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Summary
Parent-of-origin (PoO) effects refer to the differential phenotypic impacts of genetic variants dependent on their parental inheritance

due to imprinting. While PoO effects can influence complex traits, they may be poorly captured by models that do not differentiate

the parental origin of the variant. The aim of this study was to conduct a genome-wide screen for PoO effects on a broad range of clinical

traits derived from electronic health records (EHR) in the DiscovEHR study enriched with familial relationships. Using pairwise kinship

estimates from genetic data and demographic data, we identified 22,051 offspring among 134,049 individuals in the DiscovEHR study.

PoO of ~9 million variants was assigned in the offspring by comparing offspring and parental genotypes and haplotypes. We then per-

formed genome-wide PoO association analyses across 154 quantitative and 611 binary traits extracted from EHR. Of the 732 significant

PoO associations identified (p< 53 10�8), we attempted to replicate 274 PoO associations in the UK Biobank study with 5,015 offspring

and replicated 9 PoO associations (p < 0.05). In summary, our study implements a bioinformatic and statistical approach to examine

PoO effects genome-wide in a large population study enriched with familial relationships and systematically characterizes PoO effects

on hundreds of clinical traits derived from EHR. Our results suggest that, while the statistical power to detect PoO effects remainsmodest

yet, accurately modeling PoO effects has the potential to find new associations that may have been missed by the standard additive

model, further enhancing the mechanistic understanding of genetic influence on complex traits.
Introduction

Genomic imprinting, the non-equal expression of the two

parental alleles, can lead to parent-of-origin (PoO)-specific

effects of genetic variants on traits. For example, when a

gene is silenced on the paternally inherited DNA strand

and only expressed from the maternally inherited DNA

strand, functional variants of the gene that are maternally

inherited may have observable phenotypic impacts, while

those that are paternally inherited may not, leading to

maternal-specific effects. Imprinting has been character-

ized in approximately 1% of the genome and can influence

complex traits in a PoO-specific manner1,2 and contribute

to their heritability.

There have been studies that aimed to find PoO effects of

genetic variants on traits. Many studies focused on associ-

ations identified using standard additive models in or near

imprinted genes and then examined whether the additive

signals are capturing PoO effects.2–7 Other studies tested

for PoO effects genome-wide to identify novel signals for

specific traits, including type 2 diabetes (T2D), height,

and autism spectrum disorder.2,8,9 Recently, a study per-

formed genome-wide PoO association analyses for 21 com-

mon quantitative traits in a Hutterite population isolate.10
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These studies have confirmed the presence of PoO effects

in multiple loci, including imprinted KCNQ1, KLF14,

IGF2, DLK1, and GNAS loci,2–8,11 and observed diverse pat-

terns of PoO effects, including simple uniparental effects

and differential effects between the parental alleles.

Extending previous efforts, we performed a genome-wide

screen for PoO effects over a broad spectrum of clinical traits

in the DiscovEHR study consisting of 134,049 individuals of

European ancestry. The DiscovEHR study is enriched with

parent-offspring relationships,12 allowing the assignment

of PoO of genetic variants in as many as 22,051 individuals.

We employed statistical models that take into account the

PoO of the variants to identify PoO-specific associations

with clinical traits derived from EHR. The systematic charac-

terization of PoO effects across the genome and across hun-

dreds of traits in a large population study can provide a valu-

able baseline for future studies of PoO effects.
Subjects and methods

Study participants
TheDiscovEHR study is a collaborative project between the Regen-

eron Genetics Center (RGC) and the Geisinger health system with
, PA 17822, USA
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participants enrolled in Geisinger’s MyCode Community Health

Initiative.13 All participants consented to provide genetic data

and clinical data from their electronic health records (EHR) for

broad research use, including genetic analyses. The study was

approved by the Institutional Review Board (IRB) at Geisinger.

DNA samples from 143,575 individuals were genotyped at the

RGC using either OmniExpress or Global Screening Array (GSA).

1,601 samples were excluded based on quality control criteria,

including gender mismatch, low call rate, discordancy compared

to exomes, or suspected duplication. Since family-based imputa-

tion methods may have only incrementally improved perfor-

mance for variants passing association test quality control

described below, we used population-based imputation to reduce

computational burden. The array genotypes were imputed on

the Michigan imputation server using Haplotype Reference Con-

sortium (HRC) data as reference.14 hg19 coordinates were con-

verted to hg38 coordinates using Picard LiftoverVCF.Only individ-

uals of European ancestry (n ¼ 134,049) as estimated by a

previously described method13 and variants with imputation

score R 0.3 were used for subsequent analysis.

The UK Biobank study is a prospective cohort study consisting

of 500,000 individuals from the United Kingdom.15 All partici-

pants consented to the use of their genetic and medical infor-

mation for research purpose. The study was approved by the

North West Centre for Research Ethics Committee. As described

previously, DNA samples were genotyped using UK BiLEVE and

UK Biobank Axiom arrays, and the array genotypes were pre-

phased by SHAPEIT3 and imputed by IMPUTE4 using the HRC

panel as reference.15 Since the publicly available imputed

sequence of the UK Biobank study did not retain phase informa-

tion, the array genotypes of offspring and parents were imputed

on the Michigan imputation server to obtain phased haplo-

types, which were used for PoO assignment as described in

the following sections.
Kinship estimation and identification of offspring
Genome-wide identity-by-descent (IBD) proportions were esti-

mated in all pairs of individuals using PLINK v.1.916 and array

genotype data filtered by quality control metrics (individual miss-

ingness < 0.1, variant missingness < 0.1, Hardy-Weinberg equilib-

rium p > 1 3 10�15), minor allele frequency (MAF) (R0.05), and

linkage disequilibrium (LD) pruning (r2 < 0.2). Pairs of individuals

who have genome-wide probability of sharing one allele IBD

(IBD1) proportions > 0.8 were inferred as parent-offspring relation-

ships.17 Age and sex information was used to identify offspring,

father, and mother in these relationships.
PoO assignment of genetic variants in offspring
Imputed variants were filtered based on the quality control

criteria (individual missingness < 0.1, variant missingness <

0.1, Hardy-Weinberg equilibrium p > 1 3 10�15), minor allele

count (MAC) threshold (R10 among the offspring), and LD prun-

ing (r2 < 0.2) using PLINK, resulting in 9,085,657 variants for

PