |
| 24<br>25<br>26 | 32  |
| 20<br>27<br>28 | 32  |
| 29<br>30       | 32  |
| 31<br>32       | 324 |
| 33<br>34<br>25 | 32  |
| 35<br>36<br>37 | 32  |
| 38<br>39       | 22  |
| 40<br>41       | 22  |
| 42<br>43       | 32  |
| 44<br>45       | 32  |
| 40<br>47<br>48 | 33  |
| 49<br>50       | 33  |
| 51<br>52       | 33  |
| 53<br>54       | 33  |
| 55<br>56<br>57 | 334 |
| 58<br>59       | 33  |
| 60             | 33  |

# 312 **Discussion**

3 By using prehospital data from EMS users visiting three teaching hospitals, we developed 4 and validated prediction models for the diagnosis and prognosis of TBI using machine 5 learning algorithms among patients with severe trauma, identified by EMS providers in South 6 Korea. We found that 24% of patients were diagnosed with TBI, 22% showed intracranial 7 injury, 21% could not be discharged from the ED with a TBI diagnosis, and 4% showed TBI-8 related death. Machine learning models showed acceptable-to-excellent discrimination 9 performance (AUROCs were 0.799–0.871 according to outcomes in the best-performing EN 0 model). When identifying 80% of target patients with TBI, the false positive rate was almost 1 19.7–39.0%. Consciousness status related variables ranging from patients' symptom to EMS 2 providers' assessment showed the highest importance for predicting all outcomes. This study 3 adds considerably to the understanding of prehospital prediction performance of TBI among 4 patients with severe trauma. Use of comprehensive prehospital information and certain 5 machine learning approaches led to increased performance with a diminished false positive 6 rate compared to those of the traditional statistical model. 7 Several studies reported that EMS providers' assessment using prehospital

8 information is effective for the identification of patients with severe trauma who require direct transport to a trauma center.<sup>37-39</sup> Because TBI accounts for a significant portion of 9 patients with severe trauma,<sup>38</sup> and the majority of patients have poor access to trauma 0 centers,<sup>40</sup> identification of TBI among patients with severe trauma by EMS providers could 1 2 contribute to proper prehospital management and destination hospital decisions.<sup>6</sup> However, 3 prehospital identification of TBI is challenging.<sup>41</sup> Prehospital clinical signs showed poor 4 predictive performance for differentiating patients with TBI.<sup>12</sup>, and previous prediction 5 models related to TBI mostly focused on TBI outcomes.<sup>13 14 16</sup> One study reported the 6 predictors for mild TBI with persistent symptoms; but a single-center case-control study

design and ED-based model development lacks applicability to prehospital settings.<sup>32</sup> In this
study, we developed and tested TBI prediction models that used prehospital information, and
we found acceptable discrimination power for the prediction of diagnosis and prognosis of
TBI. Uniquely, we incorporated various demographic variables, trauma circumstances,
patients' complaints, and EMS assessment information in the prediction models, and we
adapted the machine learning algorithms.

When using a cutoff for 80% sensitivity for TBI detection, the false positive rate was 19.7–39.0% (Table 2). Those false positive rate levels are plausible for detecting severe diseases in EMS settings. A previous study reported a 26% of false positive rate of EMS triage for myocardial infarction with a sensitivity of 74% and 50% of false positive rate of EMS recognition of stroke in sensitivity of 74%.<sup>33 34</sup> Considering the prevalence of outcomes (24% in TBI, 22% in TBI-I, 21% in TBI-ND, and 4% in TBI-D; Table 1), there would be 16, 9, 12, and 67 false-positive patients for every 10 patients that are accurately identified as TBI, TBI-I, TBI-ND, and TBI-D, respectively. Because of the low prevalence of TBI-D, a similar specificity of the prediction model for outcomes resulted in a very low positive predictive value and a high proportion of false positive cases, which suggested the limited applicability of prediction models for TBI-D in prehospital settings.

Consciousness-status-related variables ranging from patients' complaints to EMS assessment showed the highest importance regardless of models and outcomes in our study. Consciousness status is closely associated with head trauma. Head trauma can result in structural brain injury or physiological disruption of brain function, which could result in altered mental status.<sup>42</sup> Mental status is also associated with TBI severity, <sup>43</sup> and its association with TBI outcomes have been reported.<sup>13 14 16</sup> History taking and physical examination for altered mental status is key to early diagnosis and proper management of TBI in prehospital settings.<sup>44</sup> Page 19 of 44

#### **BMJ** Open

We adapted machine learning algorithms for the prediction of TBI-related outcomes and found an improvement in discrimination and an increase in specificity with the same sensitivity thresholds. However, the LR model also showed acceptable or similar performance compared to machine learning models, according to the outcomes. In clinical prediction models, a previous systematic review reported no performance benefit of the machine learning model over LR.<sup>45</sup> The previous study stated that machine learning models tend to show high performance with a strong signal-to-noise ratio problem like gaming. image recognition. However, clinical prediction problems often result in a poor signal-tonoise ratio.<sup>45 46</sup> If we could use unstructured data, which has strong signal-to-noise ratio like continuous vital sign monitoring data or audiovisual data for patients' appearance, machine learning models might perform better than LR models. In addition, if we analyzed more patient data, the performance improvement of machine models might be elucidated.

Precise assessment in prehospital field could contribute to improved patient-related outcomes. High demand of EMS call and response,<sup>47</sup> disparity in accessibility to definitive care capable hospitals according to regions,<sup>40</sup> and the importance of timely management in acute disease care are the chief reasons behind the necessity for the accurate assessment of EMS providers. Although information acquisition and processing is quite difficult in prehospital areas, various instruments and information systems could attribute to diminish those problems. Complex data acquisition like mobile CT or other unstructured data<sup>48 49</sup>, information sharing through telemedicine,<sup>50</sup> and decision support tools in prehospital environments<sup>51</sup> could contribute to the accurate assessment of EMS providers. More information acquisition and real-time processing of those data could improve the clinical prediction models in prehospital areas, which could lead to the improvement of patients' safety and outcomes.

| 2          |  |
|------------|--|
| 3          |  |
| 4          |  |
| 5          |  |
| 6          |  |
| 7          |  |
| 8          |  |
| 9          |  |
| 10         |  |
| 11         |  |
| 10         |  |
| 12         |  |
| 13         |  |
| 14         |  |
| 15         |  |
| 16         |  |
| 17         |  |
| 18         |  |
| 19         |  |
| 20         |  |
| 21         |  |
| 22         |  |
| 23         |  |
| 24         |  |
| 25         |  |
| 25         |  |
| 20         |  |
| 27         |  |
| 20         |  |
| 29         |  |
| 30         |  |
| 31         |  |
| 32         |  |
| 33         |  |
| 34         |  |
| 35         |  |
| 36         |  |
| 37         |  |
| 38         |  |
| 39         |  |
| 40         |  |
| 41         |  |
| 40<br>10   |  |
| 42<br>12   |  |
| رب<br>۸۸   |  |
| 44         |  |
| 45         |  |
| 40         |  |
| 4/         |  |
| 48         |  |
| 49         |  |
| 50         |  |
| 51         |  |
| 52         |  |
| 53         |  |
| 54         |  |
| 55         |  |
| 56         |  |
| 57         |  |
| 5.2<br>5.2 |  |
| 50         |  |
| 27         |  |
| 60         |  |

1

386 Our study had several limitations. First, our data were collected at three teaching 387 hospitals in urban areas of South Korea. Therefore, external validation for other areas should 388 be conducted to generalize the developed prediction model. Second, we used retrospective 389 analysis of electronically collected prehospital and hospital data. There might be various 390 information loss and missing data. We treated missing status as a separate category for our analysis;<sup>52</sup> however, there could be different reasons for missing data. Third, there is a 391 392 possibility that the prediction model was overfitted or underfitted. To minimize this issue, we 393 rigorously searched hyperparameters and carefully chose hyperparameters according to the 394 performance in independent validation cohorts. Lastly, this study was performed in an 395 intermediate-service-level EMS system. The generalization of our study findings to different 396 EMS settings should be made with caution.

In conclusion, we presented data on TBI among patients with severe trauma assessed 397 398 by EMS providers, and our results inform the development of prediction models for the 399 diagnosis and prognosis of TBI in our population. We used various information that can be 400 obtained in prehospital settings and showed acceptable outcome performance. The consistent 401 importance of consciousness-status-related variables emphasizes the importance of 402 assessment and monitoring of consciousness status in prehospital areas. Although 403 prospective, and implementation studies are needed for TBI prediction in prehospital areas, 404 our study outlined a novel method for the precise assessment of EMS providers using a 405 machine-learning-based prediction model. Further collection of various types of patient-406 related data would contribute to the enhanced performance of the clinical prediction model in 407 prehospital settings.

| 1<br>2                                       |     |                                                                                                 |
|----------------------------------------------|-----|-------------------------------------------------------------------------------------------------|
| 3<br>4<br>5                                  | 409 | Author Contribution Statement                                                                   |
| 6<br>7<br>8                                  | 410 | YHC and JH Park designed and developed the study, analysed and interpreted the data, and        |
| 9<br>10                                      | 411 | drafted the initial manuscript. KJH, YSR, KJS and SDS were involved in the acquisition of       |
| 11<br>12<br>12                               | 412 | data, the development of the research question and assisted with analysis and interpretation of |
| 15<br>14<br>15                               | 413 | data. All authors revised the drafts for intellectual content and edited the manuscript. All    |
| 16<br>17                                     | 414 | authors reviewed and approved the final draft.                                                  |
| 18<br>19<br>20<br>21<br>22                   | 415 |                                                                                                 |
| 23<br>24                                     | 416 | Funding                                                                                         |
| 25<br>26<br>27                               | 417 | This study was supported by grant No. '04-2019-0680' from the Seoul National University         |
| 28<br>29                                     | 418 | Hospital Research Fund.                                                                         |
| 30<br>31<br>32<br>33                         | 419 |                                                                                                 |
| 34<br>35                                     | 420 | Competing Interests                                                                             |
| 36<br>37                                     | 421 | There are no conflicts of interest for all authors in this study.                               |
| 38<br>39<br>40                               | 422 |                                                                                                 |
| 40<br>41<br>42                               | 423 | Patients consent                                                                                |
| 43<br>44                                     | 424 | Not required                                                                                    |
| 45<br>46<br>47<br>48                         | 425 |                                                                                                 |
| 49<br>50                                     | 426 | Data availability statement                                                                     |
| 51<br>52                                     | 427 | No data are available. We do not have ethics approval to share data.                            |
| 53<br>54<br>55<br>56<br>57<br>58<br>59<br>60 | 428 |                                                                                                 |

| 1          |  |
|------------|--|
| 2          |  |
| 3          |  |
| 4          |  |
| 5          |  |
| 6          |  |
| 7          |  |
| ,<br>8     |  |
| a          |  |
| 10         |  |
| 11         |  |
| 17         |  |
| 12         |  |
| 17         |  |
| 14         |  |
| 15         |  |
| 10         |  |
| 1/         |  |
| 18         |  |
| 19         |  |
| 20         |  |
| 21         |  |
| 22         |  |
| 23         |  |
| 24         |  |
| 25         |  |
| 26         |  |
| 27         |  |
| 28         |  |
| 29         |  |
| 30         |  |
| 31         |  |
| 32         |  |
| 33         |  |
| 34         |  |
| 35         |  |
| 36         |  |
| 37         |  |
| 38         |  |
| 39         |  |
| 40         |  |
| 41         |  |
| 42         |  |
| 43         |  |
| 44         |  |
| 45         |  |
| 46         |  |
| 47         |  |
| 48         |  |
| <u>д</u> о |  |
| 50         |  |
| 50         |  |
| 57         |  |
| 52<br>52   |  |
| 55<br>∈ 4  |  |
| 54<br>57   |  |
| 55         |  |
| 56         |  |
| 5/         |  |
| 58         |  |
| <b>FO</b>  |  |

60

429 Ethical statements

430 This study complied with the Declaration of Helsinki, and its protocol was approved by the

431 Institutional Review Board of the Seoul National University Hospital with a waiver of

- 432 informed consent (IRB No: E-2006-004-1128).
- 434 **References**

- 435 1. Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. *The*436 *Lancet Neurology* 2008;7(8):728-41.
- 437 2. Hsia RY, Markowitz AJ, Lin F, et al. Ten-year trends in traumatic brain injury: a
  438 retrospective cohort study of California emergency department and hospital revisits and
  439 readmissions. *BMJ Open* 2018;8(12):e022297. doi: 10.1136/bmjopen-2018-022297
  440 [published Online First: 2018/12/16]
- 441 3. Finfer SR, Cohen J. Severe traumatic brain injury. *Resuscitation* 2001;48(1):77-90. doi:
   442 10.1016/s0300-9572(00)00321-x [published Online First: 2001/02/13]
- 443 4. DeWitt DS, Jenkins LW, Prough DS. Enhanced vulnerability to secondary ischemic insults
   444 after experimental traumatic brain injury. *New Horiz* 1995;3(3):376-83. [published
   445 Online First: 1995/08/01]
- 446
  446
  447
  447
  447
  447
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
  448
- 449 6. Spaite DW, Bobrow BJ, Keim SM, et al. Association of Statewide Implementation of the
   450 Prehospital Traumatic Brain Injury Treatment Guidelines With Patient Survival
   451 Following Traumatic Brain Injury: The Excellence in Prehospital Injury Care (EPIC)
   452 Study. JAMA Surg 2019;154(7):e191152. doi: 10.1001/jamasurg.2019.1152 [published

| 3<br>4                                                                           | 450 |                                                                                                |
|----------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------|
| 5                                                                                | 453 | Online First: 2019/05/09]                                                                      |
| 6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                                   | 454 | 7. Pelieu I, Kull C, Walder B. Prehospital and Emergency Care in Adult Patients with Acute     |
|                                                                                  | 455 | Traumatic Brain Injury. Med Sci (Basel) 2019;7(1) doi: 10.3390/medsci7010012                   |
|                                                                                  | 456 | [published Online First: 2019/01/24]                                                           |
|                                                                                  | 457 | 8. Goldberg SA, Rojanasarntikul D, Jagoda A. The prehospital management of traumatic brain     |
| 15<br>16<br>17                                                                   | 458 | injury. Handb Clin Neurol 2015;127:367-78. doi: 10.1016/B978-0-444-52892-                      |
| 18<br>19                                                                         | 459 | 6.00023-4 [published Online First: 2015/02/24]                                                 |
| 20<br>21                                                                         | 460 | 9. Chi JH, Knudson MM, Vassar MJ, et al. Prehospital hypoxia affects outcome in patients       |
| 22<br>23<br>24                                                                   | 461 | with traumatic brain injury: a prospective multicenter study. J Trauma                         |
| 24<br>25<br>26                                                                   | 462 | 2006;61(5):1134-41. doi: 10.1097/01.ta.0000196644.64653.d8 [published Online First:            |
| 27<br>28                                                                         | 463 | 2006/11/14]                                                                                    |
| 29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 464 | 10. Barton CW, Hemphill JC, Morabito D, et al. A novel method of evaluating the impact of      |
|                                                                                  | 465 | secondary brain insults on functional outcomes in traumatic brain-injured patients.            |
|                                                                                  | 466 | Acad Emerg Med 2005;12(1):1-6. doi: 10.1197/j.aem.2004.08.043 [published Online                |
|                                                                                  | 467 | First: 2005/01/07]                                                                             |
|                                                                                  | 468 | 11. Sasser SM, Hunt RC, Faul M, et al. Guidelines for field triage of injured patients:        |
|                                                                                  | 469 | recommendations of the National Expert Panel on Field Triage, 2011. Morbidity and              |
| 43<br>44                                                                         | 470 | Mortality Weekly Report: Recommendations and Reports 2012;61(1):1-20.                          |
| 45<br>46<br>47                                                                   | 471 | 12. Ter Avest E, Taylor S, Wilson M, et al. Prehospital clinical signs are a poor predictor of |
| 47<br>48<br>49                                                                   | 472 | raised intracranial pressure following traumatic brain injury. Emerg Med J                     |
| 50<br>51                                                                         | 473 | 2021;38(1):21-26. doi: 10.1136/emermed-2020-209635 [published Online First:                    |
| 52<br>53<br>54<br>55                                                             | 474 | 2020/09/20]                                                                                    |
|                                                                                  | 475 | 13. Collaborators MCT, Perel P, Arango M, et al. Predicting outcome after traumatic brain      |
| 57<br>58                                                                         | 476 | injury: practical prognostic models based on large cohort of international patients. BMJ       |
| 59<br>60                                                                         | 477 | 2008;336(7641):425-9. doi: 10.1136/bmj.39461.643438.25 [published Online First:                |

#### 2008/02/14] 14. Steverberg EW, Mushkudiani N, Perel P, et al. Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLoS Med 2008;5(8):e165; discussion e65. doi: 10.1371/journal.pmed.0050165 [published Online First: 2008/08/08] 15. Gozt AK, Hellewell SC, Thorne J, et al. Predicting outcome following mild traumatic brain injury: protocol for the longitudinal, prospective, observational Concussion Recovery (CREST) cohort study. BMJ Open 2021;11(5):e046460. doi: 10.1136/bmjopen-2020-046460 [published Online First: 2021/05/15] 16. Miller PR, Chang MC, Hoth JJ, et al. Predicting Mortality and Independence at Discharge in the Aging Traumatic Brain Injury Population Using Data Available at Admission. J Am Coll Surg 2017;224(4):680-85. doi: 10.1016/j.jamcollsurg.2016.12.053 [published Online First: 2017/03/07] 17. Wasserman EB, Shah MN, Jones CM, et al. Identification of a neurologic scale that optimizes EMS detection of older adult traumatic brain injury patients who require transport to a trauma center. Prehosp Emerg Care 2015;19(2):202-12. doi: 10.3109/10903127.2014.959225 [published Online First: 2014/10/08] 18. Hale AT, Stonko DP, Brown A, et al. Machine-learning analysis outperforms conventional statistical models and CT classification systems in predicting 6-month outcomes in pediatric patients sustaining traumatic brain injury. Neurosurgical Focus FOC 2018;45(5):E2. doi: 10.3171/2018.8.Focus17773 19. Collins GS, Reitsma JB, Altman DG, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD). Ann Intern Med

2015;162(10):735-6. doi: 10.7326/L15-5093-2 [published Online First: 2015/05/20]

20. Sasser SM, Hunt RC, Sullivent EE, et al. Guidelines for field triage of injured patients: 

| 1<br>2                                 |     |                                                                                                |  |  |  |  |  |  |  |
|----------------------------------------|-----|------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 3<br>4<br>5                            | 503 | recommendations of the National Expert Panel on Field Triage. 2009                             |  |  |  |  |  |  |  |
| 6<br>7                                 | 504 | 21. Sasser SM, Hunt RC, Faul M, et al. Guidelines for field triage of injured patients:        |  |  |  |  |  |  |  |
| 8<br>9<br>10                           | 505 | recommendations of the National Expert Panel on Field Triage, 2011. MMWR Recomm                |  |  |  |  |  |  |  |
| 10<br>11<br>12<br>13<br>14             | 506 | Rep 2012;61(RR-1):1-20. [published Online First: 2012/01/13]                                   |  |  |  |  |  |  |  |
|                                        | 507 | 22. Andelic N, Anke A, Skandsen T, et al. Incidence of hospital-admitted severe traumatic      |  |  |  |  |  |  |  |
| 15<br>16<br>17                         | 508 | brain injury and in-hospital fatality in Norway: a national cohort study.                      |  |  |  |  |  |  |  |
| 17<br>18<br>19                         | 509 | Neuroepidemiology 2012;38(4):259-67. doi: 10.1159/000338032 [published Online                  |  |  |  |  |  |  |  |
| 20<br>21                               | 510 | First: 2012/06/09]                                                                             |  |  |  |  |  |  |  |
| 22<br>23                               | 511 | 23. Ro YS, Shin SD, Holmes JF, et al. Comparison of clinical performance of cranial computed   |  |  |  |  |  |  |  |
| 24<br>25<br>26                         | 512 | tomography rules in patients with minor head injury: a multicenter prospective study.          |  |  |  |  |  |  |  |
| 27<br>28                               | 513 | Acad Emerg Med 2011;18(6):597-604. doi: 10.1111/j.1553-2712.2011.01094.x                       |  |  |  |  |  |  |  |
| 29<br>30                               | 514 | [published Online First: 2011/06/17]                                                           |  |  |  |  |  |  |  |
| 31<br>32<br>33<br>34<br>35<br>36<br>37 | 515 | 24. Gang MC, Hong KJ, Shin SD, et al. New prehospital scoring system for traumatic brain       |  |  |  |  |  |  |  |
|                                        | 516 | injury to predict mortality and severe disability using motor Glasgow Coma Scale,              |  |  |  |  |  |  |  |
|                                        | 517 | hypotension, and hypoxia: a nationwide observational study. Clin Exp Emerg Med                 |  |  |  |  |  |  |  |
| 38<br>39                               | 518 | 2019;6(2):152-59. doi: 10.15441/ceem.18.027 [published Online First: 2019/07/03]               |  |  |  |  |  |  |  |
| 40<br>41<br>42                         | 519 | 25. Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd      |  |  |  |  |  |  |  |
| 43<br>44                               | 520 | ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.                    |  |  |  |  |  |  |  |
| 45<br>46                               | 521 | San Francisco, California, USA: Association for Computing Machinery, 2016:785–94.              |  |  |  |  |  |  |  |
| 47<br>48<br>49                         | 522 | 26. Zou H, Hastie T. Regularization and variable selection via the elastic net. Journal of the |  |  |  |  |  |  |  |
| 50<br>51                               | 523 | Royal Statistical Society: Series B (Statistical Methodology) 2005;67(2):301-20. doi:          |  |  |  |  |  |  |  |
| 52<br>53                               | 524 | 10.1111/j.1467-9868.2005.00503.x                                                               |  |  |  |  |  |  |  |
| 54<br>55                               | 525 | 27. Dong Q, Taylor RA, Moore CL, et al. Predicting urinary tract infections in the emergency   |  |  |  |  |  |  |  |
| 50<br>57<br>58                         | 526 | department with machine learning. Plos One 2018;13(3) doi:                                     |  |  |  |  |  |  |  |
| 59<br>60                               | 527 | 10.1371/journal.pone.0194085                                                                   |  |  |  |  |  |  |  |

| 2<br>3                                                                                       |      |                                                                                                |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 4<br>5                                                                                       | 528  | 28. Breiman RF. Vaccines as tools for advancing more than public health: perspectives of a     |  |  |  |  |  |  |
| 6<br>7<br>9<br>10<br>11<br>12<br>13<br>14                                                    | 529  | former director of the National Vaccine Program office. Clin Infect Dis                        |  |  |  |  |  |  |
|                                                                                              | 530  | 2001;32(2):283-8. doi: 10.1086/318461 [published Online First: 2001/02/15]                     |  |  |  |  |  |  |
|                                                                                              | 531  | 29. Hearst MA, Dumais ST, Osuna E, et al. Support vector machines. IEEE Intelligent Systems    |  |  |  |  |  |  |
|                                                                                              | 532  | and their Applications 1998;13(4):18-28. doi: 10.1109/5254.708428                              |  |  |  |  |  |  |
| 15<br>16                                                                                     | 533  | 30. Hosmer Jr DW, Lemeshow S, Sturdivant RX. Applied logistic regression: John Wiley &         |  |  |  |  |  |  |
| 17<br>18                                                                                     | 534  | Sons 2013.                                                                                     |  |  |  |  |  |  |
| 19<br>20<br>21                                                                               | 535  | 31. Fenlon C, O'Grady L, Doherty ML, et al. A discussion of calibration techniques for         |  |  |  |  |  |  |
| 22<br>23                                                                                     | 536  | evaluating binary and categorical predictive models. Prev Vet Med 2018;149:107-14.             |  |  |  |  |  |  |
| 24<br>25                                                                                     | 537  | doi: 10.1016/j.prevetmed.2017.11.018 [published Online First: 2018/01/02]                      |  |  |  |  |  |  |
| 26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41 | 538  | 32. Wojcik SM. Predicting mild traumatic brain injury patients at risk of persistent symptoms  |  |  |  |  |  |  |
|                                                                                              | 539  | in the Emergency Department. Brain Inj 2014;28(4):422-30. doi:                                 |  |  |  |  |  |  |
|                                                                                              | 540  | 10.3109/02699052.2014.884241 [published Online First: 2014/02/26]                              |  |  |  |  |  |  |
|                                                                                              | 541  | 33. Oostema JA, Konen J, Chassee T, et al. Clinical predictors of accurate prehospital stroke  |  |  |  |  |  |  |
|                                                                                              | 542  | recognition. <i>Stroke</i> 2015;46(6):1513-7. doi: 10.1161/STROKEAHA.115.008650                |  |  |  |  |  |  |
|                                                                                              | 543  | [published Online First: 2015/04/30]                                                           |  |  |  |  |  |  |
|                                                                                              | 544  | 34 Swan PY Nighswonger B Boswell GL et al Factors associated with false-positive               |  |  |  |  |  |  |
| 42<br>43                                                                                     | 5/15 | emergency medical services triage for nercutaneous coronary intervention West I                |  |  |  |  |  |  |
| 44<br>45                                                                                     | 546  | Emerge Med 2000:10(4):208-12 [publiched Online First: 2010/01/05]                              |  |  |  |  |  |  |
| 46<br>47                                                                                     | 540  | Emerg Med 2009;10(4):208-12. [published Online First: 2010/01/05]                              |  |  |  |  |  |  |
| 48<br>49<br>50                                                                               | 547  | 35. Park JH, Shin SD, Song KJ, et al. Prediction of good neurological recovery after out-of-   |  |  |  |  |  |  |
| 50<br>51<br>52                                                                               | 548  | hospital cardiac arrest: A machine learning analysis. <i>Resuscitation</i> 2019;142:127-35.    |  |  |  |  |  |  |
| 53<br>54                                                                                     | 549  | doi: 10.1016/j.resuscitation.2019.07.020 [published Online First: 2019/07/31]                  |  |  |  |  |  |  |
| 55<br>56                                                                                     | 550  | 36. Weng SF, Reps J, Kai J, et al. Can machine-learning improve cardiovascular risk prediction |  |  |  |  |  |  |
| 57<br>58                                                                                     | 551  | using routine clinical data? <i>PLoS One</i> 2017;12(4):e0174944. doi:                         |  |  |  |  |  |  |
| 59<br>60                                                                                     | 552  | 10.1371/journal.pone.0174944 [published Online First: 2017/04/05]                              |  |  |  |  |  |  |

Page 27 of 44

1 2 BMJ Open

| 3                    |     |                                                                                                 |  |  |  |  |  |
|----------------------|-----|-------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 4<br>5               | 553 | 37. Esposito TJ, Offner PJ, Jurkovich GJ, et al. Do prehospital trauma center triage criteria   |  |  |  |  |  |
| 6<br>7               | 554 | identify major trauma victims? Arch Surg 1995;130(2):171-6. doi:                                |  |  |  |  |  |
| 8<br>9               | 555 | 10.1001/archsurg.1995.01430020061010 [published Online First: 1995/02/01]                       |  |  |  |  |  |
| 10<br>11<br>12       | 556 | 38. Ocak G, Sturms LM, Hoogeveen JM, et al. Prehospital identification of major trauma          |  |  |  |  |  |
| 13<br>14             | 557 | patients. Langenbecks Arch Surg 2009;394(2):285-92. doi: 10.1007/s00423-008-0340-               |  |  |  |  |  |
| 15<br>16             | 558 | 4 [published Online First: 2008/06/27]                                                          |  |  |  |  |  |
| 17<br>18             | 559 | 39. Fries GR, McCalla G, Levitt MA, et al. A prospective comparison of paramedic judgment       |  |  |  |  |  |
| 19<br>20<br>21       | 560 | and the trauma triage rule in the prehospital setting. Ann Emerg Med 1994;24(5):885-            |  |  |  |  |  |
| 22<br>23             | 561 | 9. doi: 10.1016/s0196-0644(94)70207-1 [published Online First: 1994/11/01]                      |  |  |  |  |  |
| 24<br>25             | 562 | 40. Branas CC, MacKenzie EJ, Williams JC, et al. Access to trauma centers in the United States. |  |  |  |  |  |
| 26<br>27             | 563 | JAMA 2005:293(21):2626-33 doi: 10 1001/jama 293 21 2626 [nublished Online First:                |  |  |  |  |  |
| 28<br>29<br>30       | 564 | 2005/06/02]                                                                                     |  |  |  |  |  |
| 31<br>32             | 565 | 41. Whiting MD, Dengler BA, Rodriguez CL, et al. Prehospital Detection of Life-Threatening      |  |  |  |  |  |
| 33<br>34<br>35<br>36 | 566 | Intracranial Pathology: An Unmet Need for Severe TBI in Austere, Rural, and Remote              |  |  |  |  |  |
|                      | 567 | Areas. Front Neurol 2020:11:599268. doi: 10.3389/fneur.2020.599268 [published]                  |  |  |  |  |  |
| 37<br>38<br>39       | 568 | Online First: 2020/11/17]                                                                       |  |  |  |  |  |
| 40<br>41             | 569 | 42 Management of Concussion/m TBIWG VA/DoD Clinical Practice Guideline for                      |  |  |  |  |  |
| 42                   | 507 | 42. Management of Concussion in TDIWG. VIVDOD Chinear Hactice Guidenne for                      |  |  |  |  |  |
| 43<br>44<br>45       | 570 | Management of Concussion/Mild Traumatic Brain Injury. J Rehabil Res Dev                         |  |  |  |  |  |
| 43<br>46<br>47       | 571 | 2009;46(6):CP1-68. [published Online First: 2010/01/30]                                         |  |  |  |  |  |
| 48<br>49             | 572 | 43. Grote S, Bocker W, Mutschler W, et al. Diagnostic value of the Glasgow Coma Scale for       |  |  |  |  |  |
| 50<br>51             | 573 | traumatic brain injury in 18,002 patients with severe multiple injuries. J Neurotrauma          |  |  |  |  |  |
| 52<br>53             | 574 | 2011;28(4):527-34. doi: 10.1089/neu.2010.1433 [published Online First: 2011/01/27]              |  |  |  |  |  |
| 54<br>55<br>56       | 575 | 44. Badjatia N, Carney N, Crocco TJ, et al. Guidelines for prehospital management of traumatic  |  |  |  |  |  |
| 57<br>58             | 576 | brain injury 2nd edition. Prehosp Emerg Care 2008;12 Suppl 1:S1-52. doi:                        |  |  |  |  |  |
| 59<br>60             | 577 | 10.1080/10903120701732052 [published Online First: 2008/09/06]                                  |  |  |  |  |  |
|                      |     |                                                                                                 |  |  |  |  |  |

| 2<br>3                                                                           |     |                                                                                               |
|----------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------|
| 4<br>5                                                                           | 578 | 45. Christodoulou E, Ma J, Collins GS, et al. A systematic review shows no performance        |
| 6<br>7                                                                           | 579 | benefit of machine learning over logistic regression for clinical prediction models. $J$      |
| 8<br>9<br>10                                                                     | 580 | Clin Epidemiol 2019;110:12-22. doi: 10.1016/j.jclinepi.2019.02.004 [published Online          |
| 10<br>11<br>12<br>13<br>14                                                       | 581 | First: 2019/02/15]                                                                            |
|                                                                                  | 582 | 46. Ennis M, Hinton G, Naylor D, et al. A comparison of statistical learning methods on the   |
| 15<br>16<br>17                                                                   | 583 | Gusto database. Stat Med 1998;17(21):2501-8. doi: 10.1002/(sici)1097-                         |
| 17<br>18<br>19                                                                   | 584 | 0258(19981115)17:21<2501::aid-sim938>3.0.co;2-m [published Online First:                      |
| 20<br>21                                                                         | 585 | 1998/11/20]                                                                                   |
| 22<br>23                                                                         | 586 | 47. Crowe RP, Bower JK, Cash RE, et al. Association of Burnout with Workforce-Reducing        |
| 24<br>25<br>26                                                                   | 587 | Factors among EMS Professionals. Prehosp Emerg Care 2018;22(2):229-36. doi:                   |
| 27<br>28                                                                         | 588 | 10.1080/10903127.2017.1356411 [published Online First: 2017/08/26]                            |
| 29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 589 | 48. Hov MR, Zakariassen E, Lindner T, et al. Interpretation of Brain CT Scans in the Field by |
|                                                                                  | 590 | Critical Care Physicians in a Mobile Stroke Unit. J Neuroimaging 2018;28(1):106-11.           |
|                                                                                  | 591 | doi: 10.1111/jon.12458 [published Online First: 2017/08/03]                                   |
|                                                                                  | 592 | 49. Nakada TA, Masunaga N, Nakao S, et al. Development of a prehospital vital signs chart     |
|                                                                                  | 593 | sharing system. Am J Emerg Med 2016;34(1):88-92. doi: 10.1016/j.ajem.2015.09.048              |
|                                                                                  | 594 | [published Online First: 2015/10/29]                                                          |
| 43<br>44                                                                         | 595 | 50. Kim Y, Groombridge C, Romero L, et al. Decision Support Capabilities of Telemedicine      |
| 45<br>46                                                                         | 596 | in Emergency Prehospital Care: Systematic Review. J Med Internet Res                          |
| 47<br>48<br>49                                                                   | 597 | 2020;22(12):e18959. doi: 10.2196/18959 [published Online First: 2020/12/09]                   |
| 49<br>50<br>51<br>52<br>53<br>54<br>55<br>55                                     | 598 | 51. Reisner AT, Khitrov MY, Chen L, et al. Development and validation of a portable platform  |
|                                                                                  | 599 | for deploying decision-support algorithms in prehospital settings. Appl Clin Inform           |
|                                                                                  | 600 | 2013;4(3):392-402. doi: 10.4338/ACI-2013-04-RA-0023 [published Online First:                  |
| 57<br>58                                                                         | 601 | 2013/10/25]                                                                                   |
| 59<br>60                                                                         | 602 | 52. Maslove DM, Podchiyska T, Lowe HJ. Discretization of continuous features in clinical      |

| 1<br>2                                                                                                                                                                                                     |     |                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------|
| 3<br>4<br>5                                                                                                                                                                                                | 603 | datasets. J Am Med Inform Assoc 2013;20(3):544-53. doi: 10.1136/amiajnl-2012- |
| 6<br>7                                                                                                                                                                                                     | 604 | 000929 [published Online First: 2012/10/13]                                   |
| 9<br>10<br>11<br>12<br>13<br>14<br>15                                                                                                                                                                      | 605 |                                                                               |
| 13<br>16<br>17<br>18<br>19<br>20<br>22<br>23<br>24<br>25<br>26<br>27<br>8<br>9<br>31<br>32<br>33<br>45<br>36<br>7<br>89<br>04<br>12<br>34<br>45<br>46<br>78<br>9<br>51<br>52<br>34<br>55<br>57<br>58<br>90 |     |                                                                               |

Figure 1. Population flow. EMS, emergency medical service; OHCA, out-of-hospital cardiac

for peer teriew only

| 2        |     |
|----------|-----|
| 3<br>4   | 606 |
| 5        | 000 |
| 7        | 607 |
| 8<br>9   | 608 |
| 10       | 609 |
| 11<br>12 | 007 |
| 13<br>14 |     |
| 14       |     |
| 16<br>17 |     |
| 18       |     |
| 19<br>20 |     |
| 21       |     |
| 22<br>23 |     |
| 24<br>25 |     |
| 26       |     |
| 27<br>28 |     |
| 29       |     |
| 30<br>31 |     |
| 32<br>33 |     |
| 34       |     |
| 35<br>36 |     |
| 37       |     |
| 38<br>39 |     |
| 40<br>41 |     |
| 42       |     |
| 43<br>44 |     |
| 45       |     |
| 46<br>47 |     |
| 48<br>⊿q |     |
| 50       |     |
| 51<br>52 |     |
| 53       |     |
| 54<br>55 |     |
| 56<br>57 |     |
| 58       |     |
| 59       |     |

60

1

**Figure legends** 

arrest; TBI, traumatic brain injury.

|                               | n (%) or Median (IQR)              |                        |               |       |
|-------------------------------|------------------------------------|------------------------|---------------|-------|
|                               |                                    | Development            | Test          | D     |
|                               | Total                              | cohort                 | cohort        | Р     |
| Total                         | N = 1169                           | n = 867                | n = 302       |       |
| Demographics                  |                                    |                        |               |       |
| Age, years                    | 53 (36–66)                         | 52 (35–66)             | 56 (40-69)    | < 0.0 |
| Male                          | 809 (69.2)                         | 592 (68.3)             | 217 (71.9)    | 0.23  |
| Job, unemployed               | 299 (25.6)                         | 197 (22.7)             | 102 (33.8)    | < 0.0 |
| Diabetes                      | 62 (5.3)                           | 35 (4.0)               | 27 (8.9)      | < 0.0 |
| Hypertension                  | 105 (9.0)                          | 61 (7.0)               | 44 (14.6)     | < 0.0 |
| Circumstances of trauma       |                                    |                        |               |       |
| Location, road/highway        | 444 (38.0)                         | 326 (37.6)             | 118 (39.1)    | 0.6   |
| Season, summer                | 336 (28.7)                         | 253 (29.2)             | 83 (27.5)     | 0.57  |
| Weekday, weekend              | 811 (69.4)                         | 599 (69.1)             | 212 (70.2)    | 0.72  |
| Time, 6 p.m. to midnight      | 361 (30.9)                         | 265 (30.6)             | 96 (31.8)     | 0.6   |
| Mechanism of injury, TA       | 500 (42.8)                         | 375 (43.3)             | 125 (41.4)    | 0.5   |
| Chief complaint               |                                    |                        |               |       |
| Fracture/abrasion/laceration  | 302 (25.8)                         | 204 (23.5)             | 98 (32.5)     | < 0.0 |
| EMS vital sign assessment     |                                    |                        |               |       |
| SBP, mmHg*                    | 130 (109–150)                      | 130 (104–146)          | 131 (115–150) | < 0.0 |
| DBP, mmHg*                    | 80 (70–91)                         | 80 (69–90)             | 80 (70–92)    | 0.2   |
| RR. mmHg*                     | 18 (16–20)                         | 18 (16–20)             | 18 (16–20)    | 0.3   |
| HR. /min*                     | 86 (75–99)                         | 86 (74–99)             | 86 (76–100)   | 0.40  |
| SpO2. %*                      | 98 (95–99)                         | 98 (95–99)             | 98 (96–99)    | 0.6   |
| AVPU scale. Alert             | 714 (61.1)                         | 504 (58.1)             | 210 (69.5)    | < 0.0 |
| EMS management                |                                    |                        |               |       |
| Intravenous route             | 176 (15 1)                         | 129 (14 9)             | 47 (15 6)     | 0.7'  |
| Hemorrhage control            | 586 (50.1)                         | 426 (49 1)             | 160 (53 0)    | 0.2   |
| Spinal motion restriction     | 811 (69 4)                         | 606 (69 9)             | 205 (67 9)    | 0.5   |
| Oxygen supply                 | 233(19.9)                          | 176 (20.3)             | 57 (18.9)     | 0.5   |
| In-hospital mortality         | 90 (7 7)                           | 74 (8 5)               | 16(53)        | 0.0   |
| Outcomes                      | <i>y</i> o ( <i>i</i> . <i>i</i> ) | /1(0.5)                | 10 (5.5)      | 0.0   |
| TBI                           | 281 (24 0)                         | 215 (24.8)             | 66 (21.9)     | 0.30  |
| TBI with intracranial injury  | 251(24.0)                          | 105(27.5)              | 56 (18 5)     | 0.5   |
| TDI villi intractantat injury | 231(21.3)<br>240(21.3)             | 193(22.3)<br>102(22.1) | 50(18.5)      | 0.1   |
| I DI-Telated lion-discharge   | 249 (21.3)                         | 192 (22.1)             | 57 (18.9)     | 0.2.  |



| 3        |  |
|----------|--|
| 4        |  |
| 5        |  |
| 0<br>7   |  |
| /        |  |
| 8        |  |
| 9        |  |
| 10       |  |
| 11       |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 15       |  |
| 10       |  |
| 1/       |  |
| 10       |  |
| 19       |  |
| 20       |  |
| 21       |  |
| 2Z       |  |
| 23       |  |
| 24       |  |
| 25       |  |
| 20       |  |
| 27<br>20 |  |
| 20       |  |
| 29       |  |
| 20<br>21 |  |
| 27       |  |
| 22       |  |
| 22<br>24 |  |
| 25       |  |
| 36       |  |
| 30       |  |
| 38       |  |
| 30       |  |
| 40       |  |
| 40<br>41 |  |
| 42       |  |
| 42<br>43 |  |
| 44       |  |
| 45       |  |
| 46       |  |
| 47       |  |
| 48       |  |
| 49       |  |
| 50       |  |
| 51       |  |
| 52       |  |
| 53       |  |
| 54       |  |
| 55       |  |
| 56       |  |
| 57       |  |
| 58       |  |
| 59       |  |

| 613 | Table 2. Discrimination and reclassification of prediction models for outcomes on test |
|-----|----------------------------------------------------------------------------------------|
| 614 | cohort.                                                                                |

| Jonort. |       |                      |        |                        |        |       |
|---------|-------|----------------------|--------|------------------------|--------|-------|
| Outcome | Model | AUROC (95% CI)       | pa     | NRI (95% CI)           | pb     | AUPRC |
| TBI     |       |                      |        |                        |        |       |
|         | LR    | 0.770 (0.698, 0.841) | NA     | NA                     | NA     | 0.492 |
|         | XGB   | 0.809 (0.743, 0.876) | 0.04   | 0.689 (0.427, 0.951)   | < 0.01 | 0.552 |
|         | SVM   | 0.776 (0.708, 0.844) | 0.77   | 0.339 (0.072, 0.607)   | 0.01   | 0.479 |
|         | RF    | 0.800 (0.735, 0.865) | 0.13   | 0.308 (0.047, 0.569)   | 0.02   | 0.532 |
|         | EN    | 0.799 (0.732, 0.867) | 0.06   | 0.698 (0.441, 0.954)   | < 0.01 | 0.564 |
| TBI-I   |       |                      |        |                        |        |       |
|         | LR    | 0.820 (0.751, 0.890) | NA     | NA                     | NA     | 0.551 |
|         | XGB   | 0.838 (0.775, 0.901) | 0.28   | 0.539 (0.258, 0.821)   | < 0.01 | 0.554 |
|         | SVM   | 0.812 (0.748, 0.875) | 0.66   | 0.729 (0.464, 0.994)   | < 0.01 | 0.469 |
|         | RF    | 0.836 (0.772, 0.899) | 0.38   | 0.333 (0.058, 0.607)   | 0.02   | 0.552 |
|         | EN    | 0.844 (0.779, 0.910) | 0.15   | 1.093 (0.845, 1.342)   | < 0.01 | 0.606 |
| TBI-ND  |       |                      |        |                        |        |       |
|         | LR    | 0.767 (0.690, 0.844) | NA     | NA                     | NA     | 0.482 |
|         | XGB   | 0.800 (0.727, 0.873) | 0.07   | 0.605 (0.326, 0.884)   | < 0.01 | 0.496 |
|         | SVM   | 0.778 (0.704, 0.852) | 0.56   | 0.285 (-0.001, 0.572)  | 0.05   | 0.477 |
|         | RF    | 0.809 (0.739, 0.880) | 0.03   | 0.194 (-0.059, 0.448)  | 0.13   | 0.535 |
|         | EN    | 0.811 (0.741, 0.882) | 0.02   | 0.768 (0.496, 1.039)   | < 0.01 | 0.551 |
| TBI-D   |       |                      |        |                        |        |       |
|         | LR    | 0.664 (0.490, 0.838) | NA     | NA                     | NA     | 0.138 |
|         | XGB   | 0.714 (0.512, 0.917) | 0.64   | -0.026 (-0.605, 0.553) | 0.93   | 0.094 |
|         | SVM   | 0.814 (0.718, 0.910) | 0.09   | 0.209 (-0.325, 0.742)  | 0.44   | 0.140 |
|         | RF    | 0.889 (0.801, 0.976) | < 0.01 | -0.204 (-0.742, 0.334) | 0.46   | 0.196 |
|         | EN    | 0.871 (0.764, 0.978) | 0.01   | 0.119 (-0.415, 0.654)  | 0.66   | 0.293 |
|         |       |                      |        |                        |        |       |

<sup>615</sup> <sup>a</sup>Comparing the AUROC and the logistic regression model.

616 <sup>b</sup>Comparing the NRI and the logistic regression model.

617 AUROC, area under the receiver operating characteristic curve; CI, confidence interval;

618 NRI, net reclassification index; AUPRC, area under precision-recall curve; TBI,

619 traumatic brain injury, TBI-I, traumatic brain injury with intracranial injury; TBI-ND;

620 traumatic brain injury with non-discharge; TBI-D, traumatic brain injury with death;

622 machine; RF, random forest; EN, elastic net 623

14 625 15 16

60

624

<sup>621</sup> LR, logistic regression analysis; XGB, extreme gradient boosting; SVM, support vector

| 2          |
|------------|
| ر<br>۸     |
| 4          |
| 5          |
| 6          |
| 7          |
| 8          |
| 9          |
| 10         |
| 11         |
| 11         |
| 12         |
| 13         |
| 14         |
| 15         |
| 16         |
| 17         |
| 18         |
| 10         |
| 19         |
| 20         |
| 21         |
| 22         |
| 23         |
| 24         |
| 25         |
| 25         |
| 20         |
| 2/         |
| 28         |
| 29         |
| 30         |
| 31         |
| 32         |
| 22         |
| 22         |
| 34         |
| 35         |
| 36         |
| 37         |
| 38         |
| 39         |
| 40         |
| 40         |
| 41         |
| 42         |
| 43         |
| 44         |
| 45         |
| 46         |
| 47         |
| <u>1</u> 2 |
| 40         |
| 49         |
| 50         |
| 51         |
| 52         |
| 53         |
| 54         |
| 55         |
| 55         |
| 56         |
| 57         |
| 58         |

59 60

| 626 | Table 3 | Test characteristics of prediction models for outcomes on test cohort. |
|-----|---------|------------------------------------------------------------------------|
|-----|---------|------------------------------------------------------------------------|

| Outcome | Model | Specificity (95% CI) | Sensitivity (95% CI) | PPV (95% CI)      | NPV (95% CI)      | Cutoff |
|---------|-------|----------------------|----------------------|-------------------|-------------------|--------|
| TBI     |       |                      |                      |                   |                   |        |
|         | LR    | 47.5 (40.9, 54.0)    | 80.3 (68.7, 89.1)    | 29.9 (23.3, 37.3) | 89.6 (82.9, 94.3) | 0.136  |
|         | XGB   | 72.5 (66.3, 78.1)    | 80.3 (68.7, 89.1)    | 44.9 (35.7, 54.3) | 92.9 (88.2, 96.2) | 0.268  |
|         | SVM   | 64.8 (58.4, 70.9)    | 80.3 (68.7, 89.1)    | 39.0 (30.7, 47.7) | 92.2 (87.0, 95.8) | 0.191  |
|         | RF    | 68.2 (61.9, 74.1)    | 80.3 (68.7, 89.1)    | 41.4 (32.8, 50.4) | 92.5 (87.6, 96.0) | 0.185  |
|         | EN    | 61.0 (54.5, 67.3)    | 80.3 (68.7, 89.1)    | 36.6 (28.7, 44.9) | 91.7 (86.3, 95.5) | 0.205  |
| TBI-I   |       |                      |                      |                   |                   |        |
|         | LR    | 71.1 (65.0, 76.7)    | 80.4 (67.6, 89.8)    | 38.8 (29.9, 48.3) | 94.1 (89.7, 97.0) | 0.164  |
|         | XGB   | 74.0 (68.0, 79.4)    | 80.4 (67.6, 89.8)    | 41.3 (31.9, 51.1) | 94.3 (90.0, 97.1) | 0.143  |
|         | SVM   | 71.1 (65.0, 76.7)    | 80.4 (67.6, 89.8)    | 38.8 (29.9, 48.3) | 94.1 (89.7, 97.0) | 0.172  |
|         | RF    | 76.0 (70.2, 81.2)    | 80.4 (67.6, 89.8)    | 43.3 (33.6, 53.3) | 94.4 (90.3, 97.2) | 0.205  |
|         | EN    | 81.3 (75.9, 86.0)    | 80.4 (67.6, 89.8)    | 49.5 (38.8, 60.1) | 94.8 (90.9, 97.4) | 0.204  |
| TBI-ND  |       |                      |                      |                   |                   |        |
|         | LR    | 46.1 (39.8, 52.6)    | 80.7 (68.1, 90.0)    | 25.8 (19.6, 32.9) | 91.1 (84.7, 95.5) | 0.090  |
|         | XGB   | 66.5 (60.2, 72.4)    | 80.7 (68.1, 90.0)    | 35.9 (27.7, 44.9) | 93.7 (89.0, 96.8) | 0.242  |
|         | SVM   | 59.2 (52.7, 65.4)    | 80.7 (68.1, 90.0)    | 31.5 (24.1, 39.7) | 92.9 (87.7, 96.4) | 0.147  |
|         | RF    | 60.4 (54.0, 66.6)    | 80.7 (68.1, 90.0)    | 32.2 (24.6, 40.5) | 93.1 (88.0, 96.5) | 0.138  |
|         | EN    | 74.3 (68.3, 79.6)    | 80.7 (68.1, 90.0)    | 42.2 (32.8, 52.0) | 94.3 (90.0, 97.1) | 0.201  |
| TBI-D   |       |                      |                      |                   |                   |        |
|         | LR    | 42.6 (36.9, 48.5)    | 81.8 (48.2, 97.7)    | 5.1 (2.4, 9.5)    | 98.4 (94.4, 99.8) | 0.005  |
|         | XGB   | 57.7 (51.8, 63.5)    | 81.8 (48.2, 97.7)    | 6.8 (3.2, 12.5)   | 98.8 (95.8, 99.9) | 0.002  |
|         | SVM   | 74.2 (68.8, 79.2)    | 81.8 (48.2, 97.7)    | 10.7 (5.0, 19.4)  | 99.1 (96.7, 99.9) | 0.039  |
|         | RF    | 74.9 (69.5, 79.8)    | 81.8 (48.2, 97.7)    | 11.0 (5.1, 19.8)  | 99.1 (96.8, 99.9) | 0.005  |
|         | EN    | 79.0 (73.9, 83.6)    | 81.8 (48.2, 97.7)    | 12.9 (6.1, 23.0)  | 99.1 (96.9, 99.9) | 0.033  |

TBI, traumatic brain injury, TBI-I, traumatic brain injury with intracranial injury; TBI ND; traumatic brain injury with non-discharge; TBI-D, traumatic brain injury with

629 death; LR, logistic regression analysis; XGB, extreme gradient boosting; SVM, support

630 vector machine; RF, random forest; EN, elastic net.631

| 2<br>3<br>4<br>5 | ( |
|------------------|---|
| 5<br>6<br>7      |   |
| 8                |   |
| 9<br>10          |   |
| 11<br>12         |   |
| 13<br>14         |   |
| 15<br>16         |   |
| 17               |   |
| 18<br>19         |   |
| 20<br>21         |   |
| 22<br>23         |   |
| 24<br>25         |   |
| 26<br>27         |   |
| 27               |   |
| 29<br>30         |   |
| 31<br>32         |   |
| 33<br>34         |   |
| 35<br>36         |   |
| 37               |   |
| 30<br>39         |   |
| 40<br>41         |   |
| 42<br>43         | ( |
| 44<br>45         | ( |
| 46<br>47         | ( |
| 48               | ( |
| 49<br>50         |   |
| 51<br>52         |   |
| 53<br>54         |   |
| 55<br>56         |   |
| 57               |   |
| אר               |   |

| 632 | Table 4. Top 5 important variables for outcomes in descending order using model |
|-----|---------------------------------------------------------------------------------|
| 633 | specific metrics                                                                |

| Outcome | Rank | LR                    | XGB                      | RF                    | EN                    |
|---------|------|-----------------------|--------------------------|-----------------------|-----------------------|
| TBI     |      |                       |                          |                       |                       |
|         | 1    | Loss of consciousness | Loss of consciousness    | Loss of consciousness | Loss of consciousness |
|         | 2    | GCS, Eye, 1           | GCS, Eye, 1              | GCS, Eye, 1           | GCS, Motor, 1         |
|         | 3    | GCS, Verbal, 1        | GCS, Verbal, 1           | GCS, Verbal, 1        | GCS, Motor, 2         |
|         | 4    | Light reflex          | Other mechanism          | Light reflex          | GCS, Eye, 1           |
|         | 5    | GCS, Motor, 1         | GCS, Verbal, 2           | GCS, Motor, 1         | GCS, Verbal, 1        |
| TBI-I   |      |                       |                          |                       |                       |
|         | 1    | Loss of consciousness | Loss of consciousness    | Loss of consciousness | GCS, Eye, 1           |
|         | 2    | GCS, Eye, 1           | GCS, Eye, 1              | GCS, Eye, 1           | Loss of consciousness |
|         | 3    | GCS, Verbal, 1        | GCS, Verbal, 1           | GCS, Verbal, 1        | GCS, Motor, 1         |
|         | 4    | Light reflex          | GCS, Verbal, 2           | Light reflex          | GCS, Verbal, 1        |
|         | 5    | GCS, Motor, 1         | Other mechanism          | GCS, Motor, 1         | Light reflex          |
| TBI-ND  |      |                       |                          |                       |                       |
|         | 1    | Loss of consciousness | Loss of consciousness    | Loss of consciousness | Loss of consciousness |
|         | 2    | GCS, Eye, 1           | GCS, Eye, 1              | GCS, Eye, 1           | GCS, Eye, 1           |
|         | 3    | GCS, Verbal, 1        | GCS, Verbal, 1           | GCS, Verbal, 1        | GCS, Motor, 1         |
|         | 4    | Light reflex          | GCS, Verbal, 2           | GCS, Verbal, 2        | GCS, Verbal, 1        |
|         | 5    | GCS, Motor, 1         | GCS, Motor, 1            | GCS, Motor, 4         | Light reflex          |
| TBI-D   |      |                       |                          |                       |                       |
|         | 1    | Loss of consciousness | GCS, Verbal, 1           | GCS, Verbal, 1        | GCS, Motor, 2         |
|         | 2    | GCS, Verbal, 1        | Oxygen<br>saturation<96% | Light reflex          | GCS, Verbal, 1        |
|         | 3    | GCS, Eye, 1           | Fall mechanism           | Loss of consciousness | Loss of consciousness |
|         | 4    | Light reflex          | Afternoon                | GCS, Eye, 1           | Age over 80           |
|         | 5    | GCS, Motor, 1         | Light reflex             | GCS, Motor, 1         | HR 87-99              |

TBI, traumatic brain injury, TBI-I, traumatic brain injury with intracranial injury; TBI ND; traumatic brain injury with non-discharge; TBI-D, traumatic brain injury with

636 death; LR, logistic regression; XGB, extreme gradient boosting; RF, random forest; EN,

637 elastic net; GCS, Glasgow coma scale; HR, heart rate.

638




165x119mm (300 x 300 DPI)

Supplementary Table 1. List of analyzed variables.

| Variables                    | Descriptions                                   | Type of raw data | Category                                                                                                                        | Preprocessing                                                        |
|------------------------------|------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Gender                       | Sex of the patients                            | Binary           | Male, Female                                                                                                                    |                                                                      |
| Age                          | Age of patients                                | Continuous       | 15-39 years, 40-59 years, 60-79 years, and 80- years                                                                            | Discretization and one hot encoding                                  |
| Job                          | Job of patients                                | Categorical      | Unemployed, Student/Housewife;<br>Office/Commercial/Service workers;<br>Industrial/Agricultural/Fishery/Miner<br>worker; Others | One hot encoding<br>Missing data were classified into others         |
| Diabetes                     | History of diabetes mellitus                   | Binary           | Yes, No                                                                                                                         | Missing data were classified into no                                 |
| Hypertension                 | History of hypertension                        | Binary           | Yes, No                                                                                                                         | Missing data were classified into no                                 |
| Location of injury           | Location of injury                             | Categorical      | home/residentialarea/medicalfacility/school/gym;area/medicalRoad/highway;off-road traffic area;Othersothers                     | One hot encoding<br>Missing data were classified into others         |
| Season                       | Season when injury occurred                    | Categorical      | Spring, Summer, Fall, Winter                                                                                                    | One hot encoding                                                     |
| Weekend                      | Whether Injury occurred on weekday or weekend  | Binary           | Weekday, Weekend                                                                                                                |                                                                      |
| Daytime                      | When injury was occurred                       | Categorical      | Night (Midnight to 5AM), Morning (6AM<br>to 11AM), Afternoon (Midday to 5PM),<br>Evening (6PM to 11PM)                          | One hot encoding<br>Missing time were imputed using EMS<br>call time |
| Mechanism of injury          | Mechanism of injury                            | Categorical      | Slip down, Fall down, Traffic accident,<br>Other                                                                                | One hot encoding<br>Missing data were classified into others         |
| Glasgow coma scale<br>eye    | Eye element of Glasgow coma scale              | Categorical      | 1;2;3;4;Unknown                                                                                                                 | One hot encoding                                                     |
| Glasgow coma scale<br>Verbal | Verbal element of Glasgow coma scale           | Categorical      | 1;2;3;4;5;Unknown                                                                                                               | One hot encoding                                                     |
| Glasgow coma scale<br>Motor  | Motor element of Glasgow coma scale            | Categorical      | 1;2;3;4;5;6;Unknown                                                                                                             | One hot encoding                                                     |
| Light Reflex any<br>Abnormal | Any abnormality of light<br>reflex on any side | Categorical      | No, Yes, Unknown                                                                                                                | One hot encoding<br>Missing data were classified into<br>unknown     |

 BMJ Open

| Systolic blood               | Systolic blood pressure                 | Continuous | -107 mmHg, 108-130 mmHg, 131-145                       | Discretization and one hot encodin                                                                                                                                               |
|------------------------------|-----------------------------------------|------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pressure                     |                                         |            | mmHg, 146- mmHg, Unknown                               | Cutoff values for categories<br>calculated from median and interq<br>range of training cohort<br>Missing data were classified                                                    |
|                              |                                         |            |                                                        | unknown                                                                                                                                                                          |
| Diastolic blood<br>pressure  | Diastolic blood pressure                | Continuous | -69 mmHg, 70-80 mmHg, 81-91 mmHg,<br>92- mmHg, Unknown | Discretization and one hot encodir<br>Cutoff values for categories<br>calculated from median and interp<br>range of training cohort<br>Missing data were classified<br>unknown   |
| Heart rate                   | Heart rate                              | Continuous | -74/min, 75-86/min, 87-99/min, 100-/min,<br>Unknown    | Discretization and one hot encodir<br>Cutoff values for categories<br>calculated from median and interq<br>range of training cohort<br>Missing data were classified<br>unknown   |
| Respiratory rate             | Respiratory rate                        | Continuous | -16/min, 17-18/min, 19-20/min, 21-/min,<br>Unknown     | Discretization and one hot encodir<br>Cutoff values for categories<br>calculated from median and interg<br>range of training cohort<br>Missing data were classified<br>unknown   |
| Oxygen saturation            | Oxygen saturation                       | Continuous | -95%, 96-98%, 99%, 100%, Unknown                       | Discretization and one hot encodir<br>Cutoff values for categories<br>calculated from median and intercor<br>range of training cohort<br>Missing data were classified<br>unknown |
| Body temperature             | Body temperature                        | Continuous | -36°C, 36.1-36.3°C, 36.4-36.8°C, 36.9-°C,<br>Unknown   | Discretization and one hot encodir<br>Cutoff values for categories<br>calculated from median and intero-<br>range of training cohort<br>Missing data were classified<br>unknown  |
| Chest pain or abdominal pain | Symptom of chest pain or abdominal pain | Binary     | Yes, No                                                |                                                                                                                                                                                  |

| Fracture, abrasion, or laceration   | Symptom of fracture,<br>abrasion or laceration | Binary | Yes, No |  |
|-------------------------------------|------------------------------------------------|--------|---------|--|
| Loss of<br>consciousness            | Symptom of loss of consciousness               | Binary | Yes, No |  |
| Dyspnea                             | Symptom of dyspnea                             | Binary | Yes, No |  |
| Nose bleeding                       | Symptom of nose bleeding                       | Binary | Yes, No |  |
| Nausea or vomiting                  | Symptom of nausea or vomiting                  | Binary | Yes, No |  |
| Headache, paralysis<br>or dizziness | Symptom of headache, paralysis or dizziness    | Binary | Yes, No |  |

 is or dizziness

## BMJ Open

|                                        | N (%) or Median (IQR) |             |            |         |
|----------------------------------------|-----------------------|-------------|------------|---------|
| Characteristics                        | Total                 | Development | Test       | P-value |
| Total                                  | 1169                  | 867         | 302        |         |
| Demographics                           |                       |             |            |         |
| Male                                   | 809 (69.2)            | 592 (68.3)  | 217 (71.9) | 0.25    |
| Age, years                             | 53 (36-66)            | 52 (35-66)  | 56 (40-69) | < 0.01  |
| Job of patients                        |                       |             |            | < 0.01  |
| Unemployed                             | 299 (25.6)            | 197 (22.7)  | 102 (33.8) |         |
| Student/Housewife                      | 161 (13.8)            | 129 (14.9)  | 32 (10.6)  |         |
| Office/Commercial/Service worker       | 283 (24.2)            | 176 (20.3)  | 107 (35.4) |         |
| Industrial/Agricultural/Fishery/Minery |                       |             |            |         |
| worker                                 | 36 (3.1)              | 25 (2.9)    | 11 (3.6)   |         |
| Others                                 | 390 (33.4)            | 340 (39.2)  | 50 (16.6)  |         |
| Past medical history                   |                       |             |            |         |
| Diabetes                               | 62 (5.3)              | 35 (4.0)    | 27 (8.9)   | < 0.01  |
| Hypertension                           | 105 (9.0)             | 61 (7.0)    | 44 (14.6)  | < 0.01  |
| Circumstances of Trauma                |                       |             |            |         |
| Location of trauma                     |                       |             |            | 0.52    |
| Residential/Nursing/Education/Exercise |                       |             |            |         |
| facility                               | 303 (25.9)            | 218 (25.1)  | 85 (28.1)  |         |
| Road/Highway                           | 444 (38.0)            | 326 (37.6)  | 118 (39.1) |         |
| Off-road traffic area                  | 181 (15.5)            | 140 (16.1)  | 41 (13.6)  |         |
| Others                                 | 241 (20.6)            | 183 (21.1)  | 58 (19.2)  |         |
| Season of trauma                       |                       |             |            | < 0.01  |
| Spring                                 | 249 (21.3)            | 167 (19.3)  | 82 (27.2)  |         |
| Summer                                 | 336 (28.7)            | 253 (29.2)  | 83 (27.5)  |         |
| Fall                                   | 304 (26.0)            | 242 (27.9)  | 62 (20.5)  |         |
| Winter                                 | 280 (24.0)            | 205 (23.6)  | 75 (24.8)  |         |
| Weekday                                | 811 (69.4)            | 599 (69.1)  | 212 (70.2) | 0.72    |
| Time of trauma                         |                       |             |            | 0.83    |
| 6A-MD                                  | 281 (24.0)            | 206 (23.8)  | 75 (24.8)  |         |
| MD-6P                                  | 266 (22.8)            | 203 (23.4)  | 63 (20.9)  |         |
| 6P-MN                                  | 361 (30.9)            | 265 (30.6)  | 96 (31.8)  |         |
| MN-6A                                  | 261 (22.3)            | 193 (22.3)  | 68 (22.5)  |         |
| Mechanism of Trauma                    |                       |             |            | 0.60    |
| Traffic accident                       | 500 (42.8)            | 375 (43.3)  | 125 (41.4) |         |
| Slip down                              | 325 (27.8)            | 232 (26.8)  | 93 (30.8)  |         |
| Fall down                              | 171 (14.6)            | 129 (14.9)  | 42 (13.9)  |         |
| Others                                 | 173 (14.8)            | 131 (15.1)  | 42 (13.9)  |         |
| Chief complaint                        |                       |             |            |         |
| Altered mentality                      | 279 (23.9)            | 223 (25.7)  | 56 (18.5)  | 0.01    |
| Facture/Abrasion/Laceration            | 302 (25.8)            | 204 (23.5)  | 98 (32.5)  | < 0.01  |
| Chest/Abdominal pain                   | 47 (4.0)              | 31 (3.6)    | 16 (5.3)   | 0.19    |
| Dyspnea                                | 25 (2.1)              | 20 (2.3)    | 5 (1.7)    | 0.50    |

Supplementary Table 2. Demographic characteristics of development and test cohorts

| Epistaxis                            | 44 (3.8)              | 30 (3.5)       | 14 (4.6)             | 0.36   |
|--------------------------------------|-----------------------|----------------|----------------------|--------|
| Headache/Paralysis/Dizziness/Vertigo | 95 (8.1)              | 64 (7.4)       | 31 (10.3)            | 0.11   |
| Nausea/Vomiting                      | 32 (2.7)              | 20 (2.3)       | 12 (4.0)             | 0.13   |
| EMS Vital sign assessment            |                       |                |                      |        |
|                                      | 130 (109-             |                | 131 (115-            | 0.01   |
| SBP, mmHg                            | 150)                  | 130 (104-146)  | 150)                 | < 0.01 |
| Missing                              | 65 (5.6)              | 56 (6.5)       | 9 (3.0)              | 0.02   |
| DBP, mmHg                            | 80 (70-91)            | 80 (69-90)     | 80 (70-92)           | < 0.01 |
| Missing                              | 75 (6.4)              | 65 (7.5)       | 10 (3.3)             | 0.01   |
| HR, /min                             | 86 (75-99)            | 86 (74-99)     | 86 (76-100)          | < 0.01 |
| Missing                              | 31 (2.7)              | 28 (3.2)       | 3 (1.0)              | 0.04   |
| RR, /min                             | 18 (16-20)            | 18 (16-20)     | 18 (16-20)           | < 0.01 |
| Missing                              | 36 (3.1)              | 33 (3.8)       | 3 (1.0)              | 0.01   |
| SpO2, %                              | 98 (95-99)            | 98 (95-99)     | 98 (96-99)           | < 0.01 |
| Missing                              | 38 (3.3)<br>36.5 (36- | 33 (3.8)       | 5 (1.7)<br>36.5 (36- | 0.07   |
| Temperature, °C                      | 36.8)                 | 36.5 (36-36.8) | 36.7)                | < 0.01 |
| Missing                              | 94 (8.0)              | 65 (7.5)       | 29 (9.6)             | 0.25   |
| AVPU scale                           |                       |                |                      | < 0.01 |
| Alert                                | 714 (61.1)            | 504 (58.1)     | 210 (69.5)           |        |
| Verbal                               | 168 (14.4)            | 136 (15.7)     | 32 (10.6)            |        |
| Pain                                 | 199 (17.0)            | 158 (18.2)     | 41 (13.6)            |        |
| Unresponsive                         | 88 (7.5)              | 69 (8.0)       | 19 (6.3)             |        |
| Abnormal light reflex                | 165 (14.1)            | 132 (15.2)     | 33 (10.9)            | < 0.01 |
| Missing                              | 66 (5.6)              | 57 (6.6)       | 9 (3.0)              |        |
| GCS scale component                  |                       |                |                      |        |
| Glasgow coma scale eye               |                       |                |                      | < 0.01 |
| 4                                    | 558 (47.7)            | 380 (43.8)     | 178 (58.9)           |        |
| 3                                    | 128 (10.9)            | 109 (12.6)     | 19 (6.3)             |        |
| 2                                    | 110 (9.4)             | 82 (9.5)       | 28 (9.3)             |        |
| 1                                    | 174 (14.9)            | 141 (16.3)     | 33 (10.9)            |        |
| Unknown                              | 199 (17.0)            | 155 (17.9)     | 44 (14.6)            |        |
| Glasgow coma scale Verbal            |                       |                |                      | 0.01   |
| 5                                    | 520 (44.5)            | 359 (41.4)     | 161 (53.3)           |        |
| 4                                    | 118 (10.1)            | 88 (10.1)      | 30 (9.9)             |        |
| 3                                    | 25 (2.1)              | 19 (2.2)       | 6 (2.0)              |        |
| 2                                    | 132 (11.3)            | 105 (12.1)     | 27 (8.9)             |        |
| 1                                    | 174 (14.9)            | 141 (16.3)     | 33 (10.9)            |        |
| Unknown                              | 200 (17.1)            | 155 (17.9)     | 45 (14.9)            |        |
| Glasgow coma scale Motor             |                       |                |                      | < 0.01 |
| 6                                    | 499 (42.7)            | 333 (38.4)     | 166 (55.0)           |        |
| 5                                    | 124 (10.6)            | 103 (11.9)     | 21 (7.0)             |        |
| 4                                    | 158 (13.5)            | 123 (14.2)     | 35 (11.6)            |        |
| 3                                    | 47 (4.0)              | 39 (4.5)       | 8 (2.6)              |        |
| 2                                    | 17 (1.5)              | 15 (1.7)       | 2 (0.7)              |        |
| 1                                    | 125 (10.7)            | 99 (11.4)      | 26 (8.6)             |        |
| Unknown                              | 199 (17.0)            | 155 (17.9)     | 44 (14.6)            |        |
|                                      |                       |                |                      |        |

## BMJ Open

| e 41 of 44 |                                                | BMJ Open                                    |                   |                  |                   |
|------------|------------------------------------------------|---------------------------------------------|-------------------|------------------|-------------------|
|            |                                                |                                             |                   |                  |                   |
|            |                                                |                                             |                   |                  |                   |
|            |                                                |                                             |                   |                  |                   |
|            | EMS management                                 |                                             |                   |                  |                   |
|            | Intravenous route                              | 176 (15.1)                                  | 129 (14.9)        | 47 (15.6)        | 0.77              |
|            | Hemorrhage control                             | 586 (50.1)                                  | 426 (49.1)        | 160 (53.0)       | 0.25              |
|            | Spinal motion restriction                      | 811 (69.4)                                  | 606 (69.9)        | 205 (67.9)       | 0.51              |
|            | Advanced airway management                     | 4 (0.3)                                     | 2 (0.2)           | 2 (0.7)          | 0.28              |
|            | Oxygen supply                                  | 233 (19.9)                                  | 176 (20.3)        | 57 (18.9)        | 0.59              |
|            | Field triage decision scheme criteria          |                                             |                   |                  |                   |
|            | Physiological criteria                         |                                             |                   |                  |                   |
|            | SBP<90 mmHg                                    | 58 (5.0)                                    | 42 (4.8)          | 16 (5.3)         | 0.75              |
|            | RR<10 or >29 /min                              | 11 (0.9)                                    | 11 (1.3)          | 0 (0.0)          | 0.08              |
|            | Non-Alert                                      | 429 (36.7)                                  | 343 (39.6)        | 86 (28.5)        | < 0.01            |
|            | Anatomic criteria                              |                                             |                   |                  |                   |
|            | All penetrating injuries to head, neck,        |                                             |                   |                  |                   |
|            | torso and extremities proximal to elbow        | 24(2.0)                                     | 22(27)            | 11 (2.6)         | 0.29              |
|            | Chast well instability or deformity            | 34(2.9)                                     | 23(2.7)           | 11(3.0)          | 0.58              |
|            | Two or more proximal long bone                 | 4 (0.5)                                     | 4 (0.3)           | 0 (0.0)          | 0.38              |
|            | fractures                                      | 19 (1.6)                                    | 13 (1.5)          | 6 (2.0)          | 0.60              |
|            | Crush, degloved, mangled or                    | 15 (1.0)                                    | 12 (1 5)          |                  | 0.00              |
|            | pulseless extremity                            | 15 (1.3)                                    | 13 (1.5)          | 2 (0.7)          | 0.38              |
|            | Amputation proximal to wrist or ankle          | 9 (0.8)                                     | 9 (1.0)           | 0 (0.0)          | 0.12              |
|            | Pelvic fractures                               | 8 (0.7)                                     | 6 (0.7)           | 2 (0.7)          | >0.95             |
|            | Open or depressed skull fracture               | 17 (1.5)                                    | 9 (1.0)           | 8 (2.6)          | 0.05              |
|            | Paralysis                                      | 21 (1.8)                                    | 11 (1.3)          | 10 (3.3)         | 0.02              |
|            | Mechanism of injury criteria                   |                                             |                   |                  |                   |
|            | Fall > 6 meter                                 | 113 (9.7)                                   | 84 (9.7)          | 29 (9.6)         | >0.95             |
|            | High-risk auto crash                           | 96 (8.2)                                    | 73 (8.4)          | 23 (7.6)         | 0.66              |
|            | Auto vs pedestrian/bicyclist thrown,           | ,                                           |                   |                  |                   |
|            | run over, or with significant (>30km/h)        |                                             |                   |                  |                   |
|            | impact                                         | 119 (10.2)                                  | 83 (9.6)          | 36 (11.9)        | 0.25              |
|            | Motorcycle crash $> 30$ km/hour                | 105 (9.0)                                   | 70 (8.1)          | 35 (11.6)        | 0.07              |
|            | ED disposition                                 |                                             |                   |                  | 0.11              |
|            | Discharge                                      | 320 (27.4)                                  | 241 (27.8)        | 79 (26.2)        |                   |
|            | Transfer                                       | 444 (38 0)                                  | 316 (36 4)        | 128 (42 4)       |                   |
|            | Admitted                                       | 266(21.2)                                   | 376(30.4)         | 120 (42.4)       |                   |
|            | In hospital mortality                          | 300 (31.3)                                  | 270 (31.8)        | 90 (29.8)        |                   |
|            |                                                | 90 (7.7)                                    | 74 (8.5)          | 16 (5.3)         | 0.07              |
|            | Outcomes                                       |                                             |                   |                  |                   |
|            | TBI                                            | 281 (24.0)                                  | 215 (24.8)        | 66 (21.9)        | 0.30              |
|            | TBI with intracranial injury                   | 251 (21.5)                                  | 195 (22.5)        | 56 (18.5)        | 0.15              |
|            | TBI-related non-discharge                      | 249 (21 3)                                  | 192 (22 1)        | 57 (18 9)        | 0.23              |
|            |                                                | 42 (2 7)                                    | 172(22.1)         | 11 (2.5)         |                   |
|            | I BI-related death                             | $\frac{43(3.7)}{\text{ressure} \ RR \ res}$ | 32(3.7)           | emergency depart | >0.95<br>ment: TR |
|            | TXX, interquartine range, SDF, systone 01000 p | 1035010, NN, 105                            | phatory rate, ED, | emergency depart | ment, ID          |
|            | traumatic brain injury.                        |                                             |                   |                  |                   |
|            |                                                |                                             |                   |                  |                   |
|            |                                                |                                             |                   |                  |                   |

Supplementary Figure 1. Receiver operating characteristics of prediction models according to outcomes. TBI, traumatic brain injury; TBI-I, TBI with intracranial hemorrhage or injury; TBI-ND, TBI non-discharge; TBI-D, TBI with death.



Page 43 of 44

 BMJ Open

Supplementary Figure 2. Precision-recall curve of prediction models according to outcomes. TBI, traumatic brain injury; TBI-I, TBI with intracranial hemorrhage or injury; TBI-ND, TBI non-discharge; TBI-D, TBI with death; LR, logistic regression analysis; XGB, extreme gradient boosting; RF, random forest, EN, elastic net.



Supplementary Figure 3. Calibration plot of prediction models according to outcomes. TBI, traumatic brain injury; TBI-I, TBI with intracranial hemorrhage or injury; TBI-ND, TBI non-discharge; TBI-D, TBI with death; p, p-value of Hosmer-Lemeshow test; BS, scaled Brier score.



# TRAPOD

## TRIPOD Checklist: Prediction Model Development and Validation

| Section/Topic<br>Title and abstract | ltem     |          | Checklist Item                                                                                                                                                                                         | Page      |
|-------------------------------------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Title                               | 1        | D;V      | Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted.                                                           | 1         |
| Abstract                            | 2        | D;V      | Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions.                                                | 4         |
| Introduction                        |          |          |                                                                                                                                                                                                        |           |
| Background                          | 3а       | D;V      | Explain the medical context (including whether diagnostic or prognostic) and rationale<br>for developing or validating the multivariable prediction model, including references to<br>existing models. | 7         |
| and objectives                      | 3b       | D;V      | Specify the objectives, including whether the study describes the development or<br>validation of the model or both.                                                                                   | 8         |
| Methods                             |          | 1        |                                                                                                                                                                                                        |           |
|                                     | 4a       | D;V      | Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data sets, if applicable.                                | 8-9       |
| Source of data                      | 4b       | D;V      | Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up.                                                                                         | 9         |
|                                     | 5a       | D;V      | Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres.                                                           | 8-9       |
| Participants                        | 5b       | D;V      | Describe eligibility criteria for participants.                                                                                                                                                        | 10        |
|                                     | 5c       | D;V      | Give details of treatments received, if relevant.                                                                                                                                                      | N/A       |
| Outcome                             | 6a       | D;V      | Clearly define the outcome that is predicted by the prediction model, including how and when assessed.                                                                                                 | 10-1      |
|                                     | 6b       | D;V      | Report any actions to blind assessment of the outcome to be predicted.                                                                                                                                 | N/A       |
| Productors                          | 7a       | D;V      | Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were measured.                                                          | 11        |
| Fieulciois                          | 7b       | D;V      | Report any actions to blind assessment of predictors for the outcome and other predictors.                                                                                                             | N/A       |
| Sample size                         | 8        | D;V      | Explain how the study size was arrived at.                                                                                                                                                             | 14        |
| Missing data                        | 9        | D;V      | Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method.                                                   | 11        |
|                                     | 10a      | D        | Describe how predictors were handled in the analyses.                                                                                                                                                  | 11        |
| Statistical                         | 10b      | D        | Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation.                                                                          | 11-1      |
| analysis                            | 10c      | V        | For validation, describe how the predictions were calculated.                                                                                                                                          | 12-       |
| methods                             | 10d      | D;V      | Specify all measures used to assess model performance and, if relevant, to compare multiple models.                                                                                                    | 12-1      |
|                                     | 10e      | V        | Describe any model updating (e.g., recalibration) arising from the validation, if done.                                                                                                                | N//       |
| Risk groups<br>Development          | 11<br>12 | D;V<br>V | For validation, identify any differences from the development data in setting, eligibility                                                                                                             | N/A       |
| vs. validation                      |          |          | criteria, outcome, and predictors.                                                                                                                                                                     |           |
| Results                             | 13a      | D;V      | Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.  | 14        |
| Participants                        | 13b      | D;V      | Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome.     | 14        |
|                                     | 13c      | V        | For validation, show a comparison with the development data of the distribution of<br>important variables (demographics, predictors and outcome).                                                      | 14        |
| Madal                               | 14a      | D        | Specify the number of participants and outcome events in each analysis.                                                                                                                                | 14        |
| development                         | 14b      | D        | If done, report the unadjusted association between each candidate predictor and outcome.                                                                                                               | N/J       |
| Model                               | 15a      | D        | Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).                            | N/J       |
| specification                       | 15b      | D        | Explain how to the use the prediction model.                                                                                                                                                           | 14-       |
| Model<br>performance                | 16       | D;V      | Report performance measures (with CIs) for the prediction model.                                                                                                                                       | 14-1      |
| Model-updating                      | 17       | V        | If done, report the results from any model updating (i.e., model specification, model performance).                                                                                                    | N/        |
| Discussion                          |          |          |                                                                                                                                                                                                        | -         |
| Limitations                         | 18       | D;V      | Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).                                                                                       | 19        |
| Interprotation                      | 19a      | V        | For validation, discuss the results with reference to performance in the development data, and any other validation data.                                                                              | 16-       |
| interpretation                      | 19b      | D;V      | Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence.                                                         | 16        |
| Implications<br>Other information   | 20       | D;V      | Discuss the potential clinical use of the model and implications for future research.                                                                                                                  |           |
| Supplementary                       | 21       |          | Provide information about the availability of supplementary resources, such as study                                                                                                                   | Curr      |
| information<br>Funding              | 22       | D;V      | protocol, Web calculator, and data sets.<br>Give the source of funding and the role of the funders for the present study.                                                                              | Sup<br>20 |
|                                     |          | -,-      |                                                                                                                                                                                                        |           |

\*Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model are denoted by V, and items relating to both are denoted D;V. We recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration document.

## **BMJ Open**

## Development and validation of a prehospital-stage prediction tool for traumatic brain injury: a multicentre retrospective cohort study in Korea

| Journal:                             | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                        | bmjopen-2021-055918.R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Article Type:                        | Original research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Date Submitted by the Author:        | 25-Oct-2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Complete List of Authors:            | Choi, Yeong Ho; Seoul National University Hospital, Emergency<br>Department; Seoul National University Hospital Biomedical Research<br>Institute, Laboratory of Emergency Medical Services<br>Park, Jeong Ho; Seoul National University Hospital, Emergency<br>Department; Seoul National University Hospital Biomedical Research<br>Institute, Laboratory of Emergency Medical Services<br>Hong, Ki Jeong; Seoul National University Hospital, Emergency Medicine;<br>Seoul National University Hospital Biomedical Research Institute,<br>Laboratory of Emergency Medical Services<br>Ro, Young Sun; Seoul National University Hospital, Emergency Medicine;<br>Seoul National University Hospital Biomedical Research Institute,<br>Laboratory of Emergency Medical Services<br>Ro, Young Sun; Seoul National University Hospital, Emergency Medicine;<br>Seoul National University Hospital Biomedical Research Institute,<br>Laboratory of Emergency Medical Services<br>Song, Kyoung Jun; Seoul Metropolitan Boramae Hospital, Department of<br>Emergency Medicine; Seoul National University Hospital Biomedical<br>Research Institute, Laboratory of Emergency Medical Services<br>Shin, Sang Do; Seoul National University Hospital, Department of<br>Emergency Medicine; Seoul National University Hospital Biomedical<br>Research Institute, Laboratory of Emergency Medical Services |
| <b>Primary Subject<br/>Heading</b> : | Emergency medicine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Secondary Subject Heading:           | Emergency medicine, Health informatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Keywords:                            | ACCIDENT & EMERGENCY MEDICINE, Neurological injury < NEUROLOGY,<br>Trauma management < ORTHOPAEDIC & TRAUMA SURGERY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

## SCHOLARONE<sup>™</sup> Manuscripts



I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| 2        |    |                                                                                       |
|----------|----|---------------------------------------------------------------------------------------|
| 3<br>4   | 1  |                                                                                       |
| 5        | I  | Title page                                                                            |
| 6<br>7   | 2  |                                                                                       |
| /<br>8   | -  |                                                                                       |
| 9        | 3  | 1. Title                                                                              |
| 10       |    |                                                                                       |
| 11<br>12 | 4  | Development and validation of a prehospital-stage prediction tool for traumatic brain |
| 12       | _  |                                                                                       |
| 14       | 5  | injury: a multicentre retrospective cohort study in Korea                             |
| 15       | 6  |                                                                                       |
| 16       | 0  |                                                                                       |
| 18       | 7  | 2. Authors                                                                            |
| 19       | ,  |                                                                                       |
| 20<br>21 | 8  | Yeong Ho Choi, MD                                                                     |
| 22       |    |                                                                                       |
| 23       | 9  | Department of Emergency Medicine, Seoul National University College of Medicine and   |
| 24       | 10 |                                                                                       |
| 25<br>26 | 10 | Hospital, Seoul, Republic of Korea                                                    |
| 27       | 11 | Laboratory of Emergency Medical Services, Seoul National University Hospital          |
| 28       | 11 | Eaboratory of Emergency Wedlear Services, Scour National Oniversity Hospital          |
| 29       | 12 | Biomedical Research Institute, Seoul, Korea                                           |
| 31       |    |                                                                                       |
| 32       | 13 | E-mail: d2uk87@gmail.com                                                              |
| 33<br>34 |    |                                                                                       |
| 35       | 14 |                                                                                       |
| 36       | 15 | Joong Ho Park MD                                                                      |
| 37       | 15 | Jeong Ho Tark, WD                                                                     |
| 30<br>39 | 16 | Department of Emergency Medicine, Seoul National University College of Medicine and   |
| 40       |    |                                                                                       |
| 41       | 17 | Hospital, Seoul, Republic of Korea                                                    |
| 42<br>43 | 10 |                                                                                       |
| 44       | 18 | Laboratory of Emergency Medical Services, Seoul National University Hospital          |
| 45       | 10 | Riomedical Research Institute, Secul, Korea                                           |
| 46<br>47 | 17 | Diometical Research Institute, Scoul, Rolea                                           |
| 48       | 20 | E-mail: timthe@gmail.com                                                              |
| 49       |    | $\bigcirc$                                                                            |
| 50<br>51 | 21 |                                                                                       |
| 52       |    |                                                                                       |
| 53       | 22 | Ki Jeong Hong, MD, PhD                                                                |
| 54       | 22 | Department of Emergency Medicine, Second National University College of Medicine and  |
| 56       | 23 | Department of Emergency Medicine, Seour National University Conege of Medicine and    |
| 57       | 24 | Hospital, Seoul, Republic of Korea                                                    |
| 58<br>50 |    | 1 , , . <b>r</b>                                                                      |
| 60       |    |                                                                                       |

| 1<br>2         |    |                                                                                     |
|----------------|----|-------------------------------------------------------------------------------------|
| 3<br>4<br>5    | 25 | Laboratory of Emergency Medical Services, Seoul National University Hospital        |
| 6<br>7         | 26 | Biomedical Research Institute, Seoul, Korea                                         |
| 8<br>9         | 27 | E-mail: emkjhong@gmail.com                                                          |
| 10<br>11<br>12 | 28 |                                                                                     |
| 13<br>14       | 29 | Young Sun Ro, MD, DrPH                                                              |
| 15<br>16       | 30 | Department of Emergency Medicine, Seoul National University College of Medicine and |
| 17<br>18<br>19 | 31 | Hospital, Seoul, Republic of Korea                                                  |
| 20<br>21       | 32 | Laboratory of Emergency Medical Services, Seoul National University Hospital        |
| 22<br>23       | 33 | Biomedical Research Institute, Seoul, Korea                                         |
| 24<br>25<br>26 | 34 | E-mail: ro.youngsun@gmail.com                                                       |
| 20<br>27<br>28 | 35 |                                                                                     |
| 29<br>30       | 36 | Kyoung Jun Song, MD, PhD                                                            |
| 31<br>32<br>22 | 37 | Department of Emergency Medicine, Seoul Metropolitan Government Seoul National      |
| 33<br>34<br>35 | 38 | University Boramae Medical Center, Seoul, Republic of Korea                         |
| 36<br>37       | 39 | Laboratory of Emergency Medical Services, Seoul National University Hospital        |
| 38<br>39       | 40 | Biomedical Research Institute, Seoul, Korea                                         |
| 40<br>41<br>42 | 41 | E-mail: skciva@gmail.com                                                            |
| 43<br>44       | 42 |                                                                                     |
| 45<br>46       | 43 | Sang Do Shin, MD, PhD                                                               |
| 47<br>48<br>49 | 44 | Department of Emergency Medicine, Seoul National University College of Medicine and |
| 50<br>51       | 45 | Hospital, Seoul, Republic of Korea                                                  |
| 52<br>53       | 46 | Laboratory of Emergency Medical Services, Seoul National University Hospital        |
| 54<br>55<br>56 | 47 | Biomedical Research Institute, Seoul, Korea                                         |
| 57<br>58       | 48 | E-mail: shinsangdo@gmail.com                                                        |
| 59<br>60       |    |                                                                                     |
|                |    | 2                                                                                   |

| 1<br>2         |    |                                                                                     |
|----------------|----|-------------------------------------------------------------------------------------|
| 3<br>4<br>5    | 49 |                                                                                     |
| 6<br>7         | 50 | 3. Address correspondence and requests for reprints: Jeong Ho Park, MD              |
| 8<br>9<br>10   | 51 | Address: Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul 03080, |
| 10<br>11<br>12 | 52 | Korea                                                                               |
| 13<br>14       | 53 | Phone: +82-2-2072-1800                                                              |
| 15<br>16<br>17 | 54 | FAX: +82-2-741-7855                                                                 |
| 17<br>18<br>19 | 55 | E-mail: timthe@gmail.com                                                            |
| 20<br>21       | 56 |                                                                                     |
| 22<br>23       | 57 |                                                                                     |
| 24<br>25<br>26 | 58 |                                                                                     |
| 27<br>28       |    |                                                                                     |
| 29<br>30       |    |                                                                                     |
| 31<br>32<br>33 |    |                                                                                     |
| 34<br>35       |    |                                                                                     |
| 36<br>37       |    |                                                                                     |
| 38<br>39<br>40 |    |                                                                                     |
| 40<br>41<br>42 |    |                                                                                     |
| 43<br>44       |    |                                                                                     |
| 45<br>46       |    |                                                                                     |
| 47<br>48<br>49 |    |                                                                                     |
| 50<br>51       |    |                                                                                     |
| 52<br>53       |    |                                                                                     |
| 54<br>55<br>56 |    |                                                                                     |
| 57<br>58       |    |                                                                                     |
| 59<br>60       |    |                                                                                     |
|                |    | 3                                                                                   |

60

BMJ Open

| 3              |    |                                                                                               |
|----------------|----|-----------------------------------------------------------------------------------------------|
| 4<br>5         | 59 | Abstract                                                                                      |
| 6<br>7         | 60 | Objectives: Predicting diagnosis and prognosis of traumatic brain injury (TBI) at the         |
| 8<br>9<br>10   | 61 | prehospital stage is challenging; however, using comprehensive prehospital information and    |
| 11<br>12       | 62 | machine learning may improve the performance of the predictive model. We developed and        |
| 13<br>14       | 63 | tested predictive models for TBI that use machine learning algorithms using information that  |
| 15<br>16<br>17 | 64 | can be obtained in the prehospital stage.                                                     |
| 18<br>19       | 65 | Design: This was a multi-center retrospective study.                                          |
| 20<br>21       | 66 | Setting and participants: This study was conducted at three tertiary academic emergency       |
| 22<br>23<br>24 | 67 | departments (EDs) located in an urban area.of South Korea. The data from adult patients with  |
| 24<br>25<br>26 | 68 | severe trauma who were assessed by emergency medical service (EMS) providers and              |
| 27<br>28       | 69 | transported to three participating hospitals between 2014 to 2018 were analyzed.              |
| 29<br>30       | 70 | Results: We developed and tested five machine learning algorithms—logistic regression         |
| 31<br>32<br>33 | 71 | analyses, extreme gradient boosting, support vector machine, random forest, and elastic net   |
| 34<br>35       | 72 | (EN)-to predict TBI, TBI with intracranial hemorrhage or injury (TBI-I), TBI with             |
| 36<br>37       | 73 | emergency department or admission result of admission or transferred (TBI-ND), and TBI        |
| 38<br>39<br>40 | 74 | with emergency department or admission result of death (TBI-D). Of the 1,169 patients in the  |
| 41<br>42       | 75 | development cohort, TBI, TBI-I, TBI-ND, and TBI-D was 24.0%, 21.5%, 21.3%, and 3.7%,          |
| 43<br>44       | 76 | respectively. The EN model yielded an AUROC of 0.799 for TBI, 0.844 for TBI-I, 0.811 for      |
| 45<br>46<br>47 | 77 | TBI-ND, and 0.871 for TBI-D. The EN model also yielded the highest specificity, and           |
| 48<br>49       | 78 | significant reclassification improvement. Variables related to loss of consciousness, Glasgow |
| 50<br>51       | 79 | Coma Scale, and light reflex were the three most important variables to predict all outcomes. |
| 52<br>53       | 80 | Conclusion: Our results inform the diagnosis and prognosis of TBI. Machine learning           |
| 55<br>56       | 81 | models resulted in significant performance improvement over that with logistic regression     |
| 57<br>58<br>59 | 82 | analyses, and the best performing model was EN.                                               |

| 2              |    |                                                                            |
|----------------|----|----------------------------------------------------------------------------|
| 3<br>4<br>5    | 83 |                                                                            |
| 6<br>7<br>8    | 84 | Keywords: brain injuries; traumatic; outcome; prognosis; machine learning. |
| 9<br>10        | 85 |                                                                            |
| 11<br>12<br>12 | 86 |                                                                            |
| 13<br>14<br>15 |    |                                                                            |
| 16<br>17       |    |                                                                            |
| 18<br>19<br>20 |    |                                                                            |
| 20<br>21<br>22 |    |                                                                            |
| 23<br>24       |    |                                                                            |
| 25<br>26<br>27 |    |                                                                            |
| 27<br>28<br>29 |    |                                                                            |
| 30<br>31       |    |                                                                            |
| 32<br>33<br>34 |    |                                                                            |
| 35<br>36       |    |                                                                            |
| 37<br>38       |    |                                                                            |
| 40<br>41       |    |                                                                            |
| 42<br>43       |    |                                                                            |
| 44<br>45<br>46 |    |                                                                            |
| 47<br>48       |    |                                                                            |
| 49<br>50       |    |                                                                            |
| 52<br>53       |    |                                                                            |
| 54<br>55       |    |                                                                            |
| 56<br>57<br>58 |    |                                                                            |
| 59<br>60       |    |                                                                            |
|                |    | 5                                                                          |

Strengths and limitations of this study • This is an original research to develop and internally validate prehospital-stage prediction models for traumatic brain injury using high dimensional prehospital information. • Machine learning models showed acceptable-to-excellent discrimination performance. • The retrospective observational study design could lead to certain types of bias (eg, selection bias, confounding bias). , for our • External validation for other areas should be conducted to generalize the developed prediction model. 

## 96 Introduction

Traumatic brain injury (TBI) is a significant health burden worldwide.<sup>1</sup> It is the leading cause of mortality and disability among young individuals.<sup>2</sup> Patients with TBI are vulnerable to hypoxia and hypotension in the early period of their course and these insults are associated with poor outcomes.<sup>34</sup> Prehospital assessment and management of patients with TBI is important,<sup>5</sup> as early prediction of TBI and correcting hypoxia and hypotension during the prehospital stage could be beneficial.<sup>3</sup> However, the identification of TBI can often be challenging in the prehospital area.<sup>5</sup> Vulnerable patients, including the elderly or patients who take medications like anti-platelet or anticoagulant drugs, often have TBI owing to low energy insults.<sup>6</sup> Prehospital clinical signs are also reported to have poor sensitivity for raised intracranial pressure following TBI.<sup>7</sup> 

Several prediction models to target patients with TBI have been reported.<sup>8-12</sup> However, most incorporated information that is available only in the hospital, such as laboratory results or image findings.<sup>8913</sup> In addition, most previous prediction models focused on the outcomes of patients with TBI,<sup>14-16</sup> not the identification of TBI. Previously, predictors of older adult patients with TBI who required transport to a trauma center were identified. However, this was consensus-based; therefore, there is a lack of clinical data.<sup>17</sup> Accurate prehospital prediction of TBI and its severity could prevent delays to definite care for patients with TBI. Most emergency medical service (EMS) providers collect various information including demographics, past medical history, circumstances of the trauma, and clinical signs including vital signs; but those variables have not been evaluated together as predictors of TBI and its severity. Using a variety of prehospital information, and adapting newly emerging machine learning algorithms for predicting diagnosis, disposition, and outcome of TBI, might improve the accuracy of identification of TBI and its severity.

**BMJ** Open

120 The aim of this study was to develop and test prediction models for the diagnosis and 121 prognosis of TBI using prehospital information and machine learning algorithms among 122 patients with severe trauma. We hypothesized that incorporating prehospital information 123 could achieve acceptable performance in predicting TBI, and machine learning algorithms 124 could contribute to performance improvement.

## 125 Materials and Methods

126 Study design and settings

This was a multi-center retrospective study conducted at three tertiary academic emergency departments (EDs) located in an urban area (Seoul and Bundang) of South Korea. These EDs received 50,000–90,000 visits annually and are not designated trauma centers. We adhered to the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) statement on reporting predictive models.<sup>18</sup>

The EMS system in South Korea is operated by the National Fire Agency. The EMS level is considered intermediate, as EMS providers can perform bleeding control, spinal motion restriction, immobilization and splintage, advanced airway management, and administer fluid intravenously. As only physicians can declare death in South Korea, EMS providers cannot stop resuscitation and must transport all patients including those in cardiac arrest to the ED. For all EMS transport, EMS providers record an ambulance run-sheet by law. Since 2012, the National Fire Agency adapted the United States Centers for Disease Control and Prevention of the United States field triage decision scheme to evaluate patients with trauma,<sup>19</sup> and they developed an EMS severe trauma in-depth registry. For said patients, EMS providers evaluate whether patients met trauma center transport criteria in the field triage decision scheme. If they did, the in-depth registry should be recorded, and EMS 

Page 10 of 48

transport protocol recommends that patients are transferred to a near regional trauma center;but it is not mandatory.

The Ministry of Health and Welfare designated three ED levels according to the resources and functional requirements; level 1 (n = 36) and level 2 (n = 118) EDs have more resources and better facilities for emergency care and must be staffed by emergency physicians 24 hours a day/365 days a year; whereas level 3 EDs (n = 248) can be staffed by general physicians. In accordance with the EMS Act, all EDs participated annually in a nationwide functional performance evaluation program, which was administered by the Ministry of Health and Welfare. The three participating hospitals in this study were all level 1 EDs that can perform acute trauma care for patients with TBI 24 hours a day/365 days a year—including emergency neurosurgical operation and angiographic interventions. The Ministry of Health and Welfare also designated trauma centers in Korea. Total 16 trauma centers were designated as trauma centers in 2018. Among them, 15 were Level I EDs.

#### 156 Data source

We used an EMS ambulance run-sheet, EMS trauma in-depth registry, and ED administrative database. The EMS database information, including ambulance run-sheet and trauma in-depth registry, was collected electronically by EMS providers using tablets. The EMS record review for each severe trauma has been performed by EMS medical directors of each fire department since 2012. The ED administrative database contains patients' demographic characteristics, route of visit, time of visit, and diagnosis and disposition. We merged the EMS database with the ED administrative database based on patients' arrival time, age, and sex.

## *Study population*

We included adult (age  $\geq$  15) EMS users who were transported to participating hospitals with severe trauma from January 1, 2014 to December 31, 2018. Severe trauma was assessed by EMS providers and defined as patients who fulfilled trauma center transport criteria (physiologic criteria, anatomic criteria, mechanism of injury criteria, or special patients or system consideration criteria) in the field triage decision scheme.<sup>20</sup> Patients were excluded if they had out-of-hospital cardiac arrest or their main cause of EMS call was medical or nontraumatic injury including choking, drowning, fire, flame, heat, cold, poisoning, chemical, sexual assault, weather, or natural disaster. Patients with an unknown outcome were also excluded.

### *Outcome measure*

The primary outcome measure was the diagnosis of TBI. TBI diagnosis was defined as patients whose diagnostic code, according to the International Statistical Classification of Diseases and Related Health Problems (ICD-10), was between S06.0 and S06.9.<sup>21 22</sup> Although S06.7 is codes for the duration of unconscious, we included S06.7 in our study outcome according to the previous studies. <sup>21-23</sup> However, no patients only have S06.7 code for TBI diagnosis in our study. The ED administrative database has two types of primary diagnostic codes: the final diagnostic codes at ED discharge and at hospital discharge. We extracted up to 20 codes for each. We defined the diagnostic code as positive for TBI if a confirmative diagnostic code was found in any level of the discharge record. Because ICD 10 code is not directly linked to the severity of TBI, we further included a variety of additional outcome measures to perform analysis that take into account severity. A secondary outcome measure was TBI diagnosis with intracranial hemorrhage or injury (TBI-I), defined as TBI

patients excluding concussion (ICD 10 code with S06.0). A tertiary outcome was TBI with
non-discharge (TBI-ND), defined as TBI patients excluding ED discharged patients. Because
TBI-ND patients needed further management by hospitalization or transfer, we thought that
this group of patients had clinically significant severity. A quaternary outcome measure was
TBI with death (TBI-D), defined as TBI patients who died in ED or hospital. Because TBI-D
patients are most severe group, TBI-D patients were also included in TBI-ND.

## 194 Variables and preprocessing

We collected patients' demographic data, circumstances of trauma, chief complaints, EMS vital sign assessment, EMS management and hospital outcomes. The detailed descriptions of each variable are described in Supplementary Table 1. Categorical variables were preprocessed with the one-hot encoding (dummy variable encoding) method. Continuous variables were divided into four quantiles and unknown or missing values were categorized as a fifth category. One-hot encoding was also applied to discretized continuous variables. Preprocessing measures including discretization results of continuous variables are presented in Supplementary Table 1.

#### 203 Model development

We developed prediction models for outcomes by using five machine learning algorithms:
traditional logistic regression analyses (LR), extreme gradient boost (XGB), random forest
(RF), support vector machine (SVM), and elastic net (EN). The LR algorithm was chosen as
baseline comparison algorithm because it is widely used in the medical field and has been
used for previous prediction model development in TBI studies.<sup>12</sup> Backward stepwise LR was
selected for feature selection, and we used the default parameter of stepAIC function from
MASS package (version 7.3-53.1) in R for the selection. The other four algorithms were

Page 13 of 48

#### **BMJ** Open

selected based on their ability to model nonlinear associations, their relative ease of implementation, and their general acceptance in the machine learning community.<sup>24-26</sup> All algorithms have a method to calculate the probability of the outcome occurring and algorithms other than LR need hyperparameter tuning for proper training and prediction. The study population was split into training cohorts that included development, validation, and test cohorts. The development cohort included a training cohort from which each of the machine learning prediction models were derived and a validation cohort in which the prediction models were applied to adjust the hyperparameters of the algorithm. The test cohort was used for the final evaluation of the performance of the prediction models. Chronological split was used for data split. Patients enrolled from January 1, 2014 to December 31, 2016 were used as the training cohort; patients from January 1, 2017 to December 31, 2017 were used as the validation cohort; and patients from January 1, 2018 to December 31, 2018 were used as the test cohort. Hyperparameter tuning using validation data was conducted by, first, a random search within 10,000 randomly generated hyperparameters; then, grid search hyperparameters chosen around from random search with five candidates per each hyperparameter. Finally, hyperparameter with best area under receiver-operation curve (AUROC) in validation cohorts were selected. Test data were separated during training and tuning processes and used to measure algorithm performance.

## 229 Statistical analysis

The demographic findings and outcomes of the study population were described in this study.
Additionally, the baseline characteristics of the training cohort and the validation cohort were
compared. The continuous variables were compared by using Student's T-test or the
Wilcoxon rank sum test, and the categorical variables were compared by using the chisquared test or the Fisher exact test, as appropriate.

| 2   |
|-----|
| 3   |
| 5   |
| 4   |
| 5   |
| 2   |
| 6   |
| 7   |
| 0   |
| ð   |
| 9   |
| 10  |
| 10  |
| 11  |
| 12  |
| 12  |
| 13  |
| 14  |
| 1 - |
| 15  |
| 16  |
| 17  |
| 17  |
| 18  |
| 19  |
| 20  |
| 20  |
| 21  |
| 22  |
| 22  |
| 23  |
| 24  |
| 27  |
| 25  |
| 26  |
| 20  |
| 27  |
| 28  |
| 20  |
| 29  |
| 30  |
| 21  |
| 21  |
| 32  |
| 22  |
| 55  |
| 34  |
| 35  |
| 55  |
| 36  |
| 37  |
| 20  |
| 38  |
| 39  |
| 40  |
|     |
| 41  |
| 42  |
| 42  |
| 43  |
| 44  |
| 15  |
| 43  |
| 46  |
| 47  |
|     |
| 48  |
| 49  |
| 50  |
| 50  |
| 51  |
| 52  |
| 52  |
| 53  |
| 54  |
| 5-  |
| 55  |
| 56  |
|     |
| 5/  |
| 58  |
| 50  |
| 72  |
| 60  |

1

235 We assessed discrimination performance by comparing the AUROC for each model in the test cohort. We considered an AUROC of 0.5 as no discrimination, 0.7 to 0.8 as 236 237 acceptable, 0.8 to 0.9 as excellent, and more than 0.9 is considered outstanding.<sup>27</sup> Area under 238 the precision-recall curve (AUPRC) was assessed for each model in the test cohort. We 239 assessed the calibration power by using the Hosmer–Lemeshow test, the scaled Brier score, 240 and a calibration plot in the test cohort. For the delineation of test characteristics, the sensitivity, specificity, and positive and negative predictive values with 95% CIs were 241 determined using a cutoff probability at a sensitivity of 80%. Given that poor sensitivity of 242 243 clinical predictors for TBI in previous studies,<sup>7</sup> and almost 75% sensitivity level for other severe disease prediction in prehospital settings,<sup>28 29</sup> we thought that 80% sensitivity was an 244 245 appropriate target for our prediction model. We calculated false positive rate as 1 - 1246 specificity. The added prognostic power of each prediction model compared to the LR model 247 was also evaluated by continuous net reclassification index (NRI). NRI is a statistical method 248 to quantify how well a new model correctly reclassifies the study population with the other models. Details of NRI are described elsewhere.<sup>30</sup> 249 250 By using a model-specific metric, the variable importance of each model was

assessed, except for the SVM algorithm. The variable importance was determined by the
coefficient effect sizes for the LR model. The XGB and RF models were ranked by variable
importance on the selection frequency of the variable as a decision node. The absolute value
of the coefficients corresponding to the tuned model were used for the measurement of
variable importance in the EN algorithm. To compare the variable importance of each
prediction models efficiently, top 5 variables of each model was presented.

**BMJ** Open

All statistical analyses were performed with R Statistical Software (version 4.0.1; R Foundation for Statistical Computing, Vienna, Austria). Packages included caret, e1071, xgboost, randomForest, and glmnet for the analysis of the machine learning algorithms.

260 Patient and public involvement

This research was done without patient involvement. Patients were not invited to comment on the study design and were not consulted to develop patient relevant outcomes or interpret the results. Patients were not invited to contribute to the writing or editing of this document for readability or accuracy.

**Result** 

## *Demographic findings*

Among the 157,134 EMS users transported to three hospitals from 2014 to 2018, 1,169 patients were included in the final analysis (Figure 1). Patients were split into 2 datasets: data from 2014 to 2017, consisting of 867 patients (74.2%) in the development cohort; and the remaining data from 2018 consisting of 302 patients (25.8%) in the test cohort (Figure 1). Among the development cohort, data from 2014 to 2016—consisting of 661 patients—were used as the training cohort, and 2017 data—consisting of 206 patients—were used as the validation cohort in the model.

Table 1 shows key demographic findings of the development and test cohorts. Median (IQR) age was 52 years (35–66) in the development cohort and 56 years (40–69) in the test cohort. Traffic accident was most common mechanism of trauma (43.3% for the development cohort and 41.4% for the test cohort). The proportion of patients with alert mental status was 58.1% for the development cohort and 69.5% in the test cohort. Overall, TBI, TBI-I, TBIND, TBI-D occurred in 215 (24.8%), 195 (22.5%), 192 (22.1%), and 32 (3.7%) in the
development cohort; and 66 (21.9%), 56 (18.5%), 57 (18.9%), and 11 (3.6%) in the test
cohort. All demographic characteristics of the development and test cohorts are described in
Supplementary Table 2.

## 284 Main analysis

The final hyperparameters of prediction models are described in Supplementary Table 3. The discrimination and NRI of the prediction models on the test cohort are presented in Table 2. The AUROC for outcomes were 0.770–0.806 for TBI, 0.820–0.844 for TBI-I, 0.767–0.811 for TBI-ND, and 0.664–0.889 for TBI-D (Table 2 and Supplementary Figure 1). Compared to LR, XGB performed significantly well in predicting TBI, and RF and EN performed well in predicting TBI-ND and TBI-D. EN model generally performed well on all outcomes. The AUROC of the EN model for outcomes were 0.799 (95% CI: 0.732–0.867), 0.844 (95% CI: 0.779-0.910), 0.811 (95% CI: 0.741-0.882), and 0.871 (95% CI: 0.764-0.978) for TBI, TBI-I, TBI-ND, and TBI-D, respectively. Machine learning models generally resulted in significant reclassification improvement compared to LR for TBI, TBI-I, and TBI-ND. For prediction TBI-D, AUROC difference, and reclassification improvement compared to LR was non-significant in all machine learning models. The precision-recall curve is shown in Supplementary Figure 2. AUPRC were 0.479–0.564 for TBI, 0.469–0.606 for TBI-I, 0.477– 0.551 for TBI-ND and 0.094–0.140 for TBI-D. EN model showed highest AUPRC among all prediction models. Supplementary Figure 3 shows the calibration plot of prediction models according to outcomes. All prediction models generally showed poor calibration. Given the high AUROC and AUPRC among prediction models, and reclassification improvement

compared to LR, we determined EN as a best-performing prediction model in our analysis. Using cutoff of 80% sensitivity, specificity was 47.5-68.2% for TBI, 71.1-81.3% for TBI-I, 46.1–74.3% for TBI-ND, and 42.6--.0 for TBI-D. EN showed the highest specificity and PPV among all outcomes. False positive rate (1 – specificity) was almost 19.7–39.0% according to outcomes in the EN model. The 95% CI of specificity of the EN model was not overlapped with LR in TBI, TBI-ND, and TBI-D predictions. NPV was almost 89-99% for all outcomes in the prediction models (Table 3).

Table 4 shows the top 5 variable importance of prediction models according to outcomes. Variables related to patients' symptom of loss of consciousness, Glasgow Coma Scale component, and light reflex were the three most important variables to predict all outcomes. Compared to other outcomes, the difference between variable importance for TBI-D was prominent, and the mechanism of injury, heart rate, and age showed the highest Zie, importance for predicting TBI-D.

#### Discussion

By using prehospital data from EMS users visiting three teaching hospitals, we developed and validated prediction models for the diagnosis and prognosis of TBI using machine learning algorithms among patients with severe trauma, identified by EMS providers in South Korea. We found that 24% of patients were diagnosed with TBI, 22% showed intracranial injury, 21% could not be discharged from the ED with a TBI diagnosis, and 4% showed TBI-related death. Machine learning models showed acceptable-to-excellent discrimination performance (AUROCs were 0.799-0.871 according to outcomes in the best-performing EN model). When identifying 80% of target patients with TBI, the false positive rate was almost 19.7–39.0%. Consciousness status related variables ranging from patients' symptom to EMS

providers' assessment showed the highest importance for predicting all outcomes. This study adds considerably to the understanding of prehospital prediction performance of TBI among patients with severe trauma. Use of comprehensive prehospital information and certain machine learning approaches led to increased performance with a diminished false positive rate compared to those of the traditional statistical model. Several studies reported that EMS providers' assessment using prehospital information is effective for the identification of patients with severe trauma who require direct transport to a trauma center.<sup>31-33</sup> Because TBI accounts for a significant portion of patients with severe trauma,<sup>32</sup> and the majority of patients have poor access to trauma centers,<sup>34</sup> identification of TBI among patients with severe trauma by EMS providers could contribute to proper prehospital management and destination hospital decisions.<sup>3</sup> However, prehospital identification of TBI is challenging.<sup>35</sup> Prehospital clinical signs showed poor predictive performance for differentiating patients with TBI.<sup>7</sup>, and previous prediction models related to TBI mostly focused on TBI outcomes.<sup>8913</sup> One study reported the predictors for mild TBI with persistent symptoms; but a single-center case-control study design and ED-based model development lacks applicability to prehospital settings.<sup>36</sup> In this study, we developed and tested TBI prediction models that used prehospital information, and we found acceptable discrimination power for the prediction of diagnosis and prognosis of TBI. Uniquely, we incorporated various demographic variables, trauma circumstances, patients' complaints, and EMS assessment information in the prediction models, and we adapted the machine learning algorithms. When using a cutoff for 80% sensitivity for TBI detection, the false positive rate was 19.7–39.0% (Table 2). Those false positive rate levels are plausible for detecting severe 

diseases in EMS settings. A previous study reported a 26% of false positive rate of EMS

Page 19 of 48

#### **BMJ** Open

triage for myocardial infarction with a sensitivity of 74% and 50% of false positive rate of EMS recognition of stroke in sensitivity of 74%.<sup>28 29</sup> Considering the prevalence of outcomes (24% in TBI, 22% in TBI-I, 21% in TBI-ND, and 4% in TBI-D; Table 1), there would be 16, 9, 12, and 67 false-positive patients for every 10 patients that are accurately identified as TBI, TBI-I, TBI-ND, and TBI-D, respectively (Supplementary Table 4). Because of the low prevalence of TBI-D, a similar specificity of the prediction model for outcomes resulted in a very low positive predictive value and a high proportion of false positive cases, which suggested the limited applicability of prediction models for TBI-D in prehospital settings. Consciousness-status-related variables ranging from patients' complaints to EMS assessment showed the highest importance regardless of models and outcomes in our study. Consciousness status is closely associated with head trauma. Head trauma can result in structural brain injury or physiological disruption of brain function, which could result in altered mental status.<sup>37</sup> Mental status is also associated with TBI severity, <sup>38</sup> and its association with TBI outcomes have been reported.<sup>8913</sup> History taking and physical examination for altered mental status is key to early diagnosis and proper management of TBI in prehospital settings.<sup>39</sup>

We adapted machine learning algorithms for the prediction of TBI-related outcomes and found an improvement in discrimination and an increase in specificity with the same sensitivity thresholds. However, the LR model also showed acceptable or similar performance compared to machine learning models, according to the outcomes. In clinical prediction models, a previous systematic review reported no performance benefit of the machine learning model over LR.<sup>40</sup> The previous study stated that machine learning models tend to show high performance with a strong signal-to-noise ratio problem like gaming, image recognition. However, clinical prediction problems often result in a poor signal-to-

Page 20 of 48

| 2          |
|------------|
| 2          |
| 3          |
| 4          |
| 5          |
| 6          |
| 7          |
| 8          |
| 0          |
| 9          |
| 10         |
| 11         |
| 12         |
| 13         |
| 14         |
| 15         |
| 16         |
| 10         |
| 17         |
| 18         |
| 19         |
| 20         |
| 21         |
| 22         |
| 25         |
| ∠ <i>⊃</i> |
| 24         |
| 25         |
| 26         |
| 27         |
| 28         |
| 29         |
| 20         |
| 50         |
| 31         |
| 32         |
| 33         |
| 34         |
| 35         |
| 26         |
| 20         |
| 3/         |
| 38         |
| 39         |
| 40         |
| 41         |
| 42         |
| 12         |
| 45         |
| 44         |
| 45         |
| 46         |
| 47         |
| 48         |
| 40         |
| 79<br>50   |
| 50         |
| 51         |
| 52         |
| 53         |
| 54         |
| 55         |
| 56         |
| 50         |
| 5/         |
| 58         |
| 59         |

60

1

373 noise ratio.<sup>40</sup> If we could use unstructured data, which has strong signal-to-noise ratio like 374 continuous vital sign monitoring data or audiovisual data for patients' appearance, machine 375 learning models might perform better than LR models. In addition, if we analyzed more 376 patient data, the performance improvement of machine models might be elucidated. 377 Precise assessment in prehospital field could contribute to improved patient-related 378 outcomes. High demand of EMS call and response, disparity in accessibility to definitive care capable hospitals according to regions,<sup>34</sup> and the importance of timely management in acute 379 380 disease care are the chief reasons behind the necessity for the accurate assessment of EMS 381 providers. Although information acquisition and processing is quite difficult in prehospital 382 areas, various instruments and information systems could attribute to diminish those 383 problems. Complex data acquisition like mobile CT or other unstructured data<sup>41</sup>, information sharing through telemedicine,<sup>42</sup> and decision support tools in prehospital environments<sup>43</sup> 384 385 could contribute to the accurate assessment of EMS providers. More information acquisition 386 and real-time processing of those data could improve the clinical prediction models in 387 prehospital areas, which could lead to the improvement of patients' safety and outcomes. Our study had several limitations. First, our data were collected at three teaching 388

389 hospitals in urban areas of South Korea. Therefore, external validation for other areas should 390 be conducted to generalize the developed prediction model. Second, we used retrospective 391 analysis of electronically collected prehospital and hospital data. There might be various 392 information loss and missing data. We treated missing status as a separate category for our analysis;<sup>44</sup> however, there could be different reasons for missing data. Third, there is a 393 394 possibility that the prediction model was overfitted or underfitted. The use of large number of 395 predictors also can contribute to overfitting. To minimize this issue, we rigorously searched hyperparameters and carefully chose hyperparameters according to the performance in 396

Page 21 of 48

#### **BMJ** Open

independent validation cohorts. Fourth, we selected our study population using trauma center transport criteria for EMS providers in Korea. Although those criteria are based on the field triage decision scheme which is the most widely used prehospital trauma triage protocol,<sup>6</sup> extrapolation to another EMS setting or general trauma patients would be limited. Fifth, Abbreviated Injury Scale (AIS) codes were not used to identify our study outcome because of a lack of information. To compensate for this limitation, we further identified TBI-I, TBI-ND, and TBI-D patients to consider severity. However, different definitions of clinical severity, including ICU admission or emergency operation, might be possible. Lastly, this study was performed in an intermediate-service-level EMS system. The generalization of our study findings to different EMS settings should be made with caution. In conclusion, we presented data on TBI among patients with severe trauma assessed by EMS providers, and our results inform the development of prediction models for the diagnosis and prognosis of TBI in our population. We used various information that can be obtained in prehospital settings and showed acceptable outcome performance. The consistent importance of consciousness-status-related variables emphasizes the importance of assessment and monitoring of consciousness status in prehospital areas. Although prospective, and implementation studies are needed for TBI prediction in prehospital areas, our study outlined a novel method for the precise assessment of EMS providers using a machine-learning-based prediction model. Further collection of various types of patient-related data would contribute to the enhanced performance of the clinical prediction model in prehospital settings.

| 3<br>4                                                      | 410  |                                                                                                 |
|-------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------|
| 5                                                           | 419  | Author Contribution Statement                                                                   |
| 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17 | 420  | YHC and JH Park designed and developed the study, analysed and interpreted the data, and        |
|                                                             | 421  | drafted the initial manuscript. KJH, YSR, KJS and SDS were involved in the acquisition of       |
|                                                             | 422  | data, the development of the research question and assisted with analysis and interpretation of |
|                                                             | 423  | data. All authors revised the drafts for intellectual content and edited the manuscript. All    |
|                                                             | 424  | authors reviewed and approved the final draft.                                                  |
| 18<br>19<br>20<br>21                                        | 425  |                                                                                                 |
| 22<br>23<br>24                                              | 426  | Funding                                                                                         |
| 25<br>26<br>27<br>28<br>29                                  | 427  | This study was supported by grant No. '04-2019-0680' from the Seoul National University         |
|                                                             | 428  | Hospital Research Fund.                                                                         |
| 30<br>31<br>32                                              | 429  |                                                                                                 |
| 33<br>34                                                    | 10.0 |                                                                                                 |
| 35                                                          | 430  | Competing Interests                                                                             |
| 30<br>37<br>38                                              | 431  | There are no conflicts of interest for all authors in this study.                               |
| 39                                                          | 432  |                                                                                                 |
| 40<br>41<br>42                                              | 433  | Patients consent                                                                                |
| 42<br>43<br>44                                              | 434  | Not required                                                                                    |
| 45<br>46<br>47                                              | 435  |                                                                                                 |
| 48<br>49                                                    | 10.0 |                                                                                                 |
| 50<br>51<br>52<br>53<br>54<br>55<br>56                      | 436  | Data availability statement                                                                     |
|                                                             | 437  | No data are available. We do not have ethics approval to share data.                            |
|                                                             | 438  |                                                                                                 |
| 57<br>58                                                    |      |                                                                                                 |
| 59<br>60                                                    |      |                                                                                                 |
|                                                             |      | 21                                                                                              |

| 1<br>2                                                                                                                                                                                                                                |     |                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------|
| 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>22<br>33<br>44<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>22<br>33<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>43<br>5<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43 | 439 | Ethical statements                                                                                |
|                                                                                                                                                                                                                                       | 440 | This study complied with the Declaration of Helsinki, and its protocol was approved by the        |
|                                                                                                                                                                                                                                       | 441 | Institutional Review Board of the Seoul National University Hospital with a waiver of             |
|                                                                                                                                                                                                                                       | 442 | informed consent (IRB No: E-2006-004-1128).                                                       |
|                                                                                                                                                                                                                                       | 443 |                                                                                                   |
|                                                                                                                                                                                                                                       | 444 | References                                                                                        |
|                                                                                                                                                                                                                                       | 445 | 1. Hsia RY, Markowitz AJ, Lin F, et al. Ten-year trends in traumatic brain injury: a              |
|                                                                                                                                                                                                                                       | 446 | retrospective cohort study of California emergency department and hospital revisits and           |
|                                                                                                                                                                                                                                       | 447 | readmissions. BMJ Open 2018;8(12):e022297. doi: 10.1136/bmjopen-2018-022297                       |
|                                                                                                                                                                                                                                       | 448 | [published Online First: 2018/12/16]                                                              |
|                                                                                                                                                                                                                                       | 449 | 2. Finfer SR, Cohen J. Severe traumatic brain injury. <i>Resuscitation</i> 2001;48(1):77-90. doi: |
|                                                                                                                                                                                                                                       | 450 | 10.1016/s0300-9572(00)00321-x [published Online First: 2001/02/13]                                |
|                                                                                                                                                                                                                                       | 451 | 3. Spaite DW, Bobrow BJ, Keim SM, et al. Association of Statewide Implementation of the           |
|                                                                                                                                                                                                                                       | 452 | Prehospital Traumatic Brain Injury Treatment Guidelines With Patient Survival                     |
|                                                                                                                                                                                                                                       | 453 | Following Traumatic Brain Injury: The Excellence in Prehospital Injury Care (EPIC)                |
|                                                                                                                                                                                                                                       | 454 | Study. JAMA Surg 2019;154(7):e191152. doi: 10.1001/jamasurg.2019.1152 [published                  |
|                                                                                                                                                                                                                                       | 455 | Online First: 2019/05/09]                                                                         |
| 44<br>45                                                                                                                                                                                                                              | 456 | 4. McHugh GS, Engel DC, Butcher I, et al. Prognostic value of secondary insults in traumatic      |
| 46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58                                                                                                                                                            | 457 | brain injury: results from the IMPACT study. <i>J Neurotrauma</i> 2007;24(2):287-93. doi:         |
|                                                                                                                                                                                                                                       | 458 | 10.1089/neu.2006.0031 [published Online First: 2007/03/23]                                        |
|                                                                                                                                                                                                                                       | 459 | 5. Pelieu I. Kull C. Walder B. Prehospital and Emergency Care in Adult Patients with Acute        |
|                                                                                                                                                                                                                                       | 460 | Traumatic Brain Injury <i>Med Sci (Basel)</i> 2019:7(1) doi: 10.3390/medsci7010012                |
|                                                                                                                                                                                                                                       | 461 | [nublished Online First: 2019/01/24]                                                              |
|                                                                                                                                                                                                                                       | 161 | 6 Sasser SM Hunt RC Faul M et al Guidelines for field triage of injured patients:                 |
| 59<br>60                                                                                                                                                                                                                              | 702 |                                                                                                   |
|                                                                                                                                                                                                                                       |     |                                                                                                   |

| 3                    |     |                                                                                                  |
|----------------------|-----|--------------------------------------------------------------------------------------------------|
| 4<br>5               | 463 | recommendations of the National Expert Panel on Field Triage, 2011. Morbidity and                |
| 6<br>7               | 464 | Mortality Weekly Report: Recommendations and Reports 2012;61(1):1-20.                            |
| 8<br>9<br>10         | 465 | 7. Ter Avest E, Taylor S, Wilson M, et al. Prehospital clinical signs are a poor predictor of    |
| 10<br>11<br>12       | 466 | raised intracranial pressure following traumatic brain injury. Emerg Med J                       |
| 13<br>14             | 467 | 2021;38(1):21-26. doi: 10.1136/emermed-2020-209635 [published Online First:                      |
| 15<br>16<br>17       | 468 | 2020/09/20]                                                                                      |
| 17<br>18<br>19       | 469 | 8. Collaborators MCT, Perel P, Arango M, et al. Predicting outcome after traumatic brain injury: |
| 20<br>21             | 470 | practical prognostic models based on large cohort of international patients. BMJ                 |
| 22<br>23             | 471 | 2008;336(7641):425-9. doi: 10.1136/bmj.39461.643438.25 [published Online First:                  |
| 24<br>25<br>26       | 472 | 2008/02/14]                                                                                      |
| 27<br>28             | 473 | 9. Steyerberg EW, Mushkudiani N, Perel P, et al. Predicting outcome after traumatic brain        |
| 29<br>30             | 474 | injury: development and international validation of prognostic scores based on                   |
| 31<br>32<br>33       | 475 | admission characteristics. PLoS Med 2008;5(8):e165; discussion e65. doi:                         |
| 33<br>34<br>35       | 476 | 10.1371/journal.pmed.0050165 [published Online First: 2008/08/08]                                |
| 36<br>37             | 477 | 10. Gozt AK, Hellewell SC, Thorne J, et al. Predicting outcome following mild traumatic brain    |
| 38<br>39             | 478 | injury: protocol for the longitudinal, prospective, observational Concussion Recovery            |
| 40<br>41<br>42       | 479 | (CREST) cohort study. BMJ Open 2021;11(5):e046460. doi: 10.1136/bmjopen-2020-                    |
| 43<br>44             | 480 | 046460 [published Online First: 2021/05/15]                                                      |
| 45<br>46             | 481 | 11. Huth SF, Slater A, Waak M, et al. Predicting Neurological Recovery after Traumatic Brain     |
| 47<br>48<br>49       | 482 | Injury in Children: A Systematic Review of Prognostic Models. J Neurotrauma                      |
| 50<br>51             | 483 | 2020;37(20):2141-49. doi: 10.1089/neu.2020.7158 [published Online First: 2020/05/29]             |
| 52<br>53             | 484 | 12. Perel P, Edwards P, Wentz R, et al. Systematic review of prognostic models in traumatic      |
| 54<br>55<br>56       | 485 | brain injury. BMC Med Inform Decis Mak 2006;6:38. doi: 10.1186/1472-6947-6-38                    |
| 57<br>58<br>59<br>60 | 486 | [published Online First: 2006/11/16]                                                             |
Page 25 of 48

1 2

60

| 3              |     |                                                                                              |
|----------------|-----|----------------------------------------------------------------------------------------------|
| 4<br>5         | 487 | 13. Miller PR, Chang MC, Hoth JJ, et al. Predicting Mortality and Independence at Discharge  |
| 6<br>7         | 488 | in the Aging Traumatic Brain Injury Population Using Data Available at Admission. $J$        |
| 8<br>9<br>10   | 489 | Am Coll Surg 2017;224(4):680-85. doi: 10.1016/j.jamcollsurg.2016.12.053 [published           |
| 10<br>11<br>12 | 490 | Online First: 2017/03/07]                                                                    |
| 13<br>14       | 491 | 14. Abujaber A, Fadlalla A, Gammoh D, et al. Prediction of in-hospital mortality in patients |
| 15<br>16<br>17 | 492 | with post traumatic brain injury using National Trauma Registry and Machine Learning         |
| 17<br>18<br>19 | 493 | Approach. Scand J Trauma Resusc Emerg Med 2020;28(1):44. doi: 10.1186/s13049-                |
| 20<br>21       | 494 | 020-00738-5 [published Online First: 2020/05/29]                                             |
| 22<br>23       | 495 | 15. Gravesteijn BY, Nieboer D, Ercole A, et al. Machine learning algorithms performed no     |
| 24<br>25<br>26 | 496 | better than regression models for prognostication in traumatic brain injury. J Clin          |
| 27<br>28       | 497 | Epidemiol 2020;122:95-107. doi: 10.1016/j.jclinepi.2020.03.005 [published Online             |
| 29<br>30       | 498 | First: 2020/03/24]                                                                           |
| 31<br>32<br>33 | 499 | 16. Roozenbeek B, Lingsma HF, Lecky FE, et al. Prediction of outcome after moderate and      |
| 34<br>35       | 500 | severe traumatic brain injury: external validation of the International Mission on           |
| 36<br>37       | 501 | Prognosis and Analysis of Clinical Trials (IMPACT) and Corticoid Randomisation               |
| 38<br>39<br>40 | 502 | After Significant Head injury (CRASH) prognostic models. Crit Care Med                       |
| 40<br>41<br>42 | 503 | 2012;40(5):1609-17. doi: 10.1097/CCM.0b013e31824519ce [published Online First:               |
| 43<br>44       | 504 | 2012/04/19]                                                                                  |
| 45<br>46<br>47 | 505 | 17. Wasserman EB, Shah MN, Jones CM, et al. Identification of a neurologic scale that        |
| 47<br>48<br>49 | 506 | optimizes EMS detection of older adult traumatic brain injury patients who require           |
| 50<br>51       | 507 | transport to a trauma center. Prehosp Emerg Care 2015;19(2):202-12. doi:                     |
| 52<br>53       | 508 | 10.3109/10903127.2014.959225 [published Online First: 2014/10/08]                            |
| 54<br>55<br>56 | 509 | 18. Collins GS, Reitsma JB, Altman DG, et al. Transparent Reporting of a multivariable       |
| 57<br>58<br>59 | 510 | prediction model for Individual Prognosis Or Diagnosis (TRIPOD). Ann Intern Med              |

| 1<br>2<br>2    |     |                                                                                                |
|----------------|-----|------------------------------------------------------------------------------------------------|
| 3<br>4<br>5    | 511 | 2015;162(10):735-6. doi: 10.7326/L15-5093-2 [published Online First: 2015/05/20]               |
| 6<br>7         | 512 | 19. Sasser SM, Hunt RC, Sullivent EE, et al. Guidelines for field triage of injured patients:  |
| 8<br>9<br>10   | 513 | recommendations of the National Expert Panel on Field Triage. 2009                             |
| 10<br>11<br>12 | 514 | 20. Sasser SM, Hunt RC, Faul M, et al. Guidelines for field triage of injured patients:        |
| 13<br>14       | 515 | recommendations of the National Expert Panel on Field Triage, 2011. MMWR Recomm                |
| 15<br>16<br>17 | 516 | Rep 2012;61(RR-1):1-20. [published Online First: 2012/01/13]                                   |
| 17<br>18<br>19 | 517 | 21. Andelic N, Anke A, Skandsen T, et al. Incidence of hospital-admitted severe traumatic      |
| 20<br>21       | 518 | brain injury and in-hospital fatality in Norway: a national cohort study.                      |
| 22<br>23       | 519 | Neuroepidemiology 2012;38(4):259-67. doi: 10.1159/000338032 [published Online                  |
| 24<br>25<br>26 | 520 | First: 2012/06/09]                                                                             |
| 27<br>28       | 521 | 22. Ro YS, Shin SD, Holmes JF, et al. Comparison of clinical performance of cranial computed   |
| 29<br>30       | 522 | tomography rules in patients with minor head injury: a multicenter prospective study.          |
| 31<br>32<br>33 | 523 | Acad Emerg Med 2011;18(6):597-604. doi: 10.1111/j.1553-2712.2011.01094.x                       |
| 34<br>35       | 524 | [published Online First: 2011/06/17]                                                           |
| 36<br>37       | 525 | 23. Chan V, Thurairajah P, Colantonio A. Defining pediatric traumatic brain injury using       |
| 38<br>39<br>40 | 526 | International Classification of Diseases Version 10 Codes: a systematic review. BMC            |
| 40<br>41<br>42 | 527 | Neurol 2015;15:7. doi: 10.1186/s12883-015-0259-7 [published Online First:                      |
| 43<br>44       | 528 | 2015/02/05]                                                                                    |
| 45<br>46       | 529 | 24. Zou H, Hastie T. Regularization and variable selection via the elastic net. Journal of the |
| 47<br>48<br>49 | 530 | Royal Statistical Society: Series B (Statistical Methodology) 2005;67(2):301-20. doi:          |
| 50<br>51       | 531 | 10.1111/j.1467-9868.2005.00503.x                                                               |
| 52<br>53       | 532 | 25. Hearst MA, Dumais ST, Osuna E, et al. Support vector machines. IEEE Intelligent Systems    |
| 54<br>55<br>56 | 533 | and their Applications 1998;13(4):18-28. doi: 10.1109/5254.708428                              |
| 57<br>58<br>59 | 534 | 26. Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd      |
| 60             |     | 25                                                                                             |

| 3              |     |                                                                                                 |
|----------------|-----|-------------------------------------------------------------------------------------------------|
| 4<br>5         | 535 | ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.                     |
| 6<br>7         | 536 | San Francisco, California, USA: Association for Computing Machinery, 2016:785-94.               |
| 8<br>9<br>10   | 537 | 27. Menard S. Applied logistic regression analysis: Sage 2002. pp. 162.                         |
| 10<br>11<br>12 | 538 | 28. Oostema JA, Konen J, Chassee T, et al. Clinical predictors of accurate prehospital stroke   |
| 13<br>14       | 539 | recognition. Stroke 2015;46(6):1513-7. doi: 10.1161/STROKEAHA.115.008650                        |
| 15<br>16       | 540 | [published Online First: 2015/04/30]                                                            |
| 17<br>18<br>19 | 541 | 29. Swan PY, Nighswonger B, Boswell GL, et al. Factors associated with false-positive           |
| 20<br>21       | 542 | emergency medical services triage for percutaneous coronary intervention. West J                |
| 22<br>23       | 543 | Emerg Med 2009;10(4):208-12. [published Online First: 2010/01/05]                               |
| 24<br>25<br>26 | 544 | 30. Park JH, Shin SD, Song KJ, et al. Prediction of good neurological recovery after out-of-    |
| 27<br>28       | 545 | hospital cardiac arrest: A machine learning analysis. Resuscitation 2019;142:127-35.            |
| 29<br>30       | 546 | doi: 10.1016/j.resuscitation.2019.07.020 [published Online First: 2019/07/31]                   |
| 31<br>32<br>33 | 547 | 31. Esposito TJ, Offner PJ, Jurkovich GJ, et al. Do prehospital trauma center triage criteria   |
| 34<br>35       | 548 | identify major trauma victims? Arch Surg 1995;130(2):171-6. doi:                                |
| 36<br>37       | 549 | 10.1001/archsurg.1995.01430020061010 [published Online First: 1995/02/01]                       |
| 38<br>39<br>40 | 550 | 32. Ocak G, Sturms LM, Hoogeveen JM, et al. Prehospital identification of major trauma          |
| 40<br>41<br>42 | 551 | patients. Langenbecks Arch Surg 2009;394(2):285-92. doi: 10.1007/s00423-008-0340-               |
| 43<br>44       | 552 | 4 [published Online First: 2008/06/27]                                                          |
| 45<br>46       | 553 | 33. Fries GR, McCalla G, Levitt MA, et al. A prospective comparison of paramedic judgment       |
| 47<br>48<br>49 | 554 | and the trauma triage rule in the prehospital setting. Ann Emerg Med 1994;24(5):885-            |
| 50<br>51       | 555 | 9. doi: 10.1016/s0196-0644(94)70207-1 [published Online First: 1994/11/01]                      |
| 52<br>53       | 556 | 34. Branas CC, MacKenzie EJ, Williams JC, et al. Access to trauma centers in the United States. |
| 54<br>55<br>56 | 557 | JAMA 2005;293(21):2626-33. doi: 10.1001/jama.293.21.2626 [published Online First:               |
| 57<br>58       | 558 | 2005/06/02]                                                                                     |
| 59<br>60       |     |                                                                                                 |

1

Page 28 of 48

| 2<br>3         |     |                                                                                                |
|----------------|-----|------------------------------------------------------------------------------------------------|
| 4<br>5         | 559 | 35. Whiting MD, Dengler BA, Rodriguez CL, et al. Prehospital Detection of Life-Threatening     |
| 6<br>7         | 560 | Intracranial Pathology: An Unmet Need for Severe TBI in Austere, Rural, and Remote             |
| 8<br>9<br>10   | 561 | Areas. Front Neurol 2020;11:599268. doi: 10.3389/fneur.2020.599268 [published                  |
| 10<br>11<br>12 | 562 | Online First: 2020/11/17]                                                                      |
| 13<br>14       | 563 | 36. Wojcik SM. Predicting mild traumatic brain injury patients at risk of persistent symptoms  |
| 15<br>16<br>17 | 564 | in the Emergency Department. Brain Inj 2014;28(4):422-30. doi:                                 |
| 17<br>18<br>19 | 565 | 10.3109/02699052.2014.884241 [published Online First: 2014/02/26]                              |
| 20<br>21       | 566 | 37. Management of Concussion/m TBIWG. VA/DoD Clinical Practice Guideline for                   |
| 22<br>23       | 567 | Management of Concussion/Mild Traumatic Brain Injury. J Rehabil Res Dev                        |
| 24<br>25<br>26 | 568 | 2009;46(6):CP1-68. [published Online First: 2010/01/30]                                        |
| 27<br>28       | 569 | 38. Grote S, Bocker W, Mutschler W, et al. Diagnostic value of the Glasgow Coma Scale for      |
| 29<br>30       | 570 | traumatic brain injury in 18,002 patients with severe multiple injuries. J Neurotrauma         |
| 31<br>32<br>33 | 571 | 2011;28(4):527-34. doi: 10.1089/neu.2010.1433 [published Online First: 2011/01/27]             |
| 34<br>35       | 572 | 39. Badjatia N, Carney N, Crocco TJ, et al. Guidelines for prehospital management of traumatic |
| 36<br>37       | 573 | brain injury 2nd edition. Prehosp Emerg Care 2008;12 Suppl 1:S1-52. doi:                       |
| 38<br>39<br>40 | 574 | 10.1080/10903120701732052 [published Online First: 2008/09/06]                                 |
| 40<br>41<br>42 | 575 | 40. Christodoulou E, Ma J, Collins GS, et al. A systematic review shows no performance         |
| 43<br>44       | 576 | benefit of machine learning over logistic regression for clinical prediction models. $J$       |
| 45<br>46<br>47 | 577 | Clin Epidemiol 2019;110:12-22. doi: 10.1016/j.jclinepi.2019.02.004 [published Online           |
| 47<br>48<br>49 | 578 | First: 2019/02/15]                                                                             |
| 50<br>51       | 579 | 41. Nakada TA, Masunaga N, Nakao S, et al. Development of a prehospital vital signs chart      |
| 52<br>53       | 580 | sharing system. Am J Emerg Med 2016;34(1):88-92. doi: 10.1016/j.ajem.2015.09.048               |
| 54<br>55<br>56 | 581 | [published Online First: 2015/10/29]                                                           |
| 57<br>58       | 582 | 42. Kim Y, Groombridge C, Romero L, et al. Decision Support Capabilities of Telemedicine       |
| 59<br>60       |     |                                                                                                |

| 3              |     |                                                                                              |
|----------------|-----|----------------------------------------------------------------------------------------------|
| 4<br>5         | 583 | in Emergency Prehospital Care: Systematic Review. J Med Internet Res                         |
| 6<br>7         | 584 | 2020;22(12):e18959. doi: 10.2196/18959 [published Online First: 2020/12/09]                  |
| 8<br>9<br>10   | 585 | 43. Reisner AT, Khitrov MY, Chen L, et al. Development and validation of a portable platform |
| 10<br>11<br>12 | 586 | for deploying decision-support algorithms in prehospital settings. Appl Clin Inform          |
| 13<br>14       | 587 | 2013;4(3):392-402. doi: 10.4338/ACI-2013-04-RA-0023 [published Online First:                 |
| 15<br>16       | 588 | 2013/10/25]                                                                                  |
| 17<br>18<br>10 | 589 | 44. Maslove DM, Podchiyska T, Lowe HJ. Discretization of continuous features in clinical     |
| 20<br>21       | 590 | datasets. J Am Med Inform Assoc 2013;20(3):544-53. doi: 10.1136/amiajnl-2012-                |
| 22<br>23       | 591 | 000929 [published Online First: 2012/10/13]                                                  |
| 24<br>25       | 502 |                                                                                              |
| 26<br>27<br>28 | 392 |                                                                                              |
| 28<br>29       |     |                                                                                              |
| 30<br>31       |     |                                                                                              |
| 32             |     |                                                                                              |
| 33<br>34       |     |                                                                                              |
| 35             |     |                                                                                              |
| 36<br>37       |     |                                                                                              |
| 38             |     |                                                                                              |
| 39<br>40       |     |                                                                                              |
| 40<br>41       |     |                                                                                              |
| 42             |     |                                                                                              |
| 43<br>44       |     |                                                                                              |
| 45             |     |                                                                                              |
| 46<br>47       |     |                                                                                              |
| 48             |     |                                                                                              |
| 49             |     |                                                                                              |
| 50<br>51       |     |                                                                                              |
| 52             |     |                                                                                              |
| 53             |     |                                                                                              |
| 54<br>55       |     |                                                                                              |
| 56             |     |                                                                                              |
| 57             |     |                                                                                              |
| 58<br>50       |     |                                                                                              |
| 60             |     |                                                                                              |
|                |     | 28                                                                                           |

Figure 1. Population flow. EMS, emergency medical service; OHCA, out-of-hospital cardiac

to peer teriew only

| 2        |     |
|----------|-----|
| 3        |     |
| 4<br>5   | 593 |
| 6        |     |
| 7        | 594 |
| 8        | 505 |
| 9<br>10  | 595 |
| 11       | 596 |
| 12       |     |
| 13       |     |
| 14<br>15 |     |
| 16       |     |
| 17       |     |
| 18       |     |
| 20       |     |
| 21       |     |
| 22       |     |
| 23       |     |
| 25       |     |
| 26       |     |
| 27       |     |
| 28<br>29 |     |
| 30       |     |
| 31       |     |
| 32       |     |
| 33<br>34 |     |
| 35       |     |
| 36       |     |
| 37<br>38 |     |
| 39       |     |
| 40       |     |
| 41       |     |
| 42<br>43 |     |
| 44       |     |
| 45       |     |
| 46<br>47 |     |
| 48       |     |
| 49       |     |
| 50       |     |
| 51<br>52 |     |
| 53       |     |
| 54       |     |
| 55       |     |
| 56<br>57 |     |
| 58       |     |
| 59       |     |
| 60       |     |

1

**Figure legends** 

arrest; TBI, traumatic brain injury.

### For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

|                                   | n (                | %) or Median (IQ      | R)               |         |
|-----------------------------------|--------------------|-----------------------|------------------|---------|
|                                   | Total              | Development<br>cohort | Test<br>cohort   | Р       |
| Total                             | N = 1169           | n = 867               | n = 302          |         |
| Demographics                      |                    |                       |                  |         |
| Age, years                        | 53 (36–66)         | 52 (35–66)            | 56 (40-69)       | < 0.0   |
| Male                              | 809 (69.2)         | 592 (68.3)            | 217 (71.9)       | 0.25    |
| Job. unemployed                   | 299 (25.6)         | 197 (22.7)            | 102 (33.8)       | < 0.0   |
| Diabetes                          | 62 (5.3)           | 35 (4.0)              | 27 (8.9)         | < 0.0   |
| Hypertension                      | 105 (9.0)          | 61 (7.0)              | 44 (14 6)        | < 0.0   |
| Circumstances of trauma           | 100 (510)          | 01 (7.0)              | (1               | 0.0     |
| Location road/highway             | 444 (38 0)         | 326 (37.6)            | 118 (39 1)       | 0.65    |
| Season summer                     | 336 (28.7)         | 253 (29.2)            | 83 (27 5)        | 0.52    |
| Weekday weekend                   | 811 (69 <i>A</i> ) | 599 (69 1)            | 212(70.2)        | 0.77    |
| Time 6 n m to midnight            | 361(0).4)          | 265 (30.6)            | 96(31.8)         | 0.72    |
| Machanism of injury TA            | 500 (42.8)         | 203(30.0)             | 90(31.8)         | 0.05    |
| Chief complaint                   | 300 (42.8)         | 373 (43.3)            | 123 (41.4)       | 0.57    |
|                                   | 202 (25.8)         | 204(22.5)             | 09 (22 5)        | < 0.0   |
| Fracture/abrasion/laceration      | 302 (25.8)         | 204 (23.3)            | 98 (32.3)        | < 0.0   |
| EMS vital sign assessment         | 120 (100 150)      | 120 (104 146)         | 121 (115 150)    | < 0.0   |
| SBP, mmHg                         | 130 (109–150)      | 130 (104–146)         | 131 (115–150)    | < 0.0   |
| DBP, mmHg                         | 80 (70–91)         | 80 (69–90)            | 80 (70–92)       | 0.21    |
| RR, /min                          | 18 (16–20)         | 18 (16–20)            | 18 (16–20)       | 0.33    |
| HR, /min                          | 86 (75–99)         | 86 (74–99)            | 86 (76–100)      | 0.40    |
| SpO2, %                           | 98 (95–99)         | 98 (95–99)            | 98 (96–99)       | 0.67    |
| AVPU scale, Alert                 | 714 (61.1)         | 504 (58.1)            | 210 (69.5)       | < 0.0   |
| EMS management                    |                    |                       |                  |         |
| Intravenous route                 | 176 (15.1)         | 129 (14.9)            | 47 (15.6)        | 0.77    |
| Hemorrhage control                | 586 (50.1)         | 426 (49.1)            | 160 (53.0)       | 0.25    |
| Spinal motion restriction         | 811 (69.4)         | 606 (69.9)            | 205 (67.9)       | 0.51    |
| Oxygen supply                     | 233 (19.9)         | 176 (20.3)            | 57 (18.9)        | 0.59    |
| In-hospital mortality             | 90 (7.7)           | 74 (8.5)              | 16 (5.3)         | 0.07    |
| Outcomes                          |                    |                       |                  |         |
| TBI                               | 281 (24.0)         | 215 (24.8)            | 66 (21.9)        | 0.30    |
| TBI with intracranial injury      | 251 (21.5)         | 195 (22.5)            | 56 (18.5)        | 0.15    |
| TBI-related non-discharge         | 249 (21.3)         | 192 (22.1)            | 57 (18.9)        | 0.23    |
| TBI-related death                 | 43 (3.7)           | 32 (3.7)              | 11 (3.6)         | 0.9     |
| IOR, interguartile range: TA, tra | affic accident; SE | 3P, systolic bloo     | d pressure; DBP. | diasto! |

| 3      |
|--------|
| 4      |
| 5      |
| 6      |
| 7      |
| ,<br>8 |
| 0      |
| 9      |
| 10     |
| 11     |
| 12     |
| 13     |
| 14     |
| 15     |
| 16     |
| 17     |
| 17     |
| 18     |
| 19     |
| 20     |
| 21     |
| 22     |
| 23     |
| 24     |
| 27     |
| 25     |
| 26     |
| 27     |
| 28     |
| 29     |
| 30     |
| 31     |
| 27     |
| 22     |
| 33     |
| 34     |
| 35     |
| 36     |
| 37     |
| 38     |
| 39     |
| 10     |
| 40     |
| 41     |
| 42     |
| 43     |
| 44     |
| 45     |
| 46     |
| 47     |
| 18     |
| 40     |
| 49     |
| 50     |
| 51     |
| 52     |
| 53     |
| 54     |
| 55     |
| 56     |
| 50     |
| 5/     |
| 58     |
| 59     |

| 601 | Table 2. Discrimination and reclassification of prediction models for outcomes on test |
|-----|----------------------------------------------------------------------------------------|
| 602 | cohort.                                                                                |

| 0011011. |        |                                                            |                |                        |        |       |
|----------|--------|------------------------------------------------------------|----------------|------------------------|--------|-------|
| Outcome  | Model  | AUROC (95% CI)                                             | p <sup>a</sup> | NRI (95% CI)           | pb     | AUPRC |
| TBI      |        |                                                            |                |                        |        |       |
|          | LR     | 0.770 (0.698, 0.841)                                       | NA             | NA                     | NA     | 0.492 |
|          | XGB    | 0.809 (0.743, 0.876)                                       | 0.04           | 0.689 (0.427, 0.951)   | < 0.01 | 0.552 |
|          | SVM    | 0.776 (0.708, 0.844)                                       | 0.77           | 0.339 (0.072, 0.607)   | 0.01   | 0.479 |
|          | RF     | 0.800 (0.735, 0.865)                                       | 0.13           | 0.308 (0.047, 0.569)   | 0.02   | 0.532 |
|          | EN     | 0.799 (0.732, 0.867)                                       | 0.06           | 0.698 (0.441, 0.954)   | < 0.01 | 0.564 |
| TBI-I    |        |                                                            |                |                        |        |       |
|          | LR     | 0.820 (0.751, 0.890)                                       | NA             | NA                     | NA     | 0.551 |
|          | XGB    | 0.838 (0.775, 0.901)                                       | 0.28           | 0.539 (0.258, 0.821)   | < 0.01 | 0.554 |
|          | SVM    | 0.812 (0.748, 0.875)                                       | 0.66           | 0.729 (0.464, 0.994)   | < 0.01 | 0.469 |
|          | RF     | 0.836 (0.772, 0.899)                                       | 0.38           | 0.333 (0.058, 0.607)   | 0.02   | 0.552 |
|          | EN     | 0.844 (0.779, 0.910)                                       | 0.15           | 1.093 (0.845, 1.342)   | < 0.01 | 0.606 |
| TBI-ND   |        |                                                            |                |                        |        |       |
|          | LR     | 0.767 (0.690, 0.844)                                       | NA             | NA                     | NA     | 0.482 |
|          | XGB    | 0.800 (0.727, 0.873)                                       | 0.07           | 0.605 (0.326, 0.884)   | < 0.01 | 0.496 |
|          | SVM    | 0.778 (0.704, 0.852)                                       | 0.56           | 0.285 (-0.001, 0.572)  | 0.05   | 0.477 |
|          | RF     | 0.809 (0.739, 0.880)                                       | 0.03           | 0.194 (-0.059, 0.448)  | 0.13   | 0.535 |
|          | EN     | 0.811 (0.741, 0.882)                                       | 0.02           | 0.768 (0.496, 1.039)   | < 0.01 | 0.551 |
| TBI-D    |        |                                                            |                |                        |        |       |
|          | LR     | 0.664 (0.490, 0.838)                                       | NA             | NA                     | NA     | 0.138 |
|          | XGB    | 0.714 (0.512, 0.917)                                       | 0.64           | -0.026 (-0.605, 0.553) | 0.93   | 0.094 |
|          | SVM    | 0.814 (0.718, 0.910)                                       | 0.09           | 0.209 (-0.325, 0.742)  | 0.44   | 0.140 |
|          | RF     | 0.889 (0.801, 0.976)                                       | < 0.01         | -0.204 (-0.742, 0.334) | 0.46   | 0.196 |
|          | EN     | 0.871 (0.764, 0.978)                                       | 0.01           | 0.119 (-0.415, 0.654)  | 0.66   | 0.293 |
|          | /1 A T | $\mathbf{D} \mathbf{O} \mathbf{O} = 1 \cdot 1 = 1 \cdot 1$ | •              | 1 1                    |        |       |

<sup>a</sup>Comparing the AUROC and the logistic regression model.

<sup>b</sup>Comparing the NRI and the logistic regression model.

605 AUROC, area under the receiver operating characteristic curve; CI, confidence interval;

606 NRI, net reclassification index; AUPRC, area under precision-recall curve; TBI,

607 traumatic brain injury, TBI-I, traumatic brain injury with intracranial injury; TBI-ND;

608 traumatic brain injury with non-discharge; TBI-D, traumatic brain injury with death;

609 LR, logistic regression analysis; XGB, extreme gradient boosting; SVM, support vector

610 machine; RF, random forest; EN, elastic net

.

60

| 3        |
|----------|
| 4        |
| 5        |
| 5        |
| 0        |
| /        |
| 8        |
| 9        |
| 10       |
| 11       |
| 12       |
| 13       |
| 14       |
| 15       |
| 12       |
| 10       |
| 17       |
| 18       |
| 19       |
| 20       |
| 21       |
| 22       |
| 23       |
| 24       |
| 25       |
| 26       |
| 20       |
| 27       |
| 20       |
| 29       |
| 30       |
| 31       |
| 32       |
| 33       |
| 34       |
| 35       |
| 36       |
| 37       |
| 38       |
| 39       |
| 40       |
| 41       |
| 42       |
| ד∠<br>⊿2 |
| 45       |
| 44       |
| 45       |
| 46       |
| 47       |
| 48       |
| 49       |
| 50       |
| 51       |
| 52       |
| 53       |
| 54       |
| 55       |
| 56       |
| 50       |
| 5/       |
| าก       |

59 60

|--|

| Outcome | Model | Specificity (95% CI) | Sensitivity (95% CI) | PPV (95% CI)      | NPV (95% CI)      | Cutoff |
|---------|-------|----------------------|----------------------|-------------------|-------------------|--------|
| TBI     |       |                      |                      |                   |                   |        |
|         | LR    | 47.5 (40.9, 54.0)    | 80.3 (68.7, 89.1)    | 29.9 (23.3, 37.3) | 89.6 (82.9, 94.3) | 0.136  |
|         | XGB   | 72.5 (66.3, 78.1)    | 80.3 (68.7, 89.1)    | 44.9 (35.7, 54.3) | 92.9 (88.2, 96.2) | 0.268  |
|         | SVM   | 64.8 (58.4, 70.9)    | 80.3 (68.7, 89.1)    | 39.0 (30.7, 47.7) | 92.2 (87.0, 95.8) | 0.191  |
|         | RF    | 68.2 (61.9, 74.1)    | 80.3 (68.7, 89.1)    | 41.4 (32.8, 50.4) | 92.5 (87.6, 96.0) | 0.185  |
|         | EN    | 61.0 (54.5, 67.3)    | 80.3 (68.7, 89.1)    | 36.6 (28.7, 44.9) | 91.7 (86.3, 95.5) | 0.205  |
| TBI-I   |       |                      |                      |                   |                   |        |
|         | LR    | 71.1 (65.0, 76.7)    | 80.4 (67.6, 89.8)    | 38.8 (29.9, 48.3) | 94.1 (89.7, 97.0) | 0.164  |
|         | XGB   | 74.0 (68.0, 79.4)    | 80.4 (67.6, 89.8)    | 41.3 (31.9, 51.1) | 94.3 (90.0, 97.1) | 0.143  |
|         | SVM   | 71.1 (65.0, 76.7)    | 80.4 (67.6, 89.8)    | 38.8 (29.9, 48.3) | 94.1 (89.7, 97.0) | 0.172  |
|         | RF    | 76.0 (70.2, 81.2)    | 80.4 (67.6, 89.8)    | 43.3 (33.6, 53.3) | 94.4 (90.3, 97.2) | 0.205  |
|         | EN    | 81.3 (75.9, 86.0)    | 80.4 (67.6, 89.8)    | 49.5 (38.8, 60.1) | 94.8 (90.9, 97.4) | 0.204  |
| TBI-ND  |       |                      |                      |                   |                   |        |
|         | LR    | 46.1 (39.8, 52.6)    | 80.7 (68.1, 90.0)    | 25.8 (19.6, 32.9) | 91.1 (84.7, 95.5) | 0.090  |
|         | XGB   | 66.5 (60.2, 72.4)    | 80.7 (68.1, 90.0)    | 35.9 (27.7, 44.9) | 93.7 (89.0, 96.8) | 0.242  |
|         | SVM   | 59.2 (52.7, 65.4)    | 80.7 (68.1, 90.0)    | 31.5 (24.1, 39.7) | 92.9 (87.7, 96.4) | 0.147  |
|         | RF    | 60.4 (54.0, 66.6)    | 80.7 (68.1, 90.0)    | 32.2 (24.6, 40.5) | 93.1 (88.0, 96.5) | 0.138  |
|         | EN    | 74.3 (68.3, 79.6)    | 80.7 (68.1, 90.0)    | 42.2 (32.8, 52.0) | 94.3 (90.0, 97.1) | 0.201  |
| TBI-D   |       |                      |                      |                   |                   |        |
|         | LR    | 42.6 (36.9, 48.5)    | 81.8 (48.2, 97.7)    | 5.1 (2.4, 9.5)    | 98.4 (94.4, 99.8) | 0.005  |
|         | XGB   | 57.7 (51.8, 63.5)    | 81.8 (48.2, 97.7)    | 6.8 (3.2, 12.5)   | 98.8 (95.8, 99.9) | 0.002  |
|         | SVM   | 74.2 (68.8, 79.2)    | 81.8 (48.2, 97.7)    | 10.7 (5.0, 19.4)  | 99.1 (96.7, 99.9) | 0.039  |
|         | RF    | 74.9 (69.5, 79.8)    | 81.8 (48.2, 97.7)    | 11.0 (5.1, 19.8)  | 99.1 (96.8, 99.9) | 0.005  |
|         | EN    | 79.0 (73.9, 83.6)    | 81.8 (48.2, 97.7)    | 12.9 (6.1, 23.0)  | 99.1 (96.9, 99.9) | 0.033  |

615 TBI, traumatic brain injury, TBI-I, traumatic brain injury with intracranial injury; TBI-

616 ND; traumatic brain injury with non-discharge; TBI-D, traumatic brain injury with

617 death; LR, logistic regression analysis; XGB, extreme gradient boosting; SVM, support

618 vector machine; RF, random forest; EN, elastic net.

| 2          |
|------------|
| 2          |
| 2          |
| 4          |
| 5          |
| 6          |
| 7          |
| 8          |
| 0          |
| 9          |
| 10         |
| 11         |
| 12         |
| 13         |
| 14         |
| 15         |
| 10         |
| 16         |
| 17         |
| 18         |
| 19         |
| 20         |
| 21         |
| ∠ I<br>2.2 |
| 22         |
| 23         |
| 24         |
| 25         |
| 26         |
| 27         |
| 27         |
| 28         |
| 29         |
| 30         |
| 31         |
| 32         |
| 22         |
| 24         |
| 34         |
| 35         |
| 36         |
| 37         |
| 38         |
| 30         |
| 40         |
| 40         |
| 41         |
| 42         |
| 43         |
| 44         |
| 45         |
| 46         |
| 40         |
| 4/         |
| 48         |
| 49         |
| 50         |
| 51         |
| 52         |
| 52         |
| 22         |
| 54         |
| 55         |
| 56         |
| 57         |
| 58         |
| 50         |

### 620 Table 4. Top 5 important variables for outcomes in descending order using model621 specific metrics

| Outcome | Rank | LR                    | XGB                      | RF                    | EN                    |
|---------|------|-----------------------|--------------------------|-----------------------|-----------------------|
| TBI     |      |                       |                          |                       |                       |
|         | 1    | Loss of consciousness | Loss of consciousness    | Loss of consciousness | Loss of consciousness |
|         | 2    | GCS, Eye, 1           | GCS, Eye, 1              | GCS, Eye, 1           | GCS, Motor, 1         |
|         | 3    | GCS, Verbal, 1        | GCS, Verbal, 1           | GCS, Verbal, 1        | GCS, Motor, 2         |
|         | 4    | Light reflex          | Other mechanism          | Light reflex          | GCS, Eye, 1           |
|         | 5    | GCS, Motor, 1         | GCS, Verbal, 2           | GCS, Motor, 1         | GCS, Verbal, 1        |
| TBI-I   |      |                       |                          |                       |                       |
|         | 1    | Loss of consciousness | Loss of consciousness    | Loss of consciousness | GCS, Eye, 1           |
|         | 2    | GCS, Eye, 1           | GCS, Eye, 1              | GCS, Eye, 1           | Loss of consciousness |
|         | 3    | GCS, Verbal, 1        | GCS, Verbal, 1           | GCS, Verbal, 1        | GCS, Motor, 1         |
|         | 4    | Light reflex          | GCS, Verbal, 2           | Light reflex          | GCS, Verbal, 1        |
|         | 5    | GCS, Motor, 1         | Other mechanism          | GCS, Motor, 1         | Light reflex          |
| TBI-ND  |      |                       |                          |                       |                       |
|         | 1    | Loss of consciousness | Loss of consciousness    | Loss of consciousness | Loss of consciousness |
|         | 2    | GCS, Eye, 1           | GCS, Eye, 1              | GCS, Eye, 1           | GCS, Eye, 1           |
|         | 3    | GCS, Verbal, 1        | GCS, Verbal, 1           | GCS, Verbal, 1        | GCS, Motor, 1         |
|         | 4    | Light reflex          | GCS, Verbal, 2           | GCS, Verbal, 2        | GCS, Verbal, 1        |
|         | 5    | GCS, Motor, 1         | GCS, Motor, 1            | GCS, Motor, 4         | Light reflex          |
| TBI-D   |      |                       |                          |                       |                       |
|         | 1    | Loss of consciousness | GCS, Verbal, 1           | GCS, Verbal, 1        | GCS, Motor, 2         |
|         | 2    | GCS, Verbal, 1        | Oxygen<br>saturation<96% | Light reflex          | GCS, Verbal, 1        |
|         | 3    | GCS, Eye, 1           | Fall mechanism           | Loss of consciousness | Loss of consciousness |
|         | 4    | Light reflex          | Afternoon                | GCS, Eye, 1           | Age over 80           |
|         | 5    | CCS Matar 1           | Light rafley             | GCS Motor 1           | HD 87 00              |

623 ND; traumatic brain injury with non-discharge; TBI-D, traumatic brain injury with

624 death; LR, logistic regression; XGB, extreme gradient boosting; RF, random forest; EN,

625 elastic net; GCS, Glasgow coma scale; HR, heart rate.

626

59 60



165x119mm (300 x 300 DPI)

Supplementary Table 1. List of analyzed variables.

| Variables                    | Descriptions                                   | Type of raw data | Category                                                                                                                        | Preprocessing                                                        |
|------------------------------|------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Gender                       | Sex of the patients                            | Binary           | Male, Female                                                                                                                    |                                                                      |
| Age                          | Age of patients                                | Continuous       | 15-39 years, 40-59 years, 60-79 years, and 80- years                                                                            | Discretization and one hot encoding                                  |
| Job                          | Job of patients                                | Categorical      | Unemployed, Student/Housewife;<br>Office/Commercial/Service workers;<br>Industrial/Agricultural/Fishery/Miner<br>worker; Others | One hot encoding<br>Missing data were classified into others         |
| Diabetes                     | History of diabetes mellitus                   | Binary           | Yes, No                                                                                                                         | Missing data were classified into no                                 |
| Hypertension                 | History of hypertension                        | Binary           | Yes, No                                                                                                                         | Missing data were classified into no                                 |
| Location of injury           | Location of injury                             | Categorical      | home/residentialarea/medicalfacility/school/gym;area/medicalRoad/highway;off-road traffic area;Othersothers                     | One hot encoding<br>Missing data were classified into others         |
| Season                       | Season when injury occurred                    | Categorical      | Spring, Summer, Fall, Winter                                                                                                    | One hot encoding                                                     |
| Weekend                      | Whether Injury occurred on weekday or weekend  | Binary           | Weekday, Weekend                                                                                                                |                                                                      |
| Daytime                      | When injury was occurred                       | Categorical      | Night (Midnight to 5AM), Morning (6AM<br>to 11AM), Afternoon (Midday to 5PM),<br>Evening (6PM to 11PM)                          | One hot encoding<br>Missing time were imputed using EMS<br>call time |
| Mechanism of injury          | Mechanism of injury                            | Categorical      | Slip down, Fall down, Traffic accident,<br>Other                                                                                | One hot encoding<br>Missing data were classified into others         |
| Glasgow coma scale<br>eye    | Eye element of Glasgow coma scale              | Categorical      | 1;2;3;4;Unknown                                                                                                                 | One hot encoding                                                     |
| Glasgow coma scale<br>Verbal | Verbal element of Glasgow coma scale           | Categorical      | 1;2;3;4;5;Unknown                                                                                                               | One hot encoding                                                     |
| Glasgow coma scale<br>Motor  | Motor element of Glasgow coma scale            | Categorical      | 1;2;3;4;5;6;Unknown                                                                                                             | One hot encoding                                                     |
| Light Reflex any<br>Abnormal | Any abnormality of light<br>reflex on any side | Categorical      | No, Yes, Unknown                                                                                                                | One hot encoding<br>Missing data were classified into<br>unknown     |

| Systolic blood               | Systolic blood pressure                 | Continuous | -107 mmHg, 108-130 mmHg, 131-145                       | Discretization and one hot encoding                                                                                                                                              |
|------------------------------|-----------------------------------------|------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pressure                     |                                         |            | mmHg, 146- mmHg, Unknown                               | Cutoff values for categories<br>calculated from median and interqu<br>range of training cohort<br>Missing data were classified                                                   |
|                              |                                         |            |                                                        | unknown                                                                                                                                                                          |
| Diastolic blood<br>pressure  | Diastolic blood pressure                | Continuous | -69 mmHg, 70-80 mmHg, 81-91 mmHg,<br>92- mmHg, Unknown | Discretization and one hot encoding<br>Cutoff values for categories<br>calculated from median and interquerange of training cohort<br>Missing data were classified<br>unknown    |
| Heart rate                   | Heart rate                              | Continuous | -74/min, 75-86/min, 87-99/min, 100-/min,<br>Unknown    | Discretization and one hot encoding<br>Cutoff values for categories<br>calculated from median and interqu<br>range of training cohort<br>Missing data were classified<br>unknown |
| Respiratory rate             | Respiratory rate                        | Continuous | -16/min, 17-18/min, 19-20/min, 21-/min,<br>Unknown     | Discretization and one hot encoding<br>Cutoff values for categories<br>calculated from median and interqu<br>range of training cohort<br>Missing data were classified<br>unknown |
| Oxygen saturation            | Oxygen saturation                       | Continuous | -95%, 96-98%, 99%, 100%, Unknown                       | Discretization and one hot encoding<br>Cutoff values for categories<br>calculated from median and interqu<br>range of training cohort<br>Missing data were classified<br>unknown |
| Body temperature             | Body temperature                        | Continuous | -36°C, 36.1-36.3°C, 36.4-36.8°C, 36.9-°C,<br>Unknown   | Discretization and one hot encoding<br>Cutoff values for categories<br>calculated from median and interqu<br>range of training cohort<br>Missing data were classified<br>unknown |
| Chest pain or abdominal pain | Symptom of chest pain or abdominal pain | Binary     | Yes, No                                                |                                                                                                                                                                                  |

| <b>P</b> · 1 ·         |                              | D:     | XZ XX   |  |
|------------------------|------------------------------|--------|---------|--|
| Fracture, abrasion, or | Symptom of fracture,         | Binary | Yes, No |  |
| laceration             | abrasion, or laceration      |        |         |  |
| Loss of                | Symptom of loss of           | Binary | Yes, No |  |
| consciousness          | consciousness (whether       |        |         |  |
|                        | patients had loss of         |        |         |  |
|                        | consciousness between injury |        |         |  |
|                        | and EMS provider's           |        |         |  |
|                        | assessment)                  |        |         |  |
| Dyspnea                | Symptom of dyspnea           | Binary | Yes, No |  |
| Nose bleeding          | Symptom of nose bleeding     | Binary | Yes, No |  |
| Nausea or vomiting     | Symptom of nausea or         | Binary | Yes, No |  |
|                        | vomiting                     |        |         |  |
| Headache, paralysis    | Symptom of headache,         | Binary | Yes, No |  |
| or dizziness           | paralysis or dizziness       |        |         |  |
|                        |                              |        |         |  |
|                        |                              |        |         |  |
|                        |                              |        |         |  |
|                        |                              |        |         |  |

#### BMJ Open

|                                        | N          | (%) or Median (IQ | <u>(R)</u> |        |
|----------------------------------------|------------|-------------------|------------|--------|
| Characteristics                        | Total      | Development       | Test       | P-valu |
| Total                                  | 1169       | 867               | 302        |        |
| Demographics                           |            |                   |            |        |
| Male                                   | 809 (69.2) | 592 (68.3)        | 217 (71.9) | 0.25   |
| Age, years                             | 53 (36-66) | 52 (35-66)        | 56 (40-69) | < 0.01 |
| Job of patients                        |            |                   |            | < 0.01 |
| Unemployed                             | 299 (25.6) | 197 (22.7)        | 102 (33.8) |        |
| Student/Housewife                      | 161 (13.8) | 129 (14.9)        | 32 (10.6)  |        |
| Office/Commercial/Service worker       | 283 (24.2) | 176 (20.3)        | 107 (35.4) |        |
| Industrial/Agricultural/Fishery/Minery |            |                   |            |        |
| worker                                 | 36 (3.1)   | 25 (2.9)          | 11 (3.6)   |        |
| Others                                 | 390 (33.4) | 340 (39.2)        | 50 (16.6)  |        |
| Past medical history                   |            |                   |            |        |
| Diabetes                               | 62 (5.3)   | 35 (4.0)          | 27 (8.9)   | < 0.01 |
| Hypertension                           | 105 (9.0)  | 61 (7.0)          | 44 (14.6)  | < 0.01 |
| Circumstances of Trauma                |            |                   |            |        |
| Location of trauma                     |            |                   |            | 0.52   |
| Residential/Nursing/Education/Exercise |            |                   |            |        |
| facility                               | 303 (25.9) | 218 (25.1)        | 85 (28.1)  |        |
| Road/Highway                           | 444 (38.0) | 326 (37.6)        | 118 (39.1) |        |
| Off-road traffic area                  | 181 (15.5) | 140 (16.1)        | 41 (13.6)  |        |
| Others                                 | 241 (20.6) | 183 (21.1)        | 58 (19.2)  |        |
| Season of trauma                       |            |                   |            | < 0.01 |
| Spring                                 | 249 (21.3) | 167 (19.3)        | 82 (27.2)  |        |
| Summer                                 | 336 (28.7) | 253 (29.2)        | 83 (27.5)  |        |
| Fall                                   | 304 (26.0) | 242 (27.9)        | 62 (20.5)  |        |
| Winter                                 | 280 (24.0) | 205 (23.6)        | 75 (24.8)  |        |
| Weekday                                | 811 (69.4) | 599 (69.1)        | 212 (70.2) | 0.72   |
| Time of trauma                         |            |                   |            | 0.83   |
| 6A-MD                                  | 281 (24.0) | 206 (23.8)        | 75 (24.8)  |        |
| MD-6P                                  | 266 (22.8) | 203 (23.4)        | 63 (20.9)  |        |
| 6P-MN                                  | 361 (30.9) | 265 (30.6)        | 96 (31.8)  |        |
| MN-6A                                  | 261 (22.3) | 193 (22.3)        | 68 (22.5)  |        |
| Mechanism of Trauma                    |            |                   |            | 0.60   |
| Traffic accident                       | 500 (42.8) | 375 (43.3)        | 125 (41.4) |        |
| Slip down                              | 325 (27.8) | 232 (26.8)        | 93 (30.8)  |        |
| Fall down                              | 171 (14.6) | 129 (14.9)        | 42 (13.9)  |        |
| Others                                 | 173 (14.8) | 131 (15.1)        | 42 (13.9)  |        |
| Chief complaint                        |            |                   |            |        |
| Altered mentality                      | 279 (23.9) | 223 (25.7)        | 56 (18.5)  | 0.01   |
| Facture/Abrasion/Laceration            | 302 (25.8) | 204 (23.5)        | 98 (32.5)  | < 0.01 |
| Chest/Abdominal pain                   | 47 (4.0)   | 31 (3.6)          | 16 (5.3)   | 0.19   |
| Dyspnea                                | 25 (2.1)   | 20 (2.3)          | 5 (1.7)    | 0.50   |

Supplementary Table 2. Demographic characteristics of development and test cohorts

| Epistaxis                            | 44 (3.8)              | 30 (3.5)       | 14 (4.6)             | 0.36   |
|--------------------------------------|-----------------------|----------------|----------------------|--------|
| Headache/Paralysis/Dizziness/Vertigo | 95 (8.1)              | 64 (7.4)       | 31 (10.3)            | 0.11   |
| Nausea/Vomiting                      | 32 (2.7)              | 20 (2.3)       | 12 (4.0)             | 0.13   |
| EMS Vital sign assessment            |                       |                |                      |        |
|                                      | 130 (109-             |                | 131 (115-            | 0.01   |
| SBP, mmHg                            | 150)                  | 130 (104-146)  | 150)                 | < 0.01 |
| Missing                              | 65 (5.6)              | 56 (6.5)       | 9 (3.0)              | 0.02   |
| DBP, mmHg                            | 80 (70-91)            | 80 (69-90)     | 80 (70-92)           | < 0.01 |
| Missing                              | 75 (6.4)              | 65 (7.5)       | 10 (3.3)             | 0.01   |
| HR, /min                             | 86 (75-99)            | 86 (74-99)     | 86 (76-100)          | < 0.01 |
| Missing                              | 31 (2.7)              | 28 (3.2)       | 3 (1.0)              | 0.04   |
| RR, /min                             | 18 (16-20)            | 18 (16-20)     | 18 (16-20)           | < 0.01 |
| Missing                              | 36 (3.1)              | 33 (3.8)       | 3 (1.0)              | 0.01   |
| SpO2, %                              | 98 (95-99)            | 98 (95-99)     | 98 (96-99)           | < 0.01 |
| Missing                              | 38 (3.3)<br>36.5 (36- | 33 (3.8)       | 5 (1.7)<br>36.5 (36- | 0.07   |
| Temperature, °C                      | 36.8)                 | 36.5 (36-36.8) | 36.7)                | < 0.01 |
| Missing                              | 94 (8.0)              | 65 (7.5)       | 29 (9.6)             | 0.25   |
| AVPU scale                           |                       |                |                      | < 0.01 |
| Alert                                | 714 (61.1)            | 504 (58.1)     | 210 (69.5)           |        |
| Verbal                               | 168 (14.4)            | 136 (15.7)     | 32 (10.6)            |        |
| Pain                                 | 199 (17.0)            | 158 (18.2)     | 41 (13.6)            |        |
| Unresponsive                         | 88 (7.5)              | 69 (8.0)       | 19 (6.3)             |        |
| Abnormal light reflex                | 165 (14.1)            | 132 (15.2)     | 33 (10.9)            | < 0.01 |
| Missing                              | 66 (5.6)              | 57 (6.6)       | 9 (3.0)              |        |
| GCS scale component                  |                       |                |                      |        |
| Glasgow coma scale eye               |                       |                |                      | < 0.01 |
| 4                                    | 558 (47.7)            | 380 (43.8)     | 178 (58.9)           |        |
| 3                                    | 128 (10.9)            | 109 (12.6)     | 19 (6.3)             |        |
| 2                                    | 110 (9.4)             | 82 (9.5)       | 28 (9.3)             |        |
| 1                                    | 174 (14.9)            | 141 (16.3)     | 33 (10.9)            |        |
| Unknown                              | 199 (17.0)            | 155 (17.9)     | 44 (14.6)            |        |
| Glasgow coma scale Verbal            |                       |                |                      | 0.01   |
| 5                                    | 520 (44.5)            | 359 (41.4)     | 161 (53.3)           |        |
| 4                                    | 118 (10.1)            | 88 (10.1)      | 30 (9.9)             |        |
| 3                                    | 25 (2.1)              | 19 (2.2)       | 6 (2.0)              |        |
| 2                                    | 132 (11.3)            | 105 (12.1)     | 27 (8.9)             |        |
| 1                                    | 174 (14.9)            | 141 (16.3)     | 33 (10.9)            |        |
| Unknown                              | 200 (17.1)            | 155 (17.9)     | 45 (14.9)            |        |
| Glasgow coma scale Motor             |                       |                |                      | < 0.01 |
| 6                                    | 499 (42.7)            | 333 (38.4)     | 166 (55.0)           |        |
| 5                                    | 124 (10.6)            | 103 (11.9)     | 21 (7.0)             |        |
| 4                                    | 158 (13.5)            | 123 (14.2)     | 35 (11.6)            |        |
| 3                                    | 47 (4.0)              | 39 (4.5)       | 8 (2.6)              |        |
| 2                                    | 17 (1.5)              | 15 (1.7)       | 2 (0.7)              |        |
| 1                                    | 125 (10.7)            | 99 (11.4)      | 26 (8.6)             |        |
| Unknown                              | 199 (17.0)            | 155 (17.9)     | 44 (14.6)            |        |
|                                      |                       |                |                      |        |

Page 41 of 48

#### **BMJ** Open

| 3        |                                                |                |                     |                   |               |
|----------|------------------------------------------------|----------------|---------------------|-------------------|---------------|
| 4        | EMS management                                 |                |                     |                   |               |
| 5        |                                                | 176 (15 1)     | 120 (14 0)          | 47 (15 6)         | 0.77          |
| 6<br>7   | Hemorrhage control                             | 596 (50 1)     | 129 (14.9)          | 47(13.0)          | 0.77          |
| 7<br>8   | Hemorrage control                              | 380 (30.1)     | 420 (49.1)          | 160 (33.0)        | 0.23          |
| 9        | Spinal motion restriction                      | 811 (69.4)     | 606 (69.9)          | 205 (67.9)        | 0.51          |
| 10       | Advanced airway management                     | 4 (0.3)        | 2 (0.2)             | 2 (0.7)           | 0.28          |
| 11       | Oxygen supply                                  | 233 (19.9)     | 176 (20.3)          | 57 (18.9)         | 0.59          |
| 12       | Field triage decision scheme criteria*         |                |                     |                   |               |
| 13       | Physiological criteria                         |                |                     |                   |               |
| 14       | SBP<90 mmHg                                    | 58 (5.0)       | 42 (4.8)            | 16 (5.3)          | 0.75          |
| 15       | RR<10 or >29 /min                              | 11 (0.9)       | 11 (1.3)            | 0 (0.0)           | 0.08          |
| 17       | Non-Alert                                      | 429 (36.7)     | 343 (39.6)          | 86 (28.5)         | < 0.01        |
| 18       | Anatomic criteria                              |                |                     |                   |               |
| 19       | All penetrating injuries to head, neck,        |                |                     |                   |               |
| 20       | torso and extremities proximal to elbow        |                |                     |                   | 0.00          |
| 21       | or knee                                        | 34 (2.9)       | 23 (2.7)            | 11 (3.6)          | 0.38          |
| 22       | Chest wall instability or deformity            | 4 (0.3)        | 4 (0.5)             | 0 (0.0)           | 0.58          |
| 23       | I wo or more proximal long bone                | 19 (1.6)       | 13 (1 5)            | 6 (2 0)           | 0.60          |
| 25       | Crush, degloved, mangled or                    | 1) (1.0)       | 15 (1.5)            | 0 (2.0)           | 0.00          |
| 26       | pulseless extremity                            | 15 (1.3)       | 13 (1.5)            | 2 (0.7)           | 0.38          |
| 27       | Amputation proximal to wrist or ankle          | 9 (0.8)        | 9 (1.0)             | 0 (0.0)           | 0.12          |
| 28       | Pelvic fractures                               | 8 (0.7)        | 6 (0.7)             | 2 (0.7)           | >0.95         |
| 29       | Open or depressed skull fracture               | 17 (1.5)       | 9(1.0)              | 8 (2.6)           | 0.05          |
| 30<br>21 | Paralysis                                      | 21(1.8)        | 11 (1 3)            | 10(33)            | 0.02          |
| 32       | Mechanism of injury criteria                   | 21 (1.0)       | 11 (1.5)            | 10 (5.5)          | 0.02          |
| 33       |                                                |                |                     |                   |               |
| 34       | Fall > 6 meter                                 | 113 (9.7)      | 84 (9.7)            | 29 (9.6)          | >0.95         |
| 35       | High-risk auto crash                           | 96 (8.2)       | 73 (8.4)            | 23 (7.6)          | 0.66          |
| 36       | Auto vs pedestrian/bicyclist thrown,           |                |                     |                   |               |
| 37       | run over, or with significant (>30km/h)        |                |                     |                   |               |
| 38       | impact                                         | 119 (10.2)     | 83 (9.6)            | 36 (11.9)         | 0.25          |
| 40       | Motorcycle crash $> 30$ km/hour                | 105 (9.0)      | 70 (8.1)            | 35 (11.6)         | 0.07          |
| 41       | ED disposition                                 |                |                     |                   | 0.11          |
| 42       | Discharge                                      | 320 (27 4)     | 241 (27.8)          | 79 (26 2)         |               |
| 43       | Transfer                                       | 444 (28.0)     | 216(26.4)           | 129 (42.4)        |               |
| 44       |                                                | 444 (38.0)     | 316 (36.4)          | 128 (42.4)        |               |
| 45       | Admitted                                       | 366 (31.3)     | 276 (31.8)          | 90 (29.8)         |               |
| 40<br>47 | In-hospital mortality                          | 90 (7.7)       | 74 (8.5)            | 16 (5.3)          | 0.07          |
| 48       | Outcomes                                       |                |                     |                   |               |
| 49       | TBI                                            | 201 (24.0)     | 215 (24.9)          | ((21.0))          | 0.20          |
| 50       |                                                | 281 (24.0)     | 215 (24.8)          | 66 (21.9)         | 0.30          |
| 51       | TBI with intracranial injury                   | 251 (21.5)     | 195 (22.5)          | 56 (18.5)         | 0.15          |
| 52       | TBI-related non-discharge                      | 249 (21.3)     | 192 (22.1)          | 57 (18.9)         | 0.23          |
| 53<br>54 | TBI-related death                              | 43 (37)        | 32 (37)             | 11 (3.6)          | >0 95         |
| 55       | *EMS providers check specific criteria orderly | from physiolog | tic, anatomical, an | d mechanism of in | njury. If the |
| 56       | 1 1 5                                          | 1,7,6          |                     |                   | ~ ~           |

preceding criteria are satisfied, the information of the latter criteria is not collected.

IQR, interquartile range; SBP, systolic blood pressure; RR, respiratory rate; ED, emergency department; TBI, traumatic brain injury.

tor beer teriew only

| 2        |
|----------|
| 3        |
| 1        |
| -        |
| 5        |
| 6        |
| /        |
| 8        |
| 9        |
| 10       |
| 11       |
| 12       |
| 13       |
| 14       |
| 15       |
| 16       |
| 17       |
| 10       |
| 1Ŏ       |
| 19       |
| 20       |
| 21       |
| 22       |
| 23       |
| 24       |
| 25       |
| 26       |
| 27       |
| 28       |
| 20       |
| 29       |
| 20       |
| 31       |
| 32       |
| 33       |
| 34       |
| 35       |
| 36       |
| 37       |
| 38       |
| 39       |
| 40       |
| 41       |
| 42       |
| 42<br>12 |
| 45<br>11 |
| 44<br>47 |
| 45       |
| 46       |
| 47       |
| 48       |
| 49       |
| 50       |
| 51       |
| 52       |
| 53       |
| 54       |
| 55       |
| 55       |
| 20       |
| 5/       |
| 58       |
| 59       |

60

| Model                     | Outcome | Hyperparameters                                               |
|---------------------------|---------|---------------------------------------------------------------|
| Elastic net               | TBI     | alpha: 0.325, lambda: 0.07506346                              |
|                           | TBI-I   | alpha: 0.325, lambda: 0.07506346                              |
|                           | TBI-ND  | alpha: 0.325, lambda: 0.07017153                              |
|                           | TBI-D   | alpha: 0.325, lambda: 0.01565599                              |
| Random forest             | TBI     | ntree:500, mtry: 18                                           |
|                           | TBI-I   | ntree:500, mtry: 18                                           |
|                           | TBI-ND  | ntree:500, mtry: 18                                           |
|                           | TBI-D   | ntree:500, mtry: 15                                           |
| Support vector machine    | TBI     | sigma: 0.008047; C: 4                                         |
|                           | TBI-I   | sigma: 0.008047; C: 4                                         |
|                           | TBI-ND  | sigma: 0.008047; C: 4                                         |
|                           | TBI-D   | sigma: 0.008047; C: 4                                         |
|                           |         | nrounds: 299; max_depth: 1; eta: 0.4807096; gamma: 2.336623;  |
| Extreme gradient boosting | ТВІ     | colsample_bytree: 0.3657893; min_child_weight: 8; subsample:  |
|                           |         | 0.8182623                                                     |
|                           |         | nrounds: 299; max_depth: 1; eta: 0.4807096; gamma: 2.336623;  |
|                           | TBI-I   | colsample_bytree: 0.3657893; min_child_weight: 8; subsample:  |
|                           |         | 0.8182623                                                     |
|                           |         | nrounds: 301; max_depth: 1; eta: 0.02154674; gamma: 4.696105; |
|                           | TBI-ND  | colsample_bytree: 0.590754; min_child_weight: 1; subsample:   |
|                           |         | 0.5070866                                                     |
|                           |         | nrounds: 50; max_depth: 0.3; eta: 0.3; gamma: 0;              |
|                           | TBI-D   | colsample_bytree: 0.8; min_child_weight: 1; subsample:        |
|                           |         | 0.5510204                                                     |

\*Aside from the hyperparameters mentioned, all other hyperparameters are used as the default value.

TBI, traumatic brain injury; TBI-I, TBI with intracranial hemorrhage or injury; TBI-ND, TBI non-discharge; TBI-D, TBI with death.

Supplementary Figure 1. Receiver operating characteristics of prediction models according to outcomes. TBI, traumatic brain injury; TBI-I, TBI with intracranial hemorrhage or injury; TBI-ND, TBI non-discharge; TBI-D, TBI with death.



Page 45 of 48

 BMJ Open

Supplementary Figure 2. Precision-recall curve of prediction models according to outcomes. TBI, traumatic brain injury; TBI-I, TBI with intracranial hemorrhage or injury; TBI-ND, TBI non-discharge; TBI-D, TBI with death; LR, logistic regression analysis; XGB, extreme gradient boosting; RF, random forest, EN, elastic net.



Supplementary Figure 3. Calibration plot of prediction models according to outcomes. TBI, traumatic brain injury; TBI-I, TBI with intracranial hemorrhage or injury; TBI-ND, TBI non-discharge; TBI-D, TBI with death; p, p-value of Hosmer-Lemeshow test; BS, scaled Brier score.



For beer review only For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary Table 4. Example of calculating false-positive patients for accurately identified patients. TBI, traumatic brain injury; EN, elastic net.



False-positive patients for every 10 patients that are accurately identified as TBI :  $346/226 \times 10 = 15.3$ , rounded up to 16 patients

# TRAPOD

#### TRIPOD Checklist: Prediction Model Development and Validation

| Section/Topic      | Item |             | Checklist Item                                                                                                                                                                                       | Paç    |
|--------------------|------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| litle and abstract |      |             | Identify the study as developing and/or validating a multivariable production model, the                                                                                                             | 1      |
| Title              | 1    | D;V         | target population, and the outcome to be predicted.                                                                                                                                                  | 1      |
| Abstract           | 2    | D;V         | Provide a summary of objectives, study design, setting, participants, sample size,<br>predictors, outcome, statistical analysis, results, and conclusions.                                           | 4      |
| Introduction       |      |             |                                                                                                                                                                                                      |        |
|                    |      |             | Explain the medical context (including whether diagnostic or prognostic) and rationale                                                                                                               |        |
| Background         | 3a   | D;V         | for developing or validating the multivariable prediction model, including references to                                                                                                             | 7      |
| and objectives     | 3h   | ١٠٧         | Specify the objectives, including whether the study describes the development or                                                                                                                     | 2      |
|                    | 00   | D, V        | validation of the model or both.                                                                                                                                                                     |        |
| Methods            |      | _           | Departies the study design as source of date (a.g., rendemized trial, expert, or registry                                                                                                            | 1      |
| Source of data     | 4a   | D;V         | data), separately for the development and validation data sets, if applicable.                                                                                                                       | 8-     |
| Source of data     | 4b   | D;V         | Specify the key study dates, including start of accrual; end of accrual; and, if applicable,                                                                                                         | 9      |
|                    | 5a   | D∙V         | Specify key elements of the study setting (e.g., primary care, secondary care, general                                                                                                               | 8-     |
| Participants       | 54   | D,V         | population) including number and location of centres.                                                                                                                                                | 4      |
|                    | 50   |             | Describe eligibility criteria for participants.                                                                                                                                                      | 1<br>N |
|                    | 50   | D,V         | Clearly define the outcome that is predicted by the prediction model including how and                                                                                                               | IN/    |
| Outcome            | 6a   | D;V         | when assessed.                                                                                                                                                                                       | 10-    |
|                    | 6b   | D;V         | Report any actions to blind assessment of the outcome to be predicted.                                                                                                                               | N      |
| _                  | 7a   | D;V         | Clearly define all predictors used in developing or validating the multivariable prediction model including how and when they were measured                                                          | 1      |
| Predictors         | 7h   | 0.11        | Report any actions to blind assessment of predictors for the outcome and other                                                                                                                       | N.L.   |
|                    | 10   | U,V         | predictors.                                                                                                                                                                                          | IN/    |
| Sample size        | 8    | D;V         | Explain how the study size was arrived at.                                                                                                                                                           | 1      |
| Missing data       | 9    | D;V         | Describe now missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method                                                  | 1      |
|                    | 10a  | D           | Describe how predictors were handled in the analyses.                                                                                                                                                | 1      |
|                    | 10h  |             | Specify type of model, all model-building procedures (including any predictor selection),                                                                                                            | 11     |
| Statistical        | 100  |             | and method for internal validation.                                                                                                                                                                  | 11     |
| analysis           | 10c  | V           | For validation, describe how the predictions were calculated.                                                                                                                                        | 12     |
| methous            | 10d  | D;V         | multiple models.                                                                                                                                                                                     | 12-    |
|                    | 10e  | V           | Describe any model updating (e.g., recalibration) arising from the validation, if done.                                                                                                              | N      |
| Risk groups        | 11   | D;V         | Provide details on how risk groups were created, if done.                                                                                                                                            | N/     |
| Development        | 12   | v           | For validation, identify any differences from the development data in setting, eligibility                                                                                                           | 1      |
|                    |      |             |                                                                                                                                                                                                      |        |
|                    | 13a  | D;V         | Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be beloful | 1      |
| Participants       | 13b  | D;V         | Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for                           | 1      |
|                    | 120  | V           | For validation, show a comparison with the development data of the distribution of                                                                                                                   | 1      |
|                    | 130  | V           | important variables (demographics, predictors and outcome).                                                                                                                                          |        |
| Model              | 14a  | D           | Specify the number of participants and outcome events in each analysis.                                                                                                                              | 1      |
| development        | 14b  | D           | outcome.                                                                                                                                                                                             | N      |
| Model              | 15a  | D           | Present the full prediction model to allow predictions for individuals (i.e., all regression                                                                                                         | N      |
| specification      | 15b  | D           | Explain how to the use the prediction model.                                                                                                                                                         | 14     |
| Model              | 16   | D;V         | Report performance measures (with CIs) for the prediction model.                                                                                                                                     | 14     |
| Model-updating     | 17   | v           | If done, report the results from any model updating (i.e., model specification, model                                                                                                                | N      |
| Discussion         |      |             |                                                                                                                                                                                                      |        |
| Limitations        | 18   | D;V         | Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).                                                                                     | 19-    |
|                    | 19a  | V           | For validation, discuss the results with reference to performance in the development                                                                                                                 | 16     |
| Interpretation     | 19h  | עים         | Give an overall interpretation of the results, considering objectives, limitations, results                                                                                                          | 1      |
| Implications       |      | <u>,</u> ,  | from similar studies, and other relevant evidence.                                                                                                                                                   | 4.0    |
| Implications       | 20   | D;V         | Discuss the potential clinical use of the model and implications for future research.                                                                                                                | 18-    |
| Supplementary      |      | <b>P</b> 11 | Provide information about the availability of supplementary resources, such as study                                                                                                                 | _      |
| information        | 21   | D;V         | protocol, Web calculator, and data sets.                                                                                                                                                             | Sup    |
| Funding            | 22   | D;V         | Give the source of funding and the role of the funders for the present study.                                                                                                                        | 20     |

\*Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model are denoted by V, and items relating to both are denoted D;V. We recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration document.

# **BMJ Open**

#### Development and validation of a prehospital-stage prediction tool for traumatic brain injury: a multicentre retrospective cohort study in Korea

| Journal:                             | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                        | bmjopen-2021-055918.R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Article Type:                        | Original research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Date Submitted by the Author:        | 16-Dec-2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Complete List of Authors:            | Choi, Yeong Ho; Seoul National University Hospital, Emergency<br>Department; Seoul National University Hospital Biomedical Research<br>Institute, Laboratory of Emergency Medical Services<br>Park, Jeong Ho; Seoul National University Hospital, Emergency<br>Department; Seoul National University Hospital Biomedical Research<br>Institute, Laboratory of Emergency Medical Services<br>Hong, Ki Jeong; Seoul National University Hospital, Emergency Medicine;<br>Seoul National University Hospital Biomedical Research Institute,<br>Laboratory of Emergency Medical Services<br>Ro, Young Sun; Seoul National University Hospital, Emergency Medicine;<br>Seoul National University Hospital Biomedical Research Institute,<br>Laboratory of Emergency Medical Services<br>Ro, Young Sun; Seoul National University Hospital, Emergency Medicine;<br>Seoul National University Hospital Biomedical Research Institute,<br>Laboratory of Emergency Medical Services<br>Song, Kyoung Jun; Seoul Metropolitan Boramae Hospital, Department of<br>Emergency Medicine; Seoul National University Hospital Biomedical<br>Research Institute, Laboratory of Emergency Medical Services<br>Shin, Sang Do; Seoul National University Hospital, Department of<br>Emergency Medicine; Seoul National University Hospital Biomedical<br>Research Institute, Laboratory of Emergency Medical Services |
| <b>Primary Subject<br/>Heading</b> : | Emergency medicine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Secondary Subject Heading:           | Emergency medicine, Health informatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Keywords:                            | ACCIDENT & EMERGENCY MEDICINE, Neurological injury < NEUROLOGY,<br>Trauma management < ORTHOPAEDIC & TRAUMA SURGERY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

#### SCHOLARONE<sup>™</sup> Manuscripts



I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| 2        |    |                                                                                       |
|----------|----|---------------------------------------------------------------------------------------|
| 3<br>4   | 1  |                                                                                       |
| 5        | I  | Title page                                                                            |
| 6<br>7   | 2  |                                                                                       |
| /<br>8   | -  |                                                                                       |
| 9        | 3  | 1. Title                                                                              |
| 10       |    |                                                                                       |
| 11<br>12 | 4  | Development and validation of a prehospital-stage prediction tool for traumatic brain |
| 12       | _  |                                                                                       |
| 14       | 5  | injury: a multicentre retrospective cohort study in Korea                             |
| 15       | 6  |                                                                                       |
| 16       | 0  |                                                                                       |
| 18       | 7  | 2. Authors                                                                            |
| 19       | ,  |                                                                                       |
| 20<br>21 | 8  | Yeong Ho Choi, MD                                                                     |
| 22       |    |                                                                                       |
| 23       | 9  | Department of Emergency Medicine, Seoul National University College of Medicine and   |
| 24       | 10 |                                                                                       |
| 25<br>26 | 10 | Hospital, Seoul, Republic of Korea                                                    |
| 27       | 11 | Laboratory of Emergency Medical Services, Seoul National University Hospital          |
| 28       | 11 | Eaboratory of Emergency Wedlear Services, Scour National Oniversity Hospital          |
| 29       | 12 | Biomedical Research Institute, Seoul, Korea                                           |
| 31       |    |                                                                                       |
| 32       | 13 | E-mail: d2uk87@gmail.com                                                              |
| 33<br>34 |    |                                                                                       |
| 35       | 14 |                                                                                       |
| 36       | 15 | Joong Ho Park MD                                                                      |
| 37       | 15 | Jeong Ho Tark, WD                                                                     |
| 30<br>39 | 16 | Department of Emergency Medicine, Seoul National University College of Medicine and   |
| 40       |    |                                                                                       |
| 41       | 17 | Hospital, Seoul, Republic of Korea                                                    |
| 42<br>43 | 10 |                                                                                       |
| 44       | 18 | Laboratory of Emergency Medical Services, Seoul National University Hospital          |
| 45       | 10 | Riomedical Research Institute, Secul, Korea                                           |
| 46<br>47 | 17 | Diometical Research Institute, Scoul, Rolea                                           |
| 48       | 20 | E-mail: timthe@gmail.com                                                              |
| 49       |    | $\bigcirc$                                                                            |
| 50<br>51 | 21 |                                                                                       |
| 52       |    |                                                                                       |
| 53       | 22 | K1 Jeong Hong, MD, PhD                                                                |
| 54<br>55 | 22 | Department of Emergency Medicine, Secul National University College of Medicine and   |
| 56       | 23 | Department of Emergency Medicine, Seour National University Conege of Medicine and    |
| 57       | 24 | Hospital, Seoul, Republic of Korea                                                    |
| 58<br>50 |    | 1 , , . <b>r</b>                                                                      |
| 60       |    |                                                                                       |

| 1<br>2                                                   |    |                                                                                     |
|----------------------------------------------------------|----|-------------------------------------------------------------------------------------|
| 3<br>4<br>5                                              | 25 | Laboratory of Emergency Medical Services, Seoul National University Hospital        |
| 6<br>7                                                   | 26 | Biomedical Research Institute, Seoul, Korea                                         |
| 8<br>9                                                   | 27 | E-mail: emkjhong@gmail.com                                                          |
| 10<br>11<br>12                                           | 28 |                                                                                     |
| 13<br>14                                                 | 29 | Young Sun Ro, MD, DrPH                                                              |
| 15<br>16                                                 | 30 | Department of Emergency Medicine, Seoul National University College of Medicine and |
| 17<br>18<br>19                                           | 31 | Hospital, Seoul, Republic of Korea                                                  |
| 20<br>21                                                 | 32 | Laboratory of Emergency Medical Services, Seoul National University Hospital        |
| 22<br>23                                                 | 33 | Biomedical Research Institute, Seoul, Korea                                         |
| 24<br>25<br>26                                           | 34 | E-mail: ro.youngsun@gmail.com                                                       |
| 20<br>27<br>28                                           | 35 |                                                                                     |
| 29<br>30                                                 | 36 | Kyoung Jun Song, MD, PhD                                                            |
| 31<br>32<br>22                                           | 37 | Department of Emergency Medicine, Seoul Metropolitan Government Seoul National      |
| 33<br>34<br>35                                           | 38 | University Boramae Medical Center, Seoul, Republic of Korea                         |
| 36<br>37                                                 | 39 | Laboratory of Emergency Medical Services, Seoul National University Hospital        |
| 38<br>39                                                 | 40 | Biomedical Research Institute, Seoul, Korea                                         |
| 40<br>41<br>42                                           | 41 | E-mail: skciva@gmail.com                                                            |
| 43<br>44                                                 | 42 |                                                                                     |
| 45<br>46                                                 | 43 | Sang Do Shin, MD, PhD                                                               |
| 47<br>48<br>49                                           | 44 | Department of Emergency Medicine, Seoul National University College of Medicine and |
| 49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58 | 45 | Hospital, Seoul, Republic of Korea                                                  |
|                                                          | 46 | Laboratory of Emergency Medical Services, Seoul National University Hospital        |
|                                                          | 47 | Biomedical Research Institute, Seoul, Korea                                         |
|                                                          | 48 | E-mail: shinsangdo@gmail.com                                                        |
| 59<br>60                                                 |    |                                                                                     |
|                                                          |    | 2                                                                                   |

| 1<br>2         |    |                                                                                     |
|----------------|----|-------------------------------------------------------------------------------------|
| 3<br>4<br>5    | 49 |                                                                                     |
| 6<br>7         | 50 | 3. Address correspondence and requests for reprints: Jeong Ho Park, MD              |
| 8<br>9<br>10   | 51 | Address: Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul 03080, |
| 10<br>11<br>12 | 52 | Korea                                                                               |
| 13<br>14       | 53 | Phone: +82-2-2072-1800                                                              |
| 15<br>16       | 54 | FAX: +82-2-741-7855                                                                 |
| 17<br>18<br>19 | 55 | E-mail: timthe@gmail.com                                                            |
| 20<br>21       | 56 |                                                                                     |
| 22<br>23       | 57 |                                                                                     |
| 24<br>25<br>26 | 58 |                                                                                     |
| 27<br>28       |    |                                                                                     |
| 29<br>30       |    |                                                                                     |
| 31<br>32<br>33 |    |                                                                                     |
| 34<br>35       |    |                                                                                     |
| 36<br>37       |    |                                                                                     |
| 38<br>39<br>40 |    |                                                                                     |
| 40<br>41<br>42 |    |                                                                                     |
| 43<br>44       |    |                                                                                     |
| 45<br>46       |    |                                                                                     |
| 47<br>48<br>49 |    |                                                                                     |
| 50<br>51       |    |                                                                                     |
| 52<br>53       |    |                                                                                     |
| 54<br>55<br>56 |    |                                                                                     |
| 57<br>58       |    |                                                                                     |
| 59<br>60       |    |                                                                                     |
|                |    | 3                                                                                   |

BMJ Open

| 3              |    |                                                                                                  |
|----------------|----|--------------------------------------------------------------------------------------------------|
| 4<br>5         | 59 | Abstract                                                                                         |
| 6<br>7<br>8    | 60 | Objectives: Predicting diagnosis and prognosis of traumatic brain injury (TBI) at the            |
| 9<br>10        | 61 | prehospital stage is challenging; however, using comprehensive prehospital information and       |
| 11<br>12       | 62 | machine learning may improve the performance of the predictive model. We developed and           |
| 13<br>14<br>15 | 63 | tested predictive models for TBI that use machine learning algorithms using information that     |
| 16<br>17       | 64 | can be obtained in the prehospital stage.                                                        |
| 18<br>19       | 65 | Design: This was a multi-center retrospective study.                                             |
| 20<br>21<br>22 | 66 | Setting and participants: This study was conducted at three tertiary academic emergency          |
| 22<br>23<br>24 | 67 | departments (EDs) located in an urban area of South Korea. The data from adult patients with     |
| 25<br>26       | 68 | severe trauma who were assessed by emergency medical service (EMS) providers and                 |
| 27<br>28<br>20 | 69 | transported to three participating hospitals between 2014 to 2018 were analyzed.                 |
| 29<br>30<br>31 | 70 | <b>Results</b> : We developed and tested five machine learning algorithms—logistic regression    |
| 32<br>33       | 71 | analyses, extreme gradient boosting, support vector machine, random forest, and elastic net      |
| 34<br>35       | 72 | (EN)-to predict TBI, TBI with intracranial hemorrhage or injury (TBI-I), TBI with                |
| 36<br>37<br>38 | 73 | emergency department or admission result of admission or transferred (TBI-ND), and TBI           |
| 39<br>40       | 74 | with emergency department or admission result of death (TBI-D). A total of 1,169 patients        |
| 41<br>42       | 75 | were included in the final analysis, and the proportions of TBI, TBI-I, TBI-ND, and TBI-D        |
| 43<br>44<br>45 | 76 | were 24.0%, 21.5%, 21.3%, and 3.7%, respectively. The EN model yielded an AUROC of               |
| 46<br>47       | 77 | 0.799 for TBI, 0.844 for TBI-I, 0.811 for TBI-ND, and 0.871 for TBI-D. The EN model also         |
| 48<br>49       | 78 | yielded the highest specificity, and significant reclassification improvement. Variables related |
| 50<br>51<br>52 | 79 | to loss of consciousness, Glasgow Coma Scale, and light reflex were the three most important     |
| 52<br>53<br>54 | 80 | variables to predict all outcomes.                                                               |
| 55<br>56       | 81 | Conclusion: Our results inform the diagnosis and prognosis of TBI. Machine learning              |

- models resulted in significant performance improvement over that with logistic regression
- 57

| <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| <ul> <li>analyses, and the best performing model was EN.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
| 6<br>7 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| <ul> <li>8</li> <li>9 85 Keywords: brain injuries; traumatic; outcome; prognosis; 10</li> <li>11</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | machine learning. |
| 12 86<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
| 13       87         16       17         19       0         20       0         21       0         22       0         23       0         24       0         25       0         26       0         27       0         28       0         29       0         30       0         31       0         32       0         33       0         34       0         35       0         36       0         37       0         38       0         39       0         40       1         41       1         42       1         43       44         44       1         45       1         46       1         47       1         48       1         49       1         50       1         51       1         52       1 |                   |
| 54<br>55<br>56<br>57<br>58<br>59<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |

Strengths and limitations of this study

• This study presented prehospital factors that could predict traumatic brain injury in trauma

patients chosen by model-specific metrics.

- We treated the missing variables as a different category, reflecting prehospital field
- uncertainties and increasing data utilization.
- • The retrospective observational study design could lead to certain types of bias (eg,
- selection bias, confounding bias).
  - External validation for other areas should be conducted to generalize the developed

oppertexies only

prediction model.

#### 98 Introduction

Traumatic brain injury (TBI) is a significant health burden worldwide.<sup>1</sup> It is the leading cause of mortality and disability among young individuals.<sup>2</sup> Patients with TBI are vulnerable to hypoxia and hypotension in the early period of their course and these insults are associated with poor outcomes.<sup>34</sup> Prehospital assessment and management of patients with TBI is important,<sup>5</sup> as early prediction of TBI and correcting hypoxia and hypotension during the prehospital stage could be beneficial.<sup>3</sup> However, the identification of TBI can often be challenging in the prehospital area.<sup>5</sup> Vulnerable patients, including the elderly or patients who take medications like anti-platelet or anticoagulant drugs, often have TBI owing to low energy insults.<sup>6</sup> Prehospital clinical signs are also reported to have poor sensitivity for raised intracranial pressure following TBI.<sup>7</sup> 

Several prediction models to target patients with TBI have been reported.<sup>8-12</sup> However, most incorporated information that is available only in the hospital, such as laboratory results or image findings.<sup>8913</sup> In addition, most previous prediction models focused on the outcomes of patients with TBI,<sup>14-16</sup> not the identification of TBI. Previously, predictors of older adult patients with TBI who required transport to a trauma center were identified. However, this was consensus-based; therefore, there is a lack of clinical data.<sup>17</sup> Accurate prehospital prediction of TBI and its severity could prevent delays to definite care for patients with TBI. Most emergency medical service (EMS) providers collect various information including demographics, past medical history, circumstances of the trauma, and clinical signs including vital signs; but those variables have not been evaluated together as predictors of TBI and its severity. Using a variety of prehospital information, and adapting newly emerging machine learning algorithms for predicting diagnosis, disposition, and outcome of TBI, might improve the accuracy of identification of TBI and its severity. 

**BMJ** Open

The aim of this study was to develop and test prediction models for the diagnosis and prognosis of TBI using prehospital information and machine learning algorithms among patients with severe trauma. We hypothesized that incorporating prehospital information could achieve acceptable performance in predicting TBI, and machine learning algorithms could contribute to performance improvement.

#### 127 Materials and Methods

128 Study design and settings

This was a multi-center retrospective study conducted at three tertiary academic emergency departments (EDs) located in an urban area (Seoul and Bundang) of South Korea. These EDs received 50,000–90,000 visits annually and are not designated trauma centers. We adhered to the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) statement on reporting predictive models.<sup>18</sup>

The EMS system in South Korea is operated by the National Fire Agency. The EMS level is considered intermediate, as EMS providers can perform bleeding control, spinal motion restriction, immobilization and splintage, advanced airway management, and administer fluid intravenously. As only physicians can declare death in South Korea, EMS providers cannot stop resuscitation and must transport all patients including those in cardiac arrest to the ED. For all EMS transport, EMS providers record an ambulance run-sheet by law. Since 2012, the National Fire Agency adapted the United States Centers for Disease Control and Prevention of the United States field triage decision scheme to evaluate patients with trauma,<sup>19</sup> and they developed an EMS severe trauma in-depth registry. For said patients, EMS providers evaluate whether patients met trauma center transport criteria in the field triage decision scheme. If they did, the in-depth registry should be recorded, and EMS 

transport protocol recommends that patients are transferred to a near regional trauma center;but it is not mandatory.

The Ministry of Health and Welfare designated three ED levels according to the resources and functional requirements; level 1 (n = 36) and level 2 (n = 118) EDs have more resources and better facilities for emergency care and must be staffed by emergency physicians 24 hours a day/365 days a year; whereas level 3 EDs (n = 248) can be staffed by general physicians. In accordance with the EMS Act, all EDs participated annually in a nationwide functional performance evaluation program, which was administered by the Ministry of Health and Welfare. The three participating hospitals in this study were all level 1 EDs that can perform acute trauma care for patients with TBI 24 hours a day/365 days a year—including emergency neurosurgical operation and angiographic interventions. The Ministry of Health and Welfare also designated trauma centers in Korea. Total 16 trauma centers were designated as trauma centers in 2018. Among them, 15 were Level I EDs.

#### 158 Data source

We used an EMS ambulance run-sheet, EMS trauma in-depth registry, and ED administrative database. The EMS database information, including ambulance run-sheet and trauma in-depth registry, was collected electronically by EMS providers using tablets. The EMS record review for each severe trauma has been performed by EMS medical directors of each fire department since 2012. The ED administrative database contains patients' demographic characteristics, route of visit, time of visit, and diagnosis and disposition. We merged the EMS database with the ED administrative database based on patients' arrival time, age, and sex.
# *Study population*

We included adult (age  $\geq$  15) EMS users who were transported to participating hospitals with severe trauma from January 1, 2014 to December 31, 2018. Severe trauma was assessed by EMS providers and defined as patients who fulfilled trauma center transport criteria (physiologic criteria, anatomic criteria, mechanism of injury criteria, or special patients or system consideration criteria) in the field triage decision scheme.<sup>20</sup> Patients were excluded if they had out-of-hospital cardiac arrest or their main cause of EMS call was medical or nontraumatic injury including choking, drowning, fire, flame, heat, cold, poisoning, chemical, sexual assault, weather, or natural disaster. Patients with an unknown outcome were also excluded.

# *Outcome measure*

The primary outcome measure was the diagnosis of TBI. TBI diagnosis was defined as patients whose diagnostic code, according to the International Statistical Classification of Diseases and Related Health Problems (ICD-10), was between S06.0 and S06.9.<sup>21 22</sup> Although S06.7 is codes for the duration of unconscious, we included S06.7 in our study outcome according to the previous studies. <sup>21-23</sup> However, no patients only have S06.7 code for TBI diagnosis in our study. The ED administrative database has two types of primary diagnostic codes: the final diagnostic codes at ED discharge and at hospital discharge. We extracted up to 20 codes for each. We defined the diagnostic code as positive for TBI if a confirmative diagnostic code was found in any level of the discharge record. Because ICD 10 code is not directly linked to the severity of TBI, we further included a variety of additional outcome measures to perform analysis that take into account severity. A secondary outcome measure was TBI diagnosis with intracranial hemorrhage or injury (TBI-I), defined as TBI

patients excluding concussion (ICD 10 code with S06.0). A tertiary outcome was TBI with
non-discharge (TBI-ND), defined as TBI patients excluding ED discharged patients. Because
TBI-ND patients needed further management by hospitalization or transfer, we thought that
this group of patients had clinically significant severity. A quaternary outcome measure was
TBI with death (TBI-D), defined as TBI patients who died in ED or hospital. Because TBI-D
patients are most severe group, TBI-D patients were also included in TBI-ND.

# 196 Variables and preprocessing

We collected patients' demographic data, circumstances of trauma, chief complaints, EMS vital sign assessment, EMS management and hospital outcomes. The detailed descriptions of each variable are described in Supplementary Table 1. Categorical variables were preprocessed with the one-hot encoding (dummy variable encoding) method. Continuous variables were divided into four quantiles and unknown or missing values were categorized as a fifth category. One-hot encoding was also applied to discretized continuous variables. Preprocessing measures including discretization results of continuous variables are presented in Supplementary Table 1.

### 205 Model development

We developed prediction models for outcomes by using five machine learning algorithms:
traditional logistic regression analyses (LR), extreme gradient boost (XGB), random forest
(RF), support vector machine (SVM), and elastic net (EN). The LR algorithm was chosen as
baseline comparison algorithm because it is widely used in the medical field and has been
used for previous prediction model development in TBI studies.<sup>12</sup> Backward stepwise LR was
selected for feature selection, and we used the default parameter of stepAIC function from
MASS package (version 7.3-53.1) in R for the selection. The other four algorithms were

Page 13 of 48

#### **BMJ** Open

selected based on their ability to model nonlinear associations, their relative ease of implementation, and their general acceptance in the machine learning community.<sup>24-26</sup> All algorithms have a method to calculate the probability of the outcome occurring and algorithms other than LR need hyperparameter tuning for proper training and prediction. The study population was split into training cohorts that included development, validation, and test cohorts. The development cohort included a training cohort from which each of the machine learning prediction models were derived and a validation cohort in which the prediction models were applied to adjust the hyperparameters of the algorithm. The test cohort was used for the final evaluation of the performance of the prediction models. Chronological split was used for data split. Patients enrolled from January 1, 2014 to December 31, 2016 were used as the training cohort; patients from January 1, 2017 to December 31, 2017 were used as the validation cohort; and patients from January 1, 2018 to December 31, 2018 were used as the test cohort. Hyperparameter tuning using validation data was conducted by, first, a random search within 10,000 randomly generated hyperparameters; then, grid search hyperparameters chosen around from random search with five candidates per each hyperparameter. Finally, hyperparameter with best area under receiver-operation curve (AUROC) in validation cohorts were selected. Test data were separated during training and tuning processes and used to measure algorithm performance.

# 231 Statistical analysis

The demographic findings and outcomes of the study population were described in this study.
Additionally, the baseline characteristics of the training cohort and the validation cohort were
compared. The continuous variables were compared by using Student's T-test or the
Wilcoxon rank sum test, and the categorical variables were compared by using the chisquared test or the Fisher exact test, as appropriate.

| 2         |
|-----------|
| 3         |
| 4         |
| 5         |
| 5         |
| 0         |
| /         |
| 8         |
| 9         |
| 10        |
| 11        |
| 12        |
| 12        |
| 13        |
| 14        |
| 15        |
| 16        |
| 17        |
| 18        |
| 19        |
| 20        |
| 21        |
| ∠ ı<br>วา |
| 22        |
| 23        |
| 24        |
| 25        |
| 26        |
| 27        |
| 28        |
| 20        |
| 29        |
| 30        |
| 31        |
| 32        |
| 33        |
| 34        |
| 35        |
| 26        |
| 20        |
| 3/        |
| 38        |
| 39        |
| 40        |
| 41        |
| 42        |
| 43        |
| ΔΛ        |
| 44        |
| 4)<br>46  |
| 46        |
| 47        |
| 48        |
| 49        |
| 50        |
| 51        |
| 52        |
| 52        |
| 22        |
| 54        |
| 55        |
| 56        |
| 57        |
| 58        |
| 59        |
| 60        |
| 00        |

1

| 237 | We assessed discrimination performance by comparing the AUROC for each model                               |
|-----|------------------------------------------------------------------------------------------------------------|
| 238 | in the test cohort. We considered an AUROC of 0.5 as no discrimination, 0.7 to 0.8 as                      |
| 239 | acceptable, 0.8 to 0.9 as excellent, and more than 0.9 is considered outstanding. <sup>27</sup> Area under |
| 240 | the precision-recall curve (AUPRC) was assessed for each model in the test cohort. We                      |
| 241 | assessed the calibration power by using the Hosmer-Lemeshow test, the scaled Brier score,                  |
| 242 | and a calibration plot in the test cohort. For the delineation of test characteristics, the                |
| 243 | sensitivity, specificity, and positive and negative predictive values with 95% CIs were                    |
| 244 | determined using a cutoff probability at a sensitivity of 80%. Given that poor sensitivity of              |
| 245 | clinical predictors for TBI in previous studies, <sup>7</sup> and almost 75% sensitivity level for other   |
| 246 | severe disease prediction in prehospital settings, <sup>28 29</sup> we thought that 80% sensitivity was an |
| 247 | appropriate target for our prediction model. We calculated false positive rate as $1 - $                   |
| 248 | specificity. The added prognostic power of each prediction model compared to the LR model                  |
| 249 | was also evaluated by continuous net reclassification index (NRI). NRI is a statistical method             |
| 250 | to quantify how well a new model correctly reclassifies the study population with the other                |
| 251 | models. Details of NRI are described elsewhere. <sup>30</sup>                                              |
| 252 | By using a model-specific metric, the variable importance of each model was                                |
| 253 | assessed, except for the SVM algorithm. The variable importance was determined by the                      |
| 254 | coefficient effect sizes for the LR model. The XGB and RF models were ranked by variable                   |
| 255 | importance on the selection frequency of the variable as a decision node. The absolute value               |
| 256 | of the coefficients corresponding to the tuned model were used for the measurement of                      |

257 variable importance in the EN algorithm. To compare the variable importance of each

258 prediction models efficiently, top 5 variables of each model was presented.

**BMJ** Open

| 3      |  |
|--------|--|
| Δ      |  |
|        |  |
| د<br>د |  |
| 0      |  |
| /      |  |
| 8      |  |
| 9      |  |
| 10     |  |
| 11     |  |
| 12     |  |
| 13     |  |
| 14     |  |
| 15     |  |
| 16     |  |
| 10     |  |
| 1/     |  |
| 18     |  |
| 19     |  |
| 20     |  |
| 21     |  |
| 22     |  |
| 23     |  |
| 24     |  |
| 25     |  |
| 25     |  |
| 20     |  |
| 27     |  |
| 28     |  |
| 29     |  |
| 30     |  |
| 31     |  |
| 32     |  |
| 33     |  |
| 34     |  |
| 35     |  |
| 36     |  |
| 20     |  |
| 3/     |  |
| 38     |  |
| 39     |  |
| 40     |  |
| 41     |  |
| 42     |  |
| 43     |  |
| 44     |  |
| 45     |  |
| 46     |  |
| 17     |  |
| 47     |  |
| 48     |  |
| 49     |  |
| 50     |  |
| 51     |  |
| 52     |  |
| 53     |  |
| 54     |  |
| 55     |  |
| 56     |  |
| 50     |  |
| 5/     |  |
| 20     |  |
| 59     |  |
| 60     |  |

259 All statistical analyses were performed with R Statistical Software (version 4.0.1; R 260 Foundation for Statistical Computing, Vienna, Austria). Packages included caret, e1071, 261 xgboost, randomForest, and glmnet for the analysis of the machine learning algorithms.

262 Patient and public involvement

263 This research was done without patient involvement. Patients were not invited to comment on 264 the study design and were not consulted to develop patient relevant outcomes or interpret the 265 results. Patients were not invited to contribute to the writing or editing of this document for 266 readability or accuracy.

267

268 Result

#### 269 **Demographic findings**

orer (c 270 Among the 157,134 EMS users transported to three hospitals from 2014 to 2018, 1,169 patients were included in the final analysis (Figure 1). Patients were split into 2 datasets: data 271 272 from 2014 to 2017, consisting of 867 patients (74.2%) in the development cohort; and the 273 remaining data from 2018 consisting of 302 patients (25.8%) in the test cohort (Figure 1). 274 Among the development cohort, data from 2014 to 2016—consisting of 661 patients—were used as the training cohort, and 2017 data—consisting of 206 patients—were used as the 275 276 validation cohort in the model.

Table 1 shows key demographic findings of the development and test cohorts. Median 277 278 (IQR) age was 52 years (35–66) in the development cohort and 56 years (40–69) in the test 279 cohort. Traffic accident was most common mechanism of trauma (43.3% for the development 280 cohort and 41.4% for the test cohort). The proportion of patients with alert mental status was

58.1% for the development cohort and 69.5% in the test cohort. Overall, TBI, TBI-I, TBIND, TBI-D occurred in 215 (24.8%), 195 (22.5%), 192 (22.1%), and 32 (3.7%) in the
development cohort; and 66 (21.9%), 56 (18.5%), 57 (18.9%), and 11 (3.6%) in the test
cohort. All demographic characteristics of the development and test cohorts are described in
Supplementary Table 2.

# 286 Main analysis

The final hyperparameters of prediction models are described in Supplementary Table 3. The discrimination and NRI of the prediction models on the test cohort are presented in Table 2. The AUROC for outcomes were 0.770–0.806 for TBI, 0.820–0.844 for TBI-I, 0.767–0.811 for TBI-ND, and 0.664–0.889 for TBI-D (Table 2 and Supplementary Figure 1). Compared to LR, XGB performed significantly well in predicting TBI, and RF and EN performed well in predicting TBI-ND and TBI-D. EN model generally performed well on all outcomes. The AUROC of the EN model for outcomes were 0.799 (95% CI: 0.732–0.867), 0.844 (95% CI: 0.779-0.910), 0.811 (95% CI: 0.741-0.882), and 0.871 (95% CI: 0.764-0.978) for TBI, TBI-I, TBI-ND, and TBI-D, respectively. Machine learning models generally resulted in significant reclassification improvement compared to LR for TBI, TBI-I, and TBI-ND. For prediction TBI-D, AUROC difference, and reclassification improvement compared to LR was non-significant in all machine learning models. The precision-recall curve is shown in Supplementary Figure 2. AUPRC were 0.479–0.564 for TBI, 0.469–0.606 for TBI-I, 0.477– 0.551 for TBI-ND and 0.094–0.140 for TBI-D. EN model showed highest AUPRC among all prediction models. Supplementary Figure 3 shows the calibration plot of prediction models according to outcomes. All prediction models generally showed poor calibration. Given the high AUROC and AUPRC among prediction models, and reclassification improvement

compared to LR, we determined EN as a best-performing prediction model in our analysis. Using cutoff of 80% sensitivity, specificity was 47.5-68.2% for TBI, 71.1-81.3% for TBI-I, 46.1–74.3% for TBI-ND, and 42.6--.0 for TBI-D. EN showed the highest specificity and PPV among all outcomes. False positive rate (1 – specificity) was almost 19.7–39.0% according to outcomes in the EN model. The 95% CI of specificity of the EN model was not overlapped with LR in TBI, TBI-ND, and TBI-D predictions. NPV was almost 89-99% for all outcomes in the prediction models (Table 3). Table 4 shows the top 5 variable importance of prediction models according to

outcomes. Variables related to patients' symptom of loss of consciousness, Glasgow Coma Scale component, and light reflex were the three most important variables to predict all outcomes. Compared to other outcomes, the difference between variable importance for TBI-D was prominent, and the mechanism of injury, heart rate, and age showed the highest 2.0 importance for predicting TBI-D.

#### Discussion

By using prehospital data from EMS users visiting three teaching hospitals, we developed and validated prediction models for the diagnosis and prognosis of TBI using machine learning algorithms among patients with severe trauma, identified by EMS providers in South Korea. We found that 24% of patients were diagnosed with TBI, 22% showed intracranial injury, 21% could not be discharged from the ED with a TBI diagnosis, and 4% showed TBI-related death. Machine learning models showed acceptable-to-excellent discrimination performance (AUROCs were 0.799-0.871 according to outcomes in the best-performing EN model). When identifying 80% of target patients with TBI, the false positive rate was almost 19.7–39.0%. Consciousness status related variables ranging from patients' symptom to EMS

providers' assessment showed the highest importance for predicting all outcomes. This study adds considerably to the understanding of prehospital prediction performance of TBI among patients with severe trauma. Use of comprehensive prehospital information and certain machine learning approaches led to increased performance with a diminished false positive rate compared to those of the traditional statistical model. Several studies reported that EMS providers' assessment using prehospital information is effective for the identification of patients with severe trauma who require direct transport to a trauma center.<sup>31-33</sup> Because TBI accounts for a significant portion of patients with severe trauma,<sup>32</sup> and the majority of patients have poor access to trauma centers,<sup>34</sup> identification of TBI among patients with severe trauma by EMS providers could contribute to proper prehospital management and destination hospital decisions.<sup>3</sup> However, prehospital identification of TBI is challenging.<sup>35</sup> Prehospital clinical signs showed poor predictive performance for differentiating patients with TBI.<sup>7</sup>, and previous prediction models related to TBI mostly focused on TBI outcomes.<sup>8913</sup> One study reported the predictors for mild TBI with persistent symptoms; but a single-center case-control study design and ED-based model development lacks applicability to prehospital settings.<sup>36</sup> In this study, we developed and tested TBI prediction models that used prehospital information, and we found acceptable discrimination power for the prediction of diagnosis and prognosis of TBI. Uniquely, we incorporated various demographic variables, trauma circumstances, patients' complaints, and EMS assessment information in the prediction models, and we adapted the machine learning algorithms. When using a cutoff for 80% sensitivity for TBI detection, the false positive rate was 19.7–39.0% (Table 2). Those false positive rate levels are plausible for detecting severe 

350 diseases in EMS settings. A previous study reported a 26% of false positive rate of EMS

Page 19 of 48

#### **BMJ** Open

triage for myocardial infarction with a sensitivity of 74% and 50% of false positive rate of EMS recognition of stroke in sensitivity of 74%.<sup>28 29</sup> Considering the prevalence of outcomes (24% in TBI, 22% in TBI-I, 21% in TBI-ND, and 4% in TBI-D; Table 1), there would be 16, 9, 12, and 67 false-positive patients for every 10 patients that are accurately identified as TBI, TBI-I, TBI-ND, and TBI-D, respectively (Supplementary Table 4). Because of the low prevalence of TBI-D, a similar specificity of the prediction model for outcomes resulted in a very low positive predictive value and a high proportion of false positive cases, which suggested the limited applicability of prediction models for TBI-D in prehospital settings. Consciousness-status-related variables ranging from patients' complaints to EMS assessment showed the highest importance regardless of models and outcomes in our study. Consciousness status is closely associated with head trauma. Head trauma can result in structural brain injury or physiological disruption of brain function, which could result in altered mental status.<sup>37</sup> Mental status is also associated with TBI severity, <sup>38</sup> and its association with TBI outcomes have been reported.<sup>8913</sup> History taking and physical examination for altered mental status is key to early diagnosis and proper management of TBI in prehospital settings.<sup>39</sup>

We adapted machine learning algorithms for the prediction of TBI-related outcomes and found an improvement in discrimination and an increase in specificity with the same sensitivity thresholds. However, the LR model also showed acceptable or similar performance compared to machine learning models, according to the outcomes. In clinical prediction models, a previous systematic review reported no performance benefit of the machine learning model over LR.<sup>40</sup> The previous study stated that machine learning models tend to show high performance with a strong signal-to-noise ratio problem like gaming, image recognition. However, clinical prediction problems often result in a poor signal-to-

Page 20 of 48

| 1        |  |
|----------|--|
| 2        |  |
| 3        |  |
| 4<br>5   |  |
| 6        |  |
| 7        |  |
| 8        |  |
| 9        |  |
| 10       |  |
| 11       |  |
| 13       |  |
| 14       |  |
| 15       |  |
| 16       |  |
| 1/       |  |
| 19       |  |
| 20       |  |
| 21       |  |
| 22       |  |
| 23       |  |
| 24       |  |
| 26       |  |
| 27       |  |
| 28       |  |
| 29       |  |
| 30<br>31 |  |
| 32       |  |
| 33       |  |
| 34       |  |
| 35       |  |
| 36       |  |
| 37       |  |
| 39       |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 43<br>44 |  |
| 44<br>45 |  |
| 46       |  |
| 47       |  |
| 48       |  |
| 49       |  |
| 50<br>51 |  |
| 52       |  |
| 53       |  |
| 54       |  |
| 55       |  |
| 56<br>57 |  |
| 58       |  |
| 59       |  |
| 60       |  |

375 noise ratio.<sup>40</sup> If we could use unstructured data, which has strong signal-to-noise ratio like 376 continuous vital sign monitoring data or audiovisual data for patients' appearance, machine 377 learning models might perform better than LR models. In addition, if we analyzed more 378 patient data, the performance improvement of machine models might be elucidated. 379 Precise assessment in prehospital field could contribute to improved patient-related 380 outcomes. High demand of EMS call and response, disparity in accessibility to definitive care capable hospitals according to regions,<sup>34</sup> and the importance of timely management in acute 381 382 disease care are the chief reasons behind the necessity for the accurate assessment of EMS 383 providers. Although information acquisition and processing is quite difficult in prehospital 384 areas, various instruments and information systems could attribute to diminish those 385 problems. Complex data acquisition like mobile CT or other unstructured data<sup>41</sup>, information sharing through telemedicine,<sup>42</sup> and decision support tools in prehospital environments<sup>43</sup> 386 387 could contribute to the accurate assessment of EMS providers. More information acquisition 388 and real-time processing of those data could improve the clinical prediction models in 389 prehospital areas, which could lead to the improvement of patients' safety and outcomes. Our study had several limitations. First, our data were collected at three teaching 390 391 hospitals in urban areas of South Korea. Therefore, external validation for other areas should 392 be conducted to generalize the developed prediction model. Second, we used retrospective 393 analysis of electronically collected prehospital and hospital data. There might be various

information loss and missing data. We treated missing status as a separate category for our
analysis;<sup>44</sup> however, there could be different reasons for missing data. Third, there is a
possibility that the prediction model was overfitted or underfitted. The use of large number of
predictors also can contribute to overfitting. To minimize this issue, we rigorously searched
hyperparameters and carefully chose hyperparameters according to the performance in

Page 21 of 48

### **BMJ** Open

independent validation cohorts. Fourth, we selected our study population using trauma center transport criteria for EMS providers in Korea. Although those criteria are based on the field triage decision scheme which is the most widely used prehospital trauma triage protocol,<sup>6</sup> extrapolation to another EMS setting or general trauma patients would be limited. Fifth, Abbreviated Injury Scale (AIS) codes were not used to identify our study outcome because of a lack of information. To compensate for this limitation, we further identified TBI-I, TBI-ND, and TBI-D patients to consider severity. However, different definitions of clinical severity, including ICU admission or emergency operation, might be possible. Lastly, this study was performed in an intermediate-service-level EMS system. The generalization of our study findings to different EMS settings should be made with caution. In conclusion, we presented data on TBI among patients with severe trauma assessed by EMS providers, and our results inform the development of prediction models for the diagnosis and prognosis of TBI in our population. We used various information that can be obtained in prehospital settings and showed acceptable outcome performance. The consistent importance of consciousness-status-related variables emphasizes the importance of assessment and monitoring of consciousness status in prehospital areas. Although prospective, and implementation studies are needed for TBI prediction in prehospital areas, our study outlined a novel method for the precise assessment of EMS providers using a machine-learning-based prediction model. Further collection of various types of patient-related data would contribute to the enhanced performance of the clinical prediction model in prehospital settings. 

| 421 | Author Contribution Statement                                                                                                                                 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 422 | YHC and JH Park designed and developed the study, analysed and interpreted the data, and                                                                      |
| 423 | drafted the initial manuscript. KJH, YSR, KJS and SDS were involved in the acquisition of                                                                     |
| 424 | data, the development of the research question and assisted with analysis and interpretation of                                                               |
| 425 | data. All authors revised the drafts for intellectual content and edited the manuscript. All                                                                  |
| 426 | authors reviewed and approved the final draft.                                                                                                                |
| 427 |                                                                                                                                                               |
| 428 | Funding                                                                                                                                                       |
| 429 | This study was supported by grant No. '04-2019-0680' from the Seoul National University                                                                       |
| 430 | Hospital Research Fund.                                                                                                                                       |
| 431 |                                                                                                                                                               |
| 432 | Competing Interests                                                                                                                                           |
| 433 | There are no conflicts of interest for all authors in this study.                                                                                             |
| 434 |                                                                                                                                                               |
| 435 | Patients consent                                                                                                                                              |
| 436 | Not required                                                                                                                                                  |
| 437 |                                                                                                                                                               |
| 438 | Data availability statement                                                                                                                                   |
| 439 | No data are available. We do not have ethics approval to share data.                                                                                          |
| 440 |                                                                                                                                                               |
|     |                                                                                                                                                               |
|     | 21                                                                                                                                                            |
|     | 421<br>422<br>423<br>424<br>425<br>426<br>427<br>428<br>429<br>430<br>431<br>432<br>430<br>431<br>432<br>433<br>434<br>435<br>436<br>437<br>438<br>439<br>440 |

| 1<br>2<br>2          |     |                                                                                                   |
|----------------------|-----|---------------------------------------------------------------------------------------------------|
| 3<br>4<br>5          | 441 | Ethical statements                                                                                |
| 6<br>7               | 442 | This study complied with the Declaration of Helsinki, and its protocol was approved by the        |
| 8<br>9               | 443 | Institutional Review Board of the Seoul National University Hospital with a waiver of             |
| 10<br>11             | 444 | informed consent (IRB No: E-2006-004-1128).                                                       |
| 12<br>13<br>14<br>15 | 445 |                                                                                                   |
| 16<br>17<br>18       | 446 | References                                                                                        |
| 19<br>20             | 447 | 1. Hsia RY, Markowitz AJ, Lin F, et al. Ten-year trends in traumatic brain injury: a              |
| 21<br>22<br>22       | 448 | retrospective cohort study of California emergency department and hospital revisits and           |
| 23<br>24<br>25       | 449 | readmissions. BMJ Open 2018;8(12):e022297. doi: 10.1136/bmjopen-2018-022297                       |
| 26<br>27             | 450 | [published Online First: 2018/12/16]                                                              |
| 28<br>29             | 451 | 2. Finfer SR, Cohen J. Severe traumatic brain injury. <i>Resuscitation</i> 2001;48(1):77-90. doi: |
| 30<br>31<br>22       | 452 | 10.1016/s0300-9572(00)00321-x [published Online First: 2001/02/13]                                |
| 33<br>34             | 453 | 3. Spaite DW, Bobrow BJ, Keim SM, et al. Association of Statewide Implementation of the           |
| 35<br>36             | 454 | Prehospital Traumatic Brain Injury Treatment Guidelines With Patient Survival                     |
| 37<br>38             | 455 | Following Traumatic Brain Injury: The Excellence in Prehospital Injury Care (EPIC)                |
| 39<br>40<br>41       | 456 | Study. JAMA Surg 2019;154(7):e191152. doi: 10.1001/jamasurg.2019.1152 [published                  |
| 42<br>43             | 457 | Online First: 2019/05/09]                                                                         |
| 44<br>45             | 458 | 4. McHugh GS, Engel DC, Butcher I, et al. Prognostic value of secondary insults in traumatic      |
| 46<br>47<br>48       | 459 | brain injury: results from the IMPACT study. J Neurotrauma 2007;24(2):287-93. doi:                |
| 49<br>50             | 460 | 10.1089/neu.2006.0031 [published Online First: 2007/03/23]                                        |
| 51<br>52             | 461 | 5. Pelieu I, Kull C, Walder B. Prehospital and Emergency Care in Adult Patients with Acute        |
| 53<br>54<br>55       | 462 | Traumatic Brain Injury. Med Sci (Basel) 2019;7(1) doi: 10.3390/medsci7010012                      |
| 56<br>57             | 463 | [published Online First: 2019/01/24]                                                              |
| 58<br>59             | 464 | 6. Sasser SM, Hunt RC, Faul M, et al. Guidelines for field triage of injured patients:            |
| 60                   |     | 22                                                                                                |

| 3                    |     |                                                                                                  |
|----------------------|-----|--------------------------------------------------------------------------------------------------|
| 4<br>5               | 465 | recommendations of the National Expert Panel on Field Triage, 2011. Morbidity and                |
| 6<br>7               | 466 | Mortality Weekly Report: Recommendations and Reports 2012;61(1):1-20.                            |
| 8<br>9<br>10         | 467 | 7. Ter Avest E, Taylor S, Wilson M, et al. Prehospital clinical signs are a poor predictor of    |
| 11<br>12             | 468 | raised intracranial pressure following traumatic brain injury. Emerg Med J                       |
| 13<br>14             | 469 | 2021;38(1):21-26. doi: 10.1136/emermed-2020-209635 [published Online First:                      |
| 15<br>16<br>17       | 470 | 2020/09/20]                                                                                      |
| 18<br>19             | 471 | 8. Collaborators MCT, Perel P, Arango M, et al. Predicting outcome after traumatic brain injury: |
| 20<br>21             | 472 | practical prognostic models based on large cohort of international patients. BMJ                 |
| 22<br>23<br>24       | 473 | 2008;336(7641):425-9. doi: 10.1136/bmj.39461.643438.25 [published Online First:                  |
| 24<br>25<br>26       | 474 | 2008/02/14]                                                                                      |
| 27<br>28             | 475 | 9. Steyerberg EW, Mushkudiani N, Perel P, et al. Predicting outcome after traumatic brain        |
| 29<br>30<br>21       | 476 | injury: development and international validation of prognostic scores based on                   |
| 32<br>33             | 477 | admission characteristics. PLoS Med 2008;5(8):e165; discussion e65. doi:                         |
| 34<br>35             | 478 | 10.1371/journal.pmed.0050165 [published Online First: 2008/08/08]                                |
| 36<br>37             | 479 | 10. Gozt AK, Hellewell SC, Thorne J, et al. Predicting outcome following mild traumatic brain    |
| 38<br>39<br>40       | 480 | injury: protocol for the longitudinal, prospective, observational Concussion Recovery            |
| 41<br>42             | 481 | (CREST) cohort study. BMJ Open 2021;11(5):e046460. doi: 10.1136/bmjopen-2020-                    |
| 43<br>44             | 482 | 046460 [published Online First: 2021/05/15]                                                      |
| 45<br>46<br>47       | 483 | 11. Huth SF, Slater A, Waak M, et al. Predicting Neurological Recovery after Traumatic Brain     |
| 48<br>49             | 484 | Injury in Children: A Systematic Review of Prognostic Models. J Neurotrauma                      |
| 50<br>51             | 485 | 2020;37(20):2141-49. doi: 10.1089/neu.2020.7158 [published Online First: 2020/05/29]             |
| 52<br>53             | 486 | 12. Perel P, Edwards P, Wentz R, et al. Systematic review of prognostic models in traumatic      |
| 54<br>55<br>56       | 487 | brain injury. BMC Med Inform Decis Mak 2006;6:38. doi: 10.1186/1472-6947-6-38                    |
| 57<br>58<br>59<br>60 | 488 | [published Online First: 2006/11/16]                                                             |

Page 25 of 48

1 2

60

BMJ Open

| 3              |     |                                                                                              |
|----------------|-----|----------------------------------------------------------------------------------------------|
| 4<br>5         | 489 | 13. Miller PR, Chang MC, Hoth JJ, et al. Predicting Mortality and Independence at Discharge  |
| 6<br>7         | 490 | in the Aging Traumatic Brain Injury Population Using Data Available at Admission. $J$        |
| 8<br>9<br>10   | 491 | Am Coll Surg 2017;224(4):680-85. doi: 10.1016/j.jamcollsurg.2016.12.053 [published           |
| 10<br>11<br>12 | 492 | Online First: 2017/03/07]                                                                    |
| 13<br>14       | 493 | 14. Abujaber A, Fadlalla A, Gammoh D, et al. Prediction of in-hospital mortality in patients |
| 15<br>16       | 494 | with post traumatic brain injury using National Trauma Registry and Machine Learning         |
| 17<br>18<br>19 | 495 | Approach. Scand J Trauma Resusc Emerg Med 2020;28(1):44. doi: 10.1186/s13049-                |
| 20<br>21       | 496 | 020-00738-5 [published Online First: 2020/05/29]                                             |
| 22<br>23       | 497 | 15. Gravesteijn BY, Nieboer D, Ercole A, et al. Machine learning algorithms performed no     |
| 24<br>25       | 498 | better than regression models for prognostication in traumatic brain injury. J Clin          |
| 26<br>27<br>28 | 499 | Epidemiol 2020;122:95-107. doi: 10.1016/j.jclinepi.2020.03.005 [published Online             |
| 29<br>30       | 500 | First: 2020/03/24]                                                                           |
| 31<br>32       | 501 | 16. Roozenbeek B, Lingsma HF, Lecky FE, et al. Prediction of outcome after moderate and      |
| 33<br>34<br>35 | 502 | severe traumatic brain injury: external validation of the International Mission on           |
| 36<br>37       | 503 | Prognosis and Analysis of Clinical Trials (IMPACT) and Corticoid Randomisation               |
| 38<br>39       | 504 | After Significant Head injury (CRASH) prognostic models. Crit Care Med                       |
| 40<br>41<br>42 | 505 | 2012;40(5):1609-17. doi: 10.1097/CCM.0b013e31824519ce [published Online First:               |
| 42<br>43<br>44 | 506 | 2012/04/19]                                                                                  |
| 45<br>46       | 507 | 17. Wasserman EB, Shah MN, Jones CM, et al. Identification of a neurologic scale that        |
| 47<br>48       | 508 | optimizes EMS detection of older adult traumatic brain injury patients who require           |
| 49<br>50<br>51 | 509 | transport to a trauma center. Prehosp Emerg Care 2015;19(2):202-12. doi:                     |
| 52<br>53       | 510 | 10.3109/10903127.2014.959225 [published Online First: 2014/10/08]                            |
| 54<br>55       | 511 | 18. Collins GS, Reitsma JB, Altman DG, et al. Transparent Reporting of a multivariable       |
| 56<br>57<br>58 | 512 | prediction model for Individual Prognosis Or Diagnosis (TRIPOD). Ann Intern Med              |
| 59             |     |                                                                                              |

| 1<br>2         |     |                                                                                                |
|----------------|-----|------------------------------------------------------------------------------------------------|
| 3<br>4<br>5    | 513 | 2015;162(10):735-6. doi: 10.7326/L15-5093-2 [published Online First: 2015/05/20]               |
| 6<br>7         | 514 | 19. Sasser SM, Hunt RC, Sullivent EE, et al. Guidelines for field triage of injured patients:  |
| 8<br>9<br>10   | 515 | recommendations of the National Expert Panel on Field Triage. 2009                             |
| 10<br>11<br>12 | 516 | 20. Sasser SM, Hunt RC, Faul M, et al. Guidelines for field triage of injured patients:        |
| 13<br>14       | 517 | recommendations of the National Expert Panel on Field Triage, 2011. MMWR Recomm                |
| 15<br>16       | 518 | Rep 2012;61(RR-1):1-20. [published Online First: 2012/01/13]                                   |
| 17<br>18<br>19 | 519 | 21. Andelic N, Anke A, Skandsen T, et al. Incidence of hospital-admitted severe traumatic      |
| 20<br>21       | 520 | brain injury and in-hospital fatality in Norway: a national cohort study.                      |
| 22<br>23       | 521 | Neuroepidemiology 2012;38(4):259-67. doi: 10.1159/000338032 [published Online                  |
| 24<br>25<br>26 | 522 | First: 2012/06/09]                                                                             |
| 20<br>27<br>28 | 523 | 22. Ro YS, Shin SD, Holmes JF, et al. Comparison of clinical performance of cranial computed   |
| 29<br>30       | 524 | tomography rules in patients with minor head injury: a multicenter prospective study.          |
| 31<br>32       | 525 | Acad Emerg Med 2011;18(6):597-604. doi: 10.1111/j.1553-2712.2011.01094.x                       |
| 33<br>34<br>35 | 526 | [published Online First: 2011/06/17]                                                           |
| 36<br>37       | 527 | 23. Chan V, Thurairajah P, Colantonio A. Defining pediatric traumatic brain injury using       |
| 38<br>39       | 528 | International Classification of Diseases Version 10 Codes: a systematic review. BMC            |
| 40<br>41<br>42 | 529 | Neurol 2015;15:7. doi: 10.1186/s12883-015-0259-7 [published Online First:                      |
| 43<br>44       | 530 | 2015/02/05]                                                                                    |
| 45<br>46       | 531 | 24. Zou H, Hastie T. Regularization and variable selection via the elastic net. Journal of the |
| 47<br>48<br>49 | 532 | Royal Statistical Society: Series B (Statistical Methodology) 2005;67(2):301-20. doi:          |
| 50<br>51       | 533 | 10.1111/j.1467-9868.2005.00503.x                                                               |
| 52<br>53       | 534 | 25. Hearst MA, Dumais ST, Osuna E, et al. Support vector machines. IEEE Intelligent Systems    |
| 54<br>55<br>56 | 535 | and their Applications 1998;13(4):18-28. doi: 10.1109/5254.708428                              |
| 57<br>58       | 536 | 26. Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd      |
| 59<br>60       |     |                                                                                                |

# BMJ Open

| 3                                                                                                                                                                    |     |                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------|
| 4<br>5<br>6<br>7<br>8<br>9                                                                                                                                           | 537 | ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.                     |
|                                                                                                                                                                      | 538 | San Francisco, California, USA: Association for Computing Machinery, 2016:785–94.               |
|                                                                                                                                                                      | 539 | 27. Menard S. Applied logistic regression analysis: Sage 2002. pp. 162.                         |
| 10<br>11<br>12                                                                                                                                                       | 540 | 28. Oostema JA, Konen J, Chassee T, et al. Clinical predictors of accurate prehospital stroke   |
| 13<br>14                                                                                                                                                             | 541 | recognition. Stroke 2015;46(6):1513-7. doi: 10.1161/STROKEAHA.115.008650                        |
| 15<br>16                                                                                                                                                             | 542 | [published Online First: 2015/04/30]                                                            |
| 17<br>18<br>19                                                                                                                                                       | 543 | 29. Swan PY, Nighswonger B, Boswell GL, et al. Factors associated with false-positive           |
| 20<br>21                                                                                                                                                             | 544 | emergency medical services triage for percutaneous coronary intervention. West J                |
| 22<br>23                                                                                                                                                             | 545 | Emerg Med 2009;10(4):208-12. [published Online First: 2010/01/05]                               |
| 24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51 | 546 | 30. Park JH, Shin SD, Song KJ, et al. Prediction of good neurological recovery after out-of-    |
|                                                                                                                                                                      | 547 | hospital cardiac arrest: A machine learning analysis. Resuscitation 2019;142:127-35.            |
|                                                                                                                                                                      | 548 | doi: 10.1016/j.resuscitation.2019.07.020 [published Online First: 2019/07/31]                   |
|                                                                                                                                                                      | 549 | 31. Esposito TJ, Offner PJ, Jurkovich GJ, et al. Do prehospital trauma center triage criteria   |
|                                                                                                                                                                      | 550 | identify major trauma victims? Arch Surg 1995;130(2):171-6. doi:                                |
|                                                                                                                                                                      | 551 | 10.1001/archsurg.1995.01430020061010 [published Online First: 1995/02/01]                       |
|                                                                                                                                                                      | 552 | 32. Ocak G, Sturms LM, Hoogeveen JM, et al. Prehospital identification of major trauma          |
|                                                                                                                                                                      | 553 | patients. Langenbecks Arch Surg 2009;394(2):285-92. doi: 10.1007/s00423-008-0340-               |
|                                                                                                                                                                      | 554 | 4 [published Online First: 2008/06/27]                                                          |
|                                                                                                                                                                      | 555 | 33. Fries GR, McCalla G, Levitt MA, et al. A prospective comparison of paramedic judgment       |
|                                                                                                                                                                      | 556 | and the trauma triage rule in the prehospital setting. Ann Emerg Med 1994;24(5):885-            |
|                                                                                                                                                                      | 557 | 9. doi: 10.1016/s0196-0644(94)70207-1 [published Online First: 1994/11/01]                      |
| 52<br>53                                                                                                                                                             | 558 | 34. Branas CC, MacKenzie EJ, Williams JC, et al. Access to trauma centers in the United States. |
| 54<br>55<br>56<br>57<br>58                                                                                                                                           | 559 | JAMA 2005;293(21):2626-33. doi: 10.1001/jama.293.21.2626 [published Online First:               |
|                                                                                                                                                                      | 560 | 2005/06/02]                                                                                     |
| 59<br>60                                                                                                                                                             |     |                                                                                                 |

1

Page 28 of 48

| 2<br>3                                             |     |                                                                                                |
|----------------------------------------------------|-----|------------------------------------------------------------------------------------------------|
| 4<br>5<br>6<br>7<br>8<br>9                         | 561 | 35. Whiting MD, Dengler BA, Rodriguez CL, et al. Prehospital Detection of Life-Threatening     |
|                                                    | 562 | Intracranial Pathology: An Unmet Need for Severe TBI in Austere, Rural, and Remote             |
|                                                    | 563 | Areas. Front Neurol 2020;11:599268. doi: 10.3389/fneur.2020.599268 [published                  |
| 10<br>11<br>12                                     | 564 | Online First: 2020/11/17]                                                                      |
| 13<br>14                                           | 565 | 36. Wojcik SM. Predicting mild traumatic brain injury patients at risk of persistent symptoms  |
| 15<br>16<br>17                                     | 566 | in the Emergency Department. Brain Inj 2014;28(4):422-30. doi:                                 |
| 17<br>18<br>19                                     | 567 | 10.3109/02699052.2014.884241 [published Online First: 2014/02/26]                              |
| 20<br>21                                           | 568 | 37. Management of Concussion/m TBIWG. VA/DoD Clinical Practice Guideline for                   |
| 22<br>23                                           | 569 | Management of Concussion/Mild Traumatic Brain Injury. J Rehabil Res Dev                        |
| 24<br>25<br>26<br>27<br>28<br>29<br>30<br>21       | 570 | 2009;46(6):CP1-68. [published Online First: 2010/01/30]                                        |
|                                                    | 571 | 38. Grote S, Bocker W, Mutschler W, et al. Diagnostic value of the Glasgow Coma Scale for      |
|                                                    | 572 | traumatic brain injury in 18,002 patients with severe multiple injuries. J Neurotrauma         |
| 31<br>32<br>33                                     | 573 | 2011;28(4):527-34. doi: 10.1089/neu.2010.1433 [published Online First: 2011/01/27]             |
| 34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 574 | 39. Badjatia N, Carney N, Crocco TJ, et al. Guidelines for prehospital management of traumatic |
|                                                    | 575 | brain injury 2nd edition. Prehosp Emerg Care 2008;12 Suppl 1:S1-52. doi:                       |
|                                                    | 576 | 10.1080/10903120701732052 [published Online First: 2008/09/06]                                 |
|                                                    | 577 | 40. Christodoulou E, Ma J, Collins GS, et al. A systematic review shows no performance         |
| 43<br>44                                           | 578 | benefit of machine learning over logistic regression for clinical prediction models. $J$       |
| 45<br>46<br>47                                     | 579 | Clin Epidemiol 2019;110:12-22. doi: 10.1016/j.jclinepi.2019.02.004 [published Online           |
| 47<br>48<br>49                                     | 580 | First: 2019/02/15]                                                                             |
| 50<br>51                                           | 581 | 41. Nakada TA, Masunaga N, Nakao S, et al. Development of a prehospital vital signs chart      |
| 52<br>53                                           | 582 | sharing system. Am J Emerg Med 2016;34(1):88-92. doi: 10.1016/j.ajem.2015.09.048               |
| 54<br>55<br>56                                     | 583 | [published Online First: 2015/10/29]                                                           |
| 57<br>58                                           | 584 | 42. Kim Y, Groombridge C, Romero L, et al. Decision Support Capabilities of Telemedicine       |
| 59<br>60                                           |     |                                                                                                |

| 3                    |     |                                                                                              |
|----------------------|-----|----------------------------------------------------------------------------------------------|
| 4<br>5               | 585 | in Emergency Prehospital Care: Systematic Review. J Med Internet Res                         |
| 6<br>7               | 586 | 2020;22(12):e18959. doi: 10.2196/18959 [published Online First: 2020/12/09]                  |
| 8<br>9<br>10         | 587 | 43. Reisner AT, Khitrov MY, Chen L, et al. Development and validation of a portable platform |
| 11<br>12             | 588 | for deploying decision-support algorithms in prehospital settings. Appl Clin Inform          |
| 13<br>14             | 589 | 2013;4(3):392-402. doi: 10.4338/ACI-2013-04-RA-0023 [published Online First:                 |
| 15<br>16<br>17       | 590 | 2013/10/25]                                                                                  |
| 17<br>18<br>19       | 591 | 44. Maslove DM, Podchiyska T, Lowe HJ. Discretization of continuous features in clinical     |
| 20<br>21             | 592 | datasets. J Am Med Inform Assoc 2013;20(3):544-53. doi: 10.1136/amiajnl-2012-                |
| 22<br>23<br>24       | 593 | 000929 [published Online First: 2012/10/13]                                                  |
| 24<br>25<br>26<br>27 | 594 |                                                                                              |
| 28<br>29             |     |                                                                                              |
| 30                   |     |                                                                                              |
| 31<br>32             |     |                                                                                              |
| 33                   |     |                                                                                              |
| 34<br>35             |     |                                                                                              |
| 36                   |     |                                                                                              |
| 37<br>38             |     |                                                                                              |
| 39                   |     |                                                                                              |
| 40<br>41             |     |                                                                                              |
| 42                   |     |                                                                                              |
| 43<br>44             |     |                                                                                              |
| 45                   |     |                                                                                              |
| 46<br>47             |     |                                                                                              |
| 48                   |     |                                                                                              |
| 49<br>50             |     |                                                                                              |
| 51                   |     |                                                                                              |
| 52                   |     |                                                                                              |
| 55<br>54             |     |                                                                                              |
| 55                   |     |                                                                                              |
| 56<br>57             |     |                                                                                              |
| 58                   |     |                                                                                              |
| 59<br>60             |     |                                                                                              |
|                      |     | 28                                                                                           |

| 1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 3<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 595                      | Figure legends                                                                                                                   |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>23<br>14<br>5<br>16<br>7<br>8<br>9<br>10<br>11<br>23<br>24<br>25<br>26<br>27<br>28<br>9<br>30<br>31<br>23<br>34<br>5<br>6<br>7<br>8<br>9<br>0<br>11<br>21<br>31<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>11<br>21<br>31<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>11<br>21<br>31<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>11<br>21<br>31<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>11<br>22<br>32<br>4<br>25<br>26<br>27<br>8<br>9<br>30<br>31<br>32<br>33<br>45<br>36<br>37<br>8<br>9<br>0<br>11<br>21<br>34<br>5<br>6<br>7<br>8<br>9<br>0<br>11<br>22<br>32<br>4<br>25<br>26<br>27<br>8<br>9<br>30<br>31<br>32<br>33<br>45<br>36<br>37<br>8<br>9<br>0<br>11<br>22<br>32<br>4<br>56<br>27<br>28<br>9<br>30<br>31<br>22<br>33<br>45<br>36<br>37<br>38<br>9<br>0<br>41<br>22<br>32<br>4<br>56<br>27<br>28<br>9<br>30<br>31<br>23<br>34<br>5<br>36<br>37<br>38<br>9<br>0<br>41<br>42<br>33<br>44<br>5<br>6<br>7<br>8<br>9<br>0<br>11<br>22<br>32<br>4<br>56<br>27<br>28<br>9<br>30<br>31<br>23<br>34<br>5<br>36<br>37<br>8<br>9<br>0<br>41<br>42<br>33<br>44<br>5<br>6<br>7<br>8<br>9<br>0<br>41<br>42<br>33<br>44<br>5<br>6<br>7<br>8<br>9<br>0<br>41<br>42<br>5<br>8<br>9<br>0<br>12<br>23<br>24<br>25<br>26<br>27<br>8<br>9<br>30<br>31<br>23<br>34<br>5<br>36<br>37<br>8<br>9<br>0<br>41<br>42<br>33<br>44<br>5<br>6<br>7<br>8<br>9<br>0<br>12<br>33<br>44<br>5<br>6<br>7<br>8<br>9<br>9<br>0<br>12<br>33<br>4<br>5<br>5<br>6<br>7<br>7<br>8<br>9<br>0<br>12<br>33<br>4<br>5<br>5<br>6<br>7<br>7<br>8<br>9<br>0<br>12<br>3<br>3<br>4<br>5<br>5<br>6<br>7<br>7<br>8<br>9<br>0<br>1<br>2<br>3<br>3<br>4<br>5<br>5<br>6<br>7<br>7<br>8<br>9<br>0<br>1<br>2<br>3<br>3<br>4<br>5<br>5<br>6<br>7<br>7<br>8<br>9<br>9<br>0<br>1<br>2<br>3<br>3<br>4<br>5<br>5<br>6<br>7<br>7<br>8<br>9<br>0<br>1<br>2<br>3<br>3<br>4<br>5<br>5<br>7<br>7<br>8<br>9<br>0<br>0<br>1<br>2<br>2<br>3<br>2<br>3<br>3<br>3<br>4<br>5<br>5<br>6<br>7<br>7<br>8<br>9<br>0<br>0<br>1<br>2<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>5<br>3<br>5<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 595<br>596<br>597<br>598 | Figure 1. Population flow. EMS, emergency medical service; OHCA, out-of-hospital cardiac<br>arrest; TBI, traumatic brain injury. |
| 51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 29                                                                                                                               |

|                              | n (                      | %) or Median (IQ         | QR)                                 |       |
|------------------------------|--------------------------|--------------------------|-------------------------------------|-------|
|                              | Total                    | Development cohort       | Test<br>cohort                      | Р     |
| Total                        | N = 1169                 | n = 867                  | n = 302                             |       |
| Demographics                 |                          |                          |                                     |       |
| Age, years                   | 53 (36–66)               | 52 (35–66)               | 56 (40-69)                          | < 0.0 |
| Male                         | 809 (69.2)               | 592 (68.3)               | 217 (71.9)                          | 0.25  |
| Job, unemployed              | 299 (25.6)               | 197 (22.7)               | 102 (33.8)                          | < 0.0 |
| Diabetes                     | 62 (5.3)                 | 35 (4.0)                 | 27 (8.9)                            | < 0.0 |
| Hypertension                 | 105 (9.0)                | 61 (7.0)                 | 44 (14.6)                           | < 0.0 |
| Circumstances of trauma      |                          |                          |                                     |       |
| Location, road/highway       | 444 (38.0)               | 326 (37.6)               | 118 (39.1)                          | 0.65  |
| Season, summer               | 336 (28.7)               | 253 (29.2)               | 83 (27.5)                           | 0.57  |
| Weekday weekend              | 811 (69 4)               | 599 (69 1)               | 212 (70 2)                          | 0.72  |
| Time 6 p.m. to midnight      | 361 (30.9)               | 265 (30.6)               | 96 (31.8)                           | 0.69  |
| Mechanism of injury TA       | 500 (42.8)               | 375(433)                 | 125 (41 4)                          | 0.57  |
| Chief complaint              | 500 (12.0)               | 575(15.5)                | 123 (11.1)                          | 0.57  |
| Fracture/abrasion/laceration | 302 (25.8)               | 204 (23.5)               | 98 (32 5)                           | < 0.0 |
| FMS vital sign assessment    | 502 (25.0)               | 201 (25.5)               | <i>J</i> 0 ( <i>J</i> 2. <i>J</i> ) | × 0.0 |
| SBP mmHg                     | 130 (109–150)            | 130 (104–146)            | 131 (115–150)                       | < 0.0 |
| DBP mmHg                     | 80 (70-91)               | 80 (69-90)               | 80 (70-92)                          | 0.21  |
| BB /min                      | 18 (16-20)               | 18 (16-20)               | 18(16-20)                           | 0.21  |
| HR /min                      | 86 (75, 99)              | 86 (74, 99)              | 86 (76, 100)                        | 0.55  |
| SpO2 %                       | 90(75-99)                | 80(74-99)                | 08(06,00)                           | 0.40  |
| AVDU scale Alert             | 98 (93–99)<br>714 (61-1) | 98 (93-99)<br>504 (58-1) | 98 (90–99)<br>210 (60 5)            | 0.07  |
| EMS monogoment               | /14 (01.1)               | 304 (38.1)               | 210 (09.3)                          | < 0.0 |
|                              | 176 (15-1)               | 120(14.0)                | A7 (15 6)                           | 0.77  |
| Hemorrhoge control           | 1/0(13.1)                | 129 (14.9)               | 47 (13.0)                           | 0.77  |
| Spinal motion restriction    | 380 (30.1)<br>811 (60.4) | 420 (49.1)               | 100(33.0)                           | 0.23  |
| Owneed and he                | 311(09.4)                | 000(09.9)                | 203 (07.9)                          | 0.51  |
| In hospital montality        | 233(19.9)                | 170(20.3)                | 37(10.9)                            | 0.55  |
|                              | 90(7.7)                  | 74 (8.3)                 | 10 (3.3)                            | 0.07  |
| TDI                          | 281(24.0)                | 215(24.9)                | $\left( \left( 210\right) \right)$  | 0.20  |
|                              | 281 (24.0)               | 215 (24.8)               | 66 (21.9)                           | 0.30  |
| TDL with intracranial injury | 251 (21.5)               | 195 (22.5)               | 50 (18.5)                           | 0.15  |
| I BI-related non-discharge   | 249 (21.3)               | 192 (22.1)               | 57 (18.9)                           | 0.23  |
| I BI-related death           | 43 (3.7)                 | 32 (3.7)                 | 11 (3.6)                            | 0.95  |

| с<br>⊿   |
|----------|
| 4<br>5   |
| 5        |
| 7        |
| /<br>0   |
| 0        |
| 9        |
| 10       |
| 11       |
| 12       |
| 13       |
| 14       |
| 15       |
| 10       |
| 1/       |
| 10       |
| 19       |
| 20       |
| 21       |
| 22<br>22 |
| 23       |
| 24       |
| 25       |
| 26       |
| 27       |
| 28       |
| 29       |
| 30       |
| 31       |
| 32       |
| 33       |
| 34       |
| 35       |
| 36       |
| 37       |
| 38       |
| 39       |
| 40       |
| 41       |
| 42       |
| 43       |
| 44       |
| 45       |
| 46       |
| 47       |
| 48       |
| 49       |
| 50       |
| 51       |
| 52       |
| 53       |
| 54       |
| 55       |
| 56       |
| 57       |
| 58       |
| 59       |

| 603 | Table 2. Discrimination and reclassification of prediction models for outcomes on test |
|-----|----------------------------------------------------------------------------------------|
| 604 | cohort.                                                                                |

| ••••••• |         |                                                                    |        |                        |        |       |
|---------|---------|--------------------------------------------------------------------|--------|------------------------|--------|-------|
| Outcome | Model   | AUROC (95% CI)                                                     | pa     | NRI (95% CI)           | pb     | AUPRC |
| TBI     |         |                                                                    |        |                        |        |       |
|         | LR      | 0.770 (0.698, 0.841)                                               | NA     | NA                     | NA     | 0.492 |
|         | XGB     | 0.809 (0.743, 0.876)                                               | 0.04   | 0.689 (0.427, 0.951)   | < 0.01 | 0.552 |
|         | SVM     | 0.776 (0.708, 0.844)                                               | 0.77   | 0.339 (0.072, 0.607)   | 0.01   | 0.479 |
|         | RF      | 0.800 (0.735, 0.865)                                               | 0.13   | 0.308 (0.047, 0.569)   | 0.02   | 0.532 |
|         | EN      | 0.799 (0.732, 0.867)                                               | 0.06   | 0.698 (0.441, 0.954)   | < 0.01 | 0.564 |
| TBI-I   |         |                                                                    |        |                        |        |       |
|         | LR      | 0.820 (0.751, 0.890)                                               | NA     | NA                     | NA     | 0.551 |
|         | XGB     | 0.838 (0.775, 0.901)                                               | 0.28   | 0.539 (0.258, 0.821)   | < 0.01 | 0.554 |
|         | SVM     | 0.812 (0.748, 0.875)                                               | 0.66   | 0.729 (0.464, 0.994)   | < 0.01 | 0.469 |
|         | RF      | 0.836 (0.772, 0.899)                                               | 0.38   | 0.333 (0.058, 0.607)   | 0.02   | 0.552 |
|         | EN      | 0.844 (0.779, 0.910)                                               | 0.15   | 1.093 (0.845, 1.342)   | < 0.01 | 0.606 |
| TBI-ND  |         |                                                                    |        |                        |        |       |
|         | LR      | 0.767 (0.690, 0.844)                                               | NA     | NA                     | NA     | 0.482 |
|         | XGB     | 0.800 (0.727, 0.873)                                               | 0.07   | 0.605 (0.326, 0.884)   | < 0.01 | 0.496 |
|         | SVM     | 0.778 (0.704, 0.852)                                               | 0.56   | 0.285 (-0.001, 0.572)  | 0.05   | 0.477 |
|         | RF      | 0.809 (0.739, 0.880)                                               | 0.03   | 0.194 (-0.059, 0.448)  | 0.13   | 0.535 |
|         | EN      | 0.811 (0.741, 0.882)                                               | 0.02   | 0.768 (0.496, 1.039)   | < 0.01 | 0.551 |
| TBI-D   |         |                                                                    |        |                        |        |       |
|         | LR      | 0.664 (0.490, 0.838)                                               | NA     | NA                     | NA     | 0.138 |
|         | XGB     | 0.714 (0.512, 0.917)                                               | 0.64   | -0.026 (-0.605, 0.553) | 0.93   | 0.094 |
|         | SVM     | 0.814 (0.718, 0.910)                                               | 0.09   | 0.209 (-0.325, 0.742)  | 0.44   | 0.140 |
|         | RF      | 0.889 (0.801, 0.976)                                               | < 0.01 | -0.204 (-0.742, 0.334) | 0.46   | 0.196 |
|         | EN      | 0.871 (0.764, 0.978)                                               | 0.01   | 0.119 (-0.415, 0.654)  | 0.66   | 0.293 |
|         | (1 A.T. | $\mathbf{D} \mathbf{O} \mathbf{O} = 1 \cdot 1 = 1 \cdot 1 \cdot 1$ | •      | 1 1                    |        |       |

605 <sup>a</sup>Comparing the AUROC and the logistic regression model.

606 <sup>b</sup>Comparing the NRI and the logistic regression model.

607 AUROC, area under the receiver operating characteristic curve; CI, confidence interval;

608 NRI, net reclassification index; AUPRC, area under precision-recall curve; TBI,

609 traumatic brain injury, TBI-I, traumatic brain injury with intracranial injury; TBI-ND;

610 traumatic brain injury with non-discharge; TBI-D, traumatic brain injury with death;

611 LR, logistic regression analysis; XGB, extreme gradient boosting; SVM, support vector

612 machine; RF, random forest; EN, elastic net

60

| 3        |
|----------|
| 4        |
| 5        |
| 5        |
| 0<br>7   |
| /        |
| 8        |
| 9        |
| 10       |
| 11       |
| 12       |
| 13       |
| 14       |
| 15       |
| 10       |
| 10       |
| 17       |
| 18       |
| 19       |
| 20       |
| 21       |
| 22       |
| 23       |
| 24       |
| 27       |
| 25       |
| 20       |
| 27       |
| 28       |
| 29       |
| 30       |
| 31       |
| 32       |
| 33       |
| 34       |
| 25       |
| 33       |
| 30       |
| 37       |
| 38       |
| 39       |
| 40       |
| 41       |
| 42       |
| 43       |
| 44       |
| 15       |
| 4J<br>46 |
| 40       |
| 4/       |
| 48       |
| 49       |
| 50       |
| 51       |
| 52       |
| 53       |
| 54       |
| 55       |
| 55       |
| 50       |
| 5/       |
| 58       |

59 60

| 616 | Table 3. Test characteristics of prediction models for outcomes on test cohort. |
|-----|---------------------------------------------------------------------------------|
|-----|---------------------------------------------------------------------------------|

| Outcome | Model | Specificity (95% CI) | Sensitivity (95% CI) | PPV (95% CI)      | NPV (95% CI)      | Cutoff |
|---------|-------|----------------------|----------------------|-------------------|-------------------|--------|
| TBI     |       |                      |                      |                   |                   |        |
|         | LR    | 47.5 (40.9, 54.0)    | 80.3 (68.7, 89.1)    | 29.9 (23.3, 37.3) | 89.6 (82.9, 94.3) | 0.136  |
|         | XGB   | 72.5 (66.3, 78.1)    | 80.3 (68.7, 89.1)    | 44.9 (35.7, 54.3) | 92.9 (88.2, 96.2) | 0.268  |
|         | SVM   | 64.8 (58.4, 70.9)    | 80.3 (68.7, 89.1)    | 39.0 (30.7, 47.7) | 92.2 (87.0, 95.8) | 0.191  |
|         | RF    | 68.2 (61.9, 74.1)    | 80.3 (68.7, 89.1)    | 41.4 (32.8, 50.4) | 92.5 (87.6, 96.0) | 0.185  |
|         | EN    | 61.0 (54.5, 67.3)    | 80.3 (68.7, 89.1)    | 36.6 (28.7, 44.9) | 91.7 (86.3, 95.5) | 0.205  |
| TBI-I   |       |                      |                      |                   |                   |        |
|         | LR    | 71.1 (65.0, 76.7)    | 80.4 (67.6, 89.8)    | 38.8 (29.9, 48.3) | 94.1 (89.7, 97.0) | 0.164  |
|         | XGB   | 74.0 (68.0, 79.4)    | 80.4 (67.6, 89.8)    | 41.3 (31.9, 51.1) | 94.3 (90.0, 97.1) | 0.143  |
|         | SVM   | 71.1 (65.0, 76.7)    | 80.4 (67.6, 89.8)    | 38.8 (29.9, 48.3) | 94.1 (89.7, 97.0) | 0.172  |
|         | RF    | 76.0 (70.2, 81.2)    | 80.4 (67.6, 89.8)    | 43.3 (33.6, 53.3) | 94.4 (90.3, 97.2) | 0.205  |
|         | EN    | 81.3 (75.9, 86.0)    | 80.4 (67.6, 89.8)    | 49.5 (38.8, 60.1) | 94.8 (90.9, 97.4) | 0.204  |
| TBI-ND  |       |                      |                      |                   |                   |        |
|         | LR    | 46.1 (39.8, 52.6)    | 80.7 (68.1, 90.0)    | 25.8 (19.6, 32.9) | 91.1 (84.7, 95.5) | 0.090  |
|         | XGB   | 66.5 (60.2, 72.4)    | 80.7 (68.1, 90.0)    | 35.9 (27.7, 44.9) | 93.7 (89.0, 96.8) | 0.242  |
|         | SVM   | 59.2 (52.7, 65.4)    | 80.7 (68.1, 90.0)    | 31.5 (24.1, 39.7) | 92.9 (87.7, 96.4) | 0.147  |
|         | RF    | 60.4 (54.0, 66.6)    | 80.7 (68.1, 90.0)    | 32.2 (24.6, 40.5) | 93.1 (88.0, 96.5) | 0.138  |
|         | EN    | 74.3 (68.3, 79.6)    | 80.7 (68.1, 90.0)    | 42.2 (32.8, 52.0) | 94.3 (90.0, 97.1) | 0.201  |
| TBI-D   |       |                      |                      |                   |                   |        |
|         | LR    | 42.6 (36.9, 48.5)    | 81.8 (48.2, 97.7)    | 5.1 (2.4, 9.5)    | 98.4 (94.4, 99.8) | 0.005  |
|         | XGB   | 57.7 (51.8, 63.5)    | 81.8 (48.2, 97.7)    | 6.8 (3.2, 12.5)   | 98.8 (95.8, 99.9) | 0.002  |
|         | SVM   | 74.2 (68.8, 79.2)    | 81.8 (48.2, 97.7)    | 10.7 (5.0, 19.4)  | 99.1 (96.7, 99.9) | 0.039  |
|         | RF    | 74.9 (69.5, 79.8)    | 81.8 (48.2, 97.7)    | 11.0 (5.1, 19.8)  | 99.1 (96.8, 99.9) | 0.005  |
|         | EN    | 79.0 (73.9, 83.6)    | 81.8 (48.2, 97.7)    | 12.9 (6.1, 23.0)  | 99.1 (96.9, 99.9) | 0.033  |

617 TBI, traumatic brain injury, TBI-I, traumatic brain injury with intracranial injury; TBI-

618 ND; traumatic brain injury with non-discharge; TBI-D, traumatic brain injury with

619 death; LR, logistic regression analysis; XGB, extreme gradient boosting; SVM, support

620 vector machine; RF, random forest; EN, elastic net.

| 2        |
|----------|
| 2        |
| 3        |
| 4        |
| 5        |
| 6        |
| 7        |
| /        |
| 8        |
| 9        |
| 10       |
| 11       |
| 11       |
| 12       |
| 13       |
| 14       |
| 15       |
| 10       |
| 10       |
| 17       |
| 18       |
| 19       |
| 20       |
| 20       |
| 21       |
| 22       |
| 23       |
| 24       |
| 24       |
| 25       |
| 26       |
| 27       |
| 28       |
| 20       |
| 29       |
| 30       |
| 31       |
| 32       |
| 22       |
| 22       |
| 34       |
| 35       |
| 36       |
| 37       |
| 20       |
| 20       |
| 39       |
| 40       |
| 41       |
| 42       |
| ד∠<br>⊿ר |
| 43       |
| 44       |
| 45       |
| 46       |
| 17       |
| 40       |
| 48       |
| 49       |
| 50       |
| 51       |
| 57       |
| 52       |
| 53       |
| 54       |
| 55       |
| 56       |
| 50       |
| 5/       |
| 58       |

| 622 | Table 4. Top 5 important variables for outcomes in descending order using model |
|-----|---------------------------------------------------------------------------------|
| 623 | specific metrics                                                                |

| Outcome | Rank | LR                    | XGB                      | RF                    | EN                    |
|---------|------|-----------------------|--------------------------|-----------------------|-----------------------|
| TBI     |      |                       |                          |                       |                       |
|         | 1    | Loss of consciousness | Loss of consciousness    | Loss of consciousness | Loss of consciousness |
|         | 2    | GCS, Eye, 1           | GCS, Eye, 1              | GCS, Eye, 1           | GCS, Motor,           |
|         | 3    | GCS, Verbal, 1        | GCS, Verbal, 1           | GCS, Verbal, 1        | GCS, Motor, 2         |
|         | 4    | Light reflex          | Other mechanism          | Light reflex          | GCS, Eye, 1           |
|         | 5    | GCS, Motor, 1         | GCS, Verbal, 2           | GCS, Motor, 1         | GCS, Verbal,          |
| TBI-I   |      |                       |                          |                       |                       |
|         | 1    | Loss of consciousness | Loss of consciousness    | Loss of consciousness | GCS, Eye, 1           |
|         | 2    | GCS, Eye, 1           | GCS, Eye, 1              | GCS, Eye, 1           | Loss of consciousness |
|         | 3    | GCS, Verbal, 1        | GCS, Verbal, 1           | GCS, Verbal, 1        | GCS, Motor,           |
|         | 4    | Light reflex          | GCS, Verbal, 2           | Light reflex          | GCS, Verbal,          |
|         | 5    | GCS, Motor, 1         | Other mechanism          | GCS, Motor, 1         | Light reflex          |
| TBI-ND  |      |                       |                          |                       |                       |
|         | 1    | Loss of consciousness | Loss of consciousness    | Loss of consciousness | Loss of consciousness |
|         | 2    | GCS, Eye, 1           | GCS, Eye, 1              | GCS, Eye, 1           | GCS, Eye, 1           |
|         | 3    | GCS, Verbal, 1        | GCS, Verbal, 1           | GCS, Verbal, 1        | GCS, Motor,           |
|         | 4    | Light reflex          | GCS, Verbal, 2           | GCS, Verbal, 2        | GCS, Verbal,          |
|         | 5    | GCS, Motor, 1         | GCS, Motor, 1            | GCS, Motor, 4         | Light reflex          |
| TBI-D   |      |                       |                          |                       |                       |
|         | 1    | Loss of consciousness | GCS, Verbal, 1           | GCS, Verbal, 1        | GCS, Motor,           |
|         | 2    | GCS, Verbal, 1        | Oxygen<br>saturation<96% | Light reflex          | GCS, Verbal,          |
|         | 3    | GCS, Eye, 1           | Fall mechanism           | Loss of consciousness | Loss of consciousness |
|         | 4    | Light reflex          | Afternoon                | GCS, Eye, 1           | Age over 80           |
|         | 5    | GCS, Motor, 1         | Light reflex             | GCS, Motor, 1         | HR 87-99              |

ND; traumatic brain injury with non-discharge; TBI-D, traumatic brain injury with

626 death; LR, logistic regression; XGB, extreme gradient boosting; RF, random forest; EN,

627 elastic net; GCS, Glasgow coma scale; HR, heart rate.

628



Figure 1. Population flow. EMS, emergency medical service; OHCA, out-of-hospital cardiac arrest; TBI, traumatic brain injury.

165x119mm (300 x 300 DPI)

Supplementary Table 1. List of analyzed variables.

| Variables                    | Descriptions                                   | Type of raw data | Category                                                                                                                        | Preprocessing                                                        |
|------------------------------|------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Gender                       | Sex of the patients                            | Binary           | Male, Female                                                                                                                    |                                                                      |
| Age                          | Age of patients                                | Continuous       | 15-39 years, 40-59 years, 60-79 years, and 80- years                                                                            | Discretization and one hot encoding                                  |
| Job                          | Job of patients                                | Categorical      | Unemployed, Student/Housewife;<br>Office/Commercial/Service workers;<br>Industrial/Agricultural/Fishery/Miner<br>worker; Others | One hot encoding<br>Missing data were classified into others         |
| Diabetes                     | History of diabetes mellitus                   | Binary           | Yes, No                                                                                                                         | Missing data were classified into no                                 |
| Hypertension                 | History of hypertension                        | Binary           | Yes, No                                                                                                                         | Missing data were classified into no                                 |
| Location of injury           | Location of injury                             | Categorical      | home/residentialarea/medicalfacility/school/gym;area/medicalRoad/highway;off-road traffic area;Othersothers                     | One hot encoding<br>Missing data were classified into others         |
| Season                       | Season when injury occurred                    | Categorical      | Spring, Summer, Fall, Winter                                                                                                    | One hot encoding                                                     |
| Weekend                      | Whether Injury occurred on weekday or weekend  | Binary           | Weekday, Weekend                                                                                                                |                                                                      |
| Daytime                      | When injury was occurred                       | Categorical      | Night (Midnight to 5AM), Morning (6AM<br>to 11AM), Afternoon (Midday to 5PM),<br>Evening (6PM to 11PM)                          | One hot encoding<br>Missing time were imputed using EMS<br>call time |
| Mechanism of injury          | Mechanism of injury                            | Categorical      | Slip down, Fall down, Traffic accident,<br>Other                                                                                | One hot encoding<br>Missing data were classified into others         |
| Glasgow coma scale<br>eye    | Eye element of Glasgow coma scale              | Categorical      | 1;2;3;4;Unknown                                                                                                                 | One hot encoding                                                     |
| Glasgow coma scale<br>Verbal | Verbal element of Glasgow coma scale           | Categorical      | 1;2;3;4;5;Unknown                                                                                                               | One hot encoding                                                     |
| Glasgow coma scale<br>Motor  | Motor element of Glasgow coma scale            | Categorical      | 1;2;3;4;5;6;Unknown                                                                                                             | One hot encoding                                                     |
| Light Reflex any<br>Abnormal | Any abnormality of light<br>reflex on any side | Categorical      | No, Yes, Unknown                                                                                                                | One hot encoding<br>Missing data were classified into<br>unknown     |

 BMJ Open

| Systolic blood               | Systolic blood pressure                                                   | Continuous                                                    | -107 mmHg, 108-130 mmHg, 131-145                                                                                                                                                 | Discretization and one hot encoding                                                                                                                                               |
|------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pressure                     |                                                                           |                                                               | mmHg, 146- mmHg, Unknown                                                                                                                                                         | Cutoff values for categories<br>calculated from median and interqu<br>range of training cohort<br>Missing data were classified                                                    |
|                              |                                                                           |                                                               |                                                                                                                                                                                  | unknown                                                                                                                                                                           |
| Diastolic blood<br>pressure  | Diastolic blood pressure                                                  | Continuous                                                    | -69 mmHg, 70-80 mmHg, 81-91 mmHg,<br>92- mmHg, Unknown                                                                                                                           | Discretization and one hot encoding<br>Cutoff values for categories<br>calculated from median and interque<br>range of training cohort<br>Missing data were classified<br>unknown |
| Heart rate                   | Heart rate                                                                | Continuous                                                    | -74/min, 75-86/min, 87-99/min, 100-/min,<br>Unknown                                                                                                                              | Discretization and one hot encoding<br>Cutoff values for categories<br>calculated from median and interqu<br>range of training cohort<br>Missing data were classified<br>unknown  |
| Respiratory rate             | Respiratory rate                                                          | Continuous -16/min, 17-18/min, 19-20/min, 21-/min,<br>Unknown |                                                                                                                                                                                  | Discretization and one hot encoding<br>Cutoff values for categories<br>calculated from median and interqu<br>range of training cohort<br>Missing data were classified<br>unknown  |
| Oxygen saturation            | Oxygen saturation       Continuous       -95%, 96-98%, 99%, 100%, Unknown |                                                               | Discretization and one hot encoding<br>Cutoff values for categories<br>calculated from median and interqu<br>range of training cohort<br>Missing data were classified<br>unknown |                                                                                                                                                                                   |
| Body temperature             | Body temperature                                                          | Continuous                                                    | -36°C, 36.1-36.3°C, 36.4-36.8°C, 36.9-°C,<br>Unknown                                                                                                                             | Discretization and one hot encoding<br>Cutoff values for categories<br>calculated from median and interqu<br>range of training cohort<br>Missing data were classified<br>unknown  |
| Chest pain or abdominal pain | Symptom of chest pain or abdominal pain                                   | Binary                                                        | Yes, No                                                                                                                                                                          |                                                                                                                                                                                   |

| F ( 1 )                |                              | D:     | X7 X1   |  |
|------------------------|------------------------------|--------|---------|--|
| Fracture, abrasion, or | Symptom of fracture,         | Binary | Yes, No |  |
| laceration             | abrasion, or laceration      |        |         |  |
| Loss of                | Symptom of loss of           | Binary | Yes, No |  |
| consciousness          | consciousness (whether       |        |         |  |
|                        | patients had loss of         |        |         |  |
|                        | consciousness between injury |        |         |  |
|                        | and EMS provider's           |        |         |  |
|                        | assessment)                  |        |         |  |
| Dyspnea                | Symptom of dyspnea           | Binary | Yes, No |  |
| Nose bleeding          | Symptom of nose bleeding     | Binary | Yes, No |  |
| Nausea or vomiting     | Symptom of nausea or         | Binary | Yes, No |  |
|                        | vomiting                     |        |         |  |
| Headache, paralysis    | Symptom of headache,         | Binary | Yes, No |  |
| or dizziness           | paralysis or dizziness       |        |         |  |
|                        |                              |        |         |  |
|                        |                              |        |         |  |
|                        |                              |        |         |  |
|                        |                              |        |         |  |

# BMJ Open

|                                        | N (%) or Median (IQR) |             |            |        |
|----------------------------------------|-----------------------|-------------|------------|--------|
| Characteristics                        | Total                 | Development | Test       | P-valu |
| Total                                  | 1169                  | 867         | 302        |        |
| Demographics                           |                       |             |            |        |
| Male                                   | 809 (69.2)            | 592 (68.3)  | 217 (71.9) | 0.25   |
| Age, years                             | 53 (36-66)            | 52 (35-66)  | 56 (40-69) | < 0.01 |
| Job of patients                        |                       |             |            | < 0.01 |
| Unemployed                             | 299 (25.6)            | 197 (22.7)  | 102 (33.8) |        |
| Student/Housewife                      | 161 (13.8)            | 129 (14.9)  | 32 (10.6)  |        |
| Office/Commercial/Service worker       | 283 (24.2)            | 176 (20.3)  | 107 (35.4) |        |
| Industrial/Agricultural/Fishery/Minery |                       |             |            |        |
| worker                                 | 36 (3.1)              | 25 (2.9)    | 11 (3.6)   |        |
| Others                                 | 390 (33.4)            | 340 (39.2)  | 50 (16.6)  |        |
| Past medical history                   |                       |             |            |        |
| Diabetes                               | 62 (5.3)              | 35 (4.0)    | 27 (8.9)   | < 0.01 |
| Hypertension                           | 105 (9.0)             | 61 (7.0)    | 44 (14.6)  | < 0.01 |
| Circumstances of Trauma                |                       |             |            |        |
| Location of trauma                     |                       |             |            | 0.52   |
| Residential/Nursing/Education/Exercise |                       |             |            |        |
| facility                               | 303 (25.9)            | 218 (25.1)  | 85 (28.1)  |        |
| Road/Highway                           | 444 (38.0)            | 326 (37.6)  | 118 (39.1) |        |
| Off-road traffic area                  | 181 (15.5)            | 140 (16.1)  | 41 (13.6)  |        |
| Others                                 | 241 (20.6)            | 183 (21.1)  | 58 (19.2)  |        |
| Season of trauma                       |                       |             |            | < 0.01 |
| Spring                                 | 249 (21.3)            | 167 (19.3)  | 82 (27.2)  |        |
| Summer                                 | 336 (28.7)            | 253 (29.2)  | 83 (27.5)  |        |
| Fall                                   | 304 (26.0)            | 242 (27.9)  | 62 (20.5)  |        |
| Winter                                 | 280 (24.0)            | 205 (23.6)  | 75 (24.8)  |        |
| Weekday                                | 811 (69.4)            | 599 (69.1)  | 212 (70.2) | 0.72   |
| Time of trauma                         |                       |             |            | 0.83   |
| 6A-MD                                  | 281 (24.0)            | 206 (23.8)  | 75 (24.8)  |        |
| MD-6P                                  | 266 (22.8)            | 203 (23.4)  | 63 (20.9)  |        |
| 6P-MN                                  | 361 (30.9)            | 265 (30.6)  | 96 (31.8)  |        |
| MN-6A                                  | 261 (22.3)            | 193 (22.3)  | 68 (22.5)  |        |
| Mechanism of Trauma                    |                       |             |            | 0.60   |
| Traffic accident                       | 500 (42.8)            | 375 (43.3)  | 125 (41.4) |        |
| Slip down                              | 325 (27.8)            | 232 (26.8)  | 93 (30.8)  |        |
| Fall down                              | 171 (14.6)            | 129 (14.9)  | 42 (13.9)  |        |
| Others                                 | 173 (14.8)            | 131 (15.1)  | 42 (13.9)  |        |
| Chief complaint                        |                       |             |            |        |
| Altered mentality                      | 279 (23.9)            | 223 (25.7)  | 56 (18.5)  | 0.01   |
| Facture/Abrasion/Laceration            | 302 (25.8)            | 204 (23.5)  | 98 (32.5)  | < 0.01 |
| Chest/Abdominal pain                   | 47 (4.0)              | 31 (3.6)    | 16 (5.3)   | 0.19   |
| Dyspnea                                | 25 (2.1)              | 20 (2.3)    | 5 (1.7)    | 0.50   |

Supplementary Table 2. Demographic characteristics of development and test cohorts

| Epistaxis                            | 44 (3.8)              | 30 (3.5)       | 14 (4.6)             | 0.36   |
|--------------------------------------|-----------------------|----------------|----------------------|--------|
| Headache/Paralysis/Dizziness/Vertigo | 95 (8.1)              | 64 (7.4)       | 31 (10.3)            | 0.11   |
| Nausea/Vomiting                      | 32 (2.7)              | 20 (2.3)       | 12 (4.0)             | 0.13   |
| EMS Vital sign assessment            |                       |                |                      |        |
|                                      | 130 (109-             |                | 131 (115-            | 0.01   |
| SBP, mmHg                            | 150)                  | 130 (104-146)  | 150)                 | < 0.01 |
| Missing                              | 65 (5.6)              | 56 (6.5)       | 9 (3.0)              | 0.02   |
| DBP, mmHg                            | 80 (70-91)            | 80 (69-90)     | 80 (70-92)           | < 0.01 |
| Missing                              | 75 (6.4)              | 65 (7.5)       | 10 (3.3)             | 0.01   |
| HR, /min                             | 86 (75-99)            | 86 (74-99)     | 86 (76-100)          | < 0.01 |
| Missing                              | 31 (2.7)              | 28 (3.2)       | 3 (1.0)              | 0.04   |
| RR, /min                             | 18 (16-20)            | 18 (16-20)     | 18 (16-20)           | < 0.01 |
| Missing                              | 36 (3.1)              | 33 (3.8)       | 3 (1.0)              | 0.01   |
| SpO2, %                              | 98 (95-99)            | 98 (95-99)     | 98 (96-99)           | < 0.01 |
| Missing                              | 38 (3.3)<br>36.5 (36- | 33 (3.8)       | 5 (1.7)<br>36.5 (36- | 0.07   |
| Temperature, °C                      | 36.8)                 | 36.5 (36-36.8) | 36.7)                | < 0.01 |
| Missing                              | 94 (8.0)              | 65 (7.5)       | 29 (9.6)             | 0.25   |
| AVPU scale                           |                       |                |                      | < 0.01 |
| Alert                                | 714 (61.1)            | 504 (58.1)     | 210 (69.5)           |        |
| Verbal                               | 168 (14.4)            | 136 (15.7)     | 32 (10.6)            |        |
| Pain                                 | 199 (17.0)            | 158 (18.2)     | 41 (13.6)            |        |
| Unresponsive                         | 88 (7.5)              | 69 (8.0)       | 19 (6.3)             |        |
| Abnormal light reflex                | 165 (14.1)            | 132 (15.2)     | 33 (10.9)            | < 0.01 |
| Missing                              | 66 (5.6)              | 57 (6.6)       | 9 (3.0)              |        |
| GCS scale component                  |                       |                |                      |        |
| Glasgow coma scale eye               |                       |                |                      | < 0.01 |
| 4                                    | 558 (47.7)            | 380 (43.8)     | 178 (58.9)           |        |
| 3                                    | 128 (10.9)            | 109 (12.6)     | 19 (6.3)             |        |
| 2                                    | 110 (9.4)             | 82 (9.5)       | 28 (9.3)             |        |
| 1                                    | 174 (14.9)            | 141 (16.3)     | 33 (10.9)            |        |
| Unknown                              | 199 (17.0)            | 155 (17.9)     | 44 (14.6)            |        |
| Glasgow coma scale Verbal            |                       |                |                      | 0.01   |
| 5                                    | 520 (44.5)            | 359 (41.4)     | 161 (53.3)           |        |
| 4                                    | 118 (10.1)            | 88 (10.1)      | 30 (9.9)             |        |
| 3                                    | 25 (2.1)              | 19 (2.2)       | 6 (2.0)              |        |
| 2                                    | 132 (11.3)            | 105 (12.1)     | 27 (8.9)             |        |
| 1                                    | 174 (14.9)            | 141 (16.3)     | 33 (10.9)            |        |
| Unknown                              | 200 (17.1)            | 155 (17.9)     | 45 (14.9)            |        |
| Glasgow coma scale Motor             |                       |                |                      | < 0.01 |
| 6                                    | 499 (42.7)            | 333 (38.4)     | 166 (55.0)           |        |
| 5                                    | 124 (10.6)            | 103 (11.9)     | 21 (7.0)             |        |
| 4                                    | 158 (13.5)            | 123 (14.2)     | 35 (11.6)            |        |
| 3                                    | 47 (4.0)              | 39 (4.5)       | 8 (2.6)              |        |
| 2                                    | 17 (1.5)              | 15 (1.7)       | 2 (0.7)              |        |
| 1                                    | 125 (10.7)            | 99 (11.4)      | 26 (8.6)             |        |
| Unknown                              | 199 (17.0)            | 155 (17.9)     | 44 (14.6)            |        |
|                                      |                       |                |                      |        |

Page 41 of 48

#### **BMJ** Open

| 3        |                                                |                |                    |                   |               |
|----------|------------------------------------------------|----------------|--------------------|-------------------|---------------|
| 4        | EMS management                                 |                |                    |                   |               |
| 5        |                                                | 176 (15 1)     | 120 (14 0)         | 17 (15 6)         | 0.77          |
| 6<br>7   | Hemorrhage control                             | 596 (50 1)     | 129 (14.9)         | 47(13.0)          | 0.77          |
| 7<br>8   | Hemorrage control                              | 380 (30.1)     | 420 (49.1)         | 100 (33.0)        | 0.23          |
| 9        | Spinal motion restriction                      | 811 (69.4)     | 606 (69.9)         | 205 (67.9)        | 0.51          |
| 10       | Advanced airway management                     | 4 (0.3)        | 2 (0.2)            | 2 (0.7)           | 0.28          |
| 11       | Oxygen supply                                  | 233 (19.9)     | 176 (20.3)         | 57 (18.9)         | 0.59          |
| 12       | Field triage decision scheme criteria*         |                |                    |                   |               |
| 13       | Physiological criteria                         |                |                    |                   |               |
| 14       | SBP<90 mmHg                                    | 58 (5.0)       | 42 (4.8)           | 16 (5.3)          | 0.75          |
| 15       | RR<10 or >29 /min                              | 11 (0.9)       | 11 (1.3)           | 0 (0.0)           | 0.08          |
| 17       | Non-Alert                                      | 429 (36.7)     | 343 (39.6)         | 86 (28.5)         | < 0.01        |
| 18       | Anatomic criteria                              |                |                    |                   |               |
| 19       | All penetrating injuries to head, neck,        |                |                    |                   |               |
| 20       | torso and extremities proximal to elbow        |                |                    |                   | 0.00          |
| 21       | or knee                                        | 34 (2.9)       | 23 (2.7)           | 11 (3.6)          | 0.38          |
| 22       | Chest wall instability or deformity            | 4 (0.3)        | 4 (0.5)            | 0 (0.0)           | 0.58          |
| 23       | I wo or more proximal long bone                | 19 (1.6)       | 13 (1 5)           | 6 (2 0)           | 0.60          |
| 25       | Crush, degloved, mangled or                    | 1) (1.0)       | 15 (1.5)           | 0 (2.0)           | 0.00          |
| 26       | pulseless extremity                            | 15 (1.3)       | 13 (1.5)           | 2 (0.7)           | 0.38          |
| 27       | Amputation proximal to wrist or ankle          | 9 (0.8)        | 9 (1.0)            | 0 (0.0)           | 0.12          |
| 28       | Pelvic fractures                               | 8 (0.7)        | 6 (0.7)            | 2 (0.7)           | >0.95         |
| 29       | Open or depressed skull fracture               | 17 (1.5)       | 9(1.0)             | 8 (2.6)           | 0.05          |
| 30<br>21 | Paralysis                                      | 21(1.8)        | 11 (1 3)           | 10(33)            | 0.02          |
| 32       | Mechanism of injury criteria                   | 21 (1.0)       | 11 (1.5)           | 10 (5.5)          | 0.02          |
| 33       |                                                |                |                    |                   |               |
| 34       | Fall > 6 meter                                 | 113 (9.7)      | 84 (9.7)           | 29 (9.6)          | >0.95         |
| 35       | High-risk auto crash                           | 96 (8.2)       | 73 (8.4)           | 23 (7.6)          | 0.66          |
| 36       | Auto vs pedestrian/bicyclist thrown,           |                |                    |                   |               |
| 37       | run over, or with significant (>30km/h)        |                |                    | 26 (11.0)         |               |
| 38       | impact                                         | 119 (10.2)     | 83 (9.6)           | 36 (11.9)         | 0.25          |
| 40       | Motorcycle crash $> 30$ km/hour                | 105 (9.0)      | 70 (8.1)           | 35 (11.6)         | 0.07          |
| 41       | ED disposition                                 |                |                    |                   | 0.11          |
| 42       | Discharge                                      | 320 (27 4)     | 241 (27.8)         | 79 (26 2)         |               |
| 43       | Transfer                                       | 444 (28.0)     | 216(26.4)          | 129 (42.4)        |               |
| 44       |                                                | 444 (38.0)     | 316 (36.4)         | 128 (42.4)        |               |
| 45       | Admitted                                       | 366 (31.3)     | 276 (31.8)         | 90 (29.8)         |               |
| 40<br>47 | In-hospital mortality                          | 90 (7.7)       | 74 (8.5)           | 16 (5.3)          | 0.07          |
| 48       | Outcomes                                       |                |                    |                   |               |
| 49       | TBI                                            | 201 (24.0)     | 215 (24.9)         | (c (21.0))        | 0.20          |
| 50       |                                                | 281 (24.0)     | 215 (24.8)         | 66 (21.9)         | 0.30          |
| 51       | TBI with intracranial injury                   | 251 (21.5)     | 195 (22.5)         | 56 (18.5)         | 0.15          |
| 52       | TBI-related non-discharge                      | 249 (21.3)     | 192 (22.1)         | 57 (18.9)         | 0.23          |
| 53<br>54 | TBI-related death                              | 43 (37)        | 32 (37)            | 11 (3.6)          | >0 95         |
| 55       | *EMS providers check specific criteria orderly | from physiolog | ic, anatomical, an | d mechanism of in | njury. If the |
| 56       | 1 1 5                                          | 1,7,6          | ,                  |                   |               |

preceding criteria are satisfied, the information of the latter criteria is not collected.

IQR, interquartile range; SBP, systolic blood pressure; RR, respiratory rate; ED, emergency department; TBI, traumatic brain injury.

tor beer teriew only

| 3                                                                                                                                                                                                                                                          |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 5                                                                                                                                                                                                                                                          |  |
| Λ                                                                                                                                                                                                                                                          |  |
| -                                                                                                                                                                                                                                                          |  |
| د<br>د                                                                                                                                                                                                                                                     |  |
| 6                                                                                                                                                                                                                                                          |  |
| /                                                                                                                                                                                                                                                          |  |
| 8                                                                                                                                                                                                                                                          |  |
| 9                                                                                                                                                                                                                                                          |  |
| 10                                                                                                                                                                                                                                                         |  |
| 11                                                                                                                                                                                                                                                         |  |
| 12                                                                                                                                                                                                                                                         |  |
| 13                                                                                                                                                                                                                                                         |  |
| 14                                                                                                                                                                                                                                                         |  |
| 15                                                                                                                                                                                                                                                         |  |
| 16                                                                                                                                                                                                                                                         |  |
| 17                                                                                                                                                                                                                                                         |  |
| 17                                                                                                                                                                                                                                                         |  |
| 18                                                                                                                                                                                                                                                         |  |
| 19                                                                                                                                                                                                                                                         |  |
| 20                                                                                                                                                                                                                                                         |  |
| 21                                                                                                                                                                                                                                                         |  |
| 22                                                                                                                                                                                                                                                         |  |
| 23                                                                                                                                                                                                                                                         |  |
| 24                                                                                                                                                                                                                                                         |  |
| 25                                                                                                                                                                                                                                                         |  |
| 26                                                                                                                                                                                                                                                         |  |
| 27                                                                                                                                                                                                                                                         |  |
| 27                                                                                                                                                                                                                                                         |  |
| 20                                                                                                                                                                                                                                                         |  |
| 29                                                                                                                                                                                                                                                         |  |
| 30                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                            |  |
| 31                                                                                                                                                                                                                                                         |  |
| 31<br>32                                                                                                                                                                                                                                                   |  |
| 31<br>32<br>33                                                                                                                                                                                                                                             |  |
| 31<br>32<br>33<br>34                                                                                                                                                                                                                                       |  |
| 31<br>32<br>33<br>34<br>35                                                                                                                                                                                                                                 |  |
| 31<br>32<br>33<br>34<br>35<br>36                                                                                                                                                                                                                           |  |
| <ul> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> </ul>                                                                                                                                                             |  |
| <ul> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> </ul>                                                                                                                                                 |  |
| <ul> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>30</li> </ul>                                                                                                                                     |  |
| <ul> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> </ul>                                                                                                                         |  |
| <ul> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> </ul>                                                                                                                         |  |
| 31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41                                                                                                                                                                                             |  |
| <ul> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> </ul>                                                                                                 |  |
| <ul> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> </ul>                                                                                     |  |
| <ul> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> </ul>                                                                         |  |
| <ul> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> </ul>                                                             |  |
| <ul> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> </ul>                                                 |  |
| <ul> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> </ul>                                     |  |
| <ul> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> </ul>                         |  |
| <ul> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> </ul>             |  |
| <ul> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> <li>50</li> </ul> |  |
| <ul> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> <li>50</li> </ul> |  |
| 31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50                                                                                                                                       |  |
| 31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>22                                                                                                                           |  |
| 31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>33                                                                                                                     |  |
| 31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54                                                                                                               |  |
| $\begin{array}{c} 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ \end{array}$                                                                                                |  |
| $\begin{array}{c} 31\\ 32\\ 33\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 55\\ 56\end{array}$                                                                                                        |  |
| $\begin{array}{c} 31\\ 32\\ 33\\ 35\\ 36\\ 37\\ 38\\ 39\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 9\\ 51\\ 52\\ 53\\ 55\\ 56\\ 57\\ \end{array}$                                                                                                           |  |
| $\begin{array}{c} 31\\ 32\\ 33\\ 35\\ 36\\ 37\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 9\\ 50\\ 51\\ 52\\ 53\\ 55\\ 57\\ 58\end{array}$                                                                                                         |  |

60

| Model                     | Outcome | Hyperparameters                                               |
|---------------------------|---------|---------------------------------------------------------------|
| Elastic net               | TBI     | alpha: 0.325, lambda: 0.07506346                              |
|                           | TBI-I   | alpha: 0.325, lambda: 0.07506346                              |
|                           | TBI-ND  | alpha: 0.325, lambda: 0.07017153                              |
|                           | TBI-D   | alpha: 0.325, lambda: 0.01565599                              |
| Random forest             | TBI     | ntree:500, mtry: 18                                           |
|                           | TBI-I   | ntree:500, mtry: 18                                           |
|                           | TBI-ND  | ntree:500, mtry: 18                                           |
|                           | TBI-D   | ntree:500, mtry: 15                                           |
| Support vector machine    | TBI     | sigma: 0.008047; C: 4                                         |
|                           | TBI-I   | sigma: 0.008047; C: 4                                         |
|                           | TBI-ND  | sigma: 0.008047; C: 4                                         |
|                           | TBI-D   | sigma: 0.008047; C: 4                                         |
|                           |         | nrounds: 299; max_depth: 1; eta: 0.4807096; gamma: 2.336623;  |
| Extreme gradient boosting | ТВІ     | colsample_bytree: 0.3657893; min_child_weight: 8; subsample:  |
|                           |         | 0.8182623                                                     |
|                           |         | nrounds: 299; max_depth: 1; eta: 0.4807096; gamma: 2.336623;  |
|                           | TBI-I   | colsample_bytree: 0.3657893; min_child_weight: 8; subsample:  |
|                           |         | 0.8182623                                                     |
|                           |         | nrounds: 301; max_depth: 1; eta: 0.02154674; gamma: 4.696105; |
|                           | TBI-ND  | colsample_bytree: 0.590754; min_child_weight: 1; subsample:   |
|                           |         | 0.5070866                                                     |
|                           |         | nrounds: 50; max_depth: 0.3; eta: 0.3; gamma: 0;              |
|                           | TBI-D   | colsample_bytree: 0.8; min_child_weight: 1; subsample:        |
|                           |         | 0.5510204                                                     |

\*Aside from the hyperparameters mentioned, all other hyperparameters are used as the default value.

TBI, traumatic brain injury; TBI-I, TBI with intracranial hemorrhage or injury; TBI-ND, TBI non-discharge; TBI-D, TBI with death.

Supplementary Figure 1. Receiver operating characteristics of prediction models according to outcomes. TBI, traumatic brain injury; TBI-I, TBI with intracranial hemorrhage or injury; TBI-ND, TBI non-discharge; TBI-D, TBI with death.



Page 45 of 48

 BMJ Open

Supplementary Figure 2. Precision-recall curve of prediction models according to outcomes. TBI, traumatic brain injury; TBI-I, TBI with intracranial hemorrhage or injury; TBI-ND, TBI non-discharge; TBI-D, TBI with death; LR, logistic regression analysis; XGB, extreme gradient boosting; RF, random forest, EN, elastic net.



Supplementary Figure 3. Calibration plot of prediction models according to outcomes. TBI, traumatic brain injury; TBI-I, TBI with intracranial hemorrhage or injury; TBI-ND, TBI non-discharge; TBI-D, TBI with death; p, p-value of Hosmer-Lemeshow test; BS, scaled Brier score.


BMJ Open

For peer review only For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary Table 4. Example of calculating false-positive patients for accurately identified patients. TBI, traumatic brain injury; EN, elastic net.



False-positive patients for every 10 patients that are accurately identified as TBI :  $346/226 \times 10 = 15.3$ , rounded up to 16 patients

## TRAPOD

## TRIPOD Checklist: Prediction Model Development and Validation

| Section/Topic                      | Item |           | Checklist Item                                                                                                                                                                                       | Paç |
|------------------------------------|------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Fitle and abstract                 |      |           | Identify the study as developing and/or validating a multivariable production model, the                                                                                                             | 1   |
| Title                              | 1    | D;V       | target population, and the outcome to be predicted.                                                                                                                                                  | 1   |
| Abstract                           | 2    | D;V       | Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions.                                              | 4   |
| Introduction                       |      | 1         |                                                                                                                                                                                                      |     |
|                                    |      |           | Explain the medical context (including whether diagnostic or prognostic) and rationale                                                                                                               |     |
| Background and objectives          | 3a   | D;V       | for developing or validating the multivariable prediction model, including references to                                                                                                             | 7   |
|                                    |      |           | Specify the objectives, including whether the study describes the development or                                                                                                                     | 0   |
|                                    | 3D   | D;v       | validation of the model or both.                                                                                                                                                                     | 6   |
| Methods                            |      | ł         |                                                                                                                                                                                                      |     |
| Source of data                     | 4a   | D;V       | Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data sets, if applicable.                              | 8-  |
|                                    | 4b   | D;V       | Specify the key study dates, including start of accrual; end of accrual; and, if applicable,                                                                                                         | ç   |
|                                    | _    |           | Specify key elements of the study setting (e.g., primary care, secondary care, general                                                                                                               |     |
| Participants                       | 5a   | D;V       | population) including number and location of centres.                                                                                                                                                | 8-  |
|                                    | 5b   | D;V       | Describe eligibility criteria for participants.                                                                                                                                                      | 1   |
|                                    | 5C   | D;V       | Give details of treatments received, if relevant.                                                                                                                                                    | N/  |
| Outcome                            | 6a   | D;V       | when assessed.                                                                                                                                                                                       | 10- |
|                                    | 6b   | D;V       | Report any actions to blind assessment of the outcome to be predicted.                                                                                                                               | N/  |
| Predictors                         | 7a   | D;V       | Clearly define all predictors used in developing or validating the multivariable prediction                                                                                                          | 1   |
|                                    |      | · ·       | Report any actions to blind assessment of predictors for the outcome and other                                                                                                                       |     |
|                                    | 7b   | D;V       | predictors.                                                                                                                                                                                          | N   |
| Sample size                        | 8    | D;V       | Explain how the study size was arrived at.                                                                                                                                                           | 1   |
| Missing data                       | Q    | עים       | Describe how missing data were handled (e.g., complete-case analysis, single                                                                                                                         | -1  |
| wissing uata                       | 3    |           | imputation, multiple imputation) with details of any imputation method.                                                                                                                              |     |
| Statistical<br>analysis<br>methods | 10a  |           | Describe how predictors were handled in the analyses.                                                                                                                                                | 1   |
|                                    | 10b  | D         | and method for internal validation.                                                                                                                                                                  | 11- |
|                                    | 10c  | V         | For validation, describe how the predictions were calculated.                                                                                                                                        | 12  |
|                                    | 10d  | D:V       | Specify all measures used to assess model performance and, if relevant, to compare                                                                                                                   | 12- |
|                                    | 100  | V         | multiple models.                                                                                                                                                                                     | N.  |
| Risk groups                        | 11   | v.<br>∏.√ | Provide details on how risk groups were created if done                                                                                                                                              | N/  |
| Development                        | 10   |           | For validation, identify any differences from the development data in setting, eligibility                                                                                                           |     |
| vs. validation                     | 12   | V         | criteria, outcome, and predictors.                                                                                                                                                                   | 1.  |
| Results                            |      |           |                                                                                                                                                                                                      | 1   |
| Participants                       | 13a  | D;V       | Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful | 1   |
|                                    | 13b  | D;V       | Describe the characteristics of the participants (basic demographics, clinical features,                                                                                                             |     |
|                                    |      |           | available predictors), including the number of participants with missing data for<br>predictors and outcome                                                                                          | 1   |
|                                    | 120  | 1/        | For validation, show a comparison with the development data of the distribution of                                                                                                                   | 4   |
|                                    | 100  |           | important variables (demographics, predictors and outcome).                                                                                                                                          |     |
| Model<br>development               | 14a  | D         | Specify the number of participants and outcome events in each analysis.                                                                                                                              | 1   |
|                                    | 14b  | D         | outcome.                                                                                                                                                                                             | N   |
| Model specification                | 15a  | D         | Present the full prediction model to allow predictions for individuals (i.e., all regression                                                                                                         | N   |
|                                    | 15h  | <br>ת     | coefficients, and model intercept or baseline survival at a given time point).                                                                                                                       | 14  |
| Model                              | 16   |           | Depart performance management (with Cla) for the prediction model                                                                                                                                    | 4.4 |
| performance                        | 10   | U,V       | If done, report the results from any model updating (i.e. model encolligation, model                                                                                                                 | 14- |
| Model-updating                     | 17   | V         | performance).                                                                                                                                                                                        | N   |
| Discussion                         |      |           |                                                                                                                                                                                                      | I   |
| Limitations                        | 18   | D;V       | Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).                                                                                     | 19- |
| Interpretation                     | 19a  | V         | For validation, discuss the results with reference to performance in the development data and any other validation data                                                                              | 16- |
|                                    | 19b  | D;V       | Give an overall interpretation of the results, considering objectives, limitations, results                                                                                                          | 1   |
| Implications                       | 20   | /··       | Trom similar studies, and other relevant evidence.                                                                                                                                                   | 1.2 |
| Other information                  | 20   | ,v        |                                                                                                                                                                                                      | 10- |
| Supplementary                      | 04   |           | Provide information about the availability of supplementary resources, such as study                                                                                                                 | _   |
| information                        | 21   | U;V       | protocol, Web calculator, and data sets.                                                                                                                                                             | Sup |
| Funding                            | 22   | D;V       | Give the source of funding and the role of the funders for the present study.                                                                                                                        | 20  |

\*Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model are denoted by V, and items relating to both are denoted D;V. We recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration document.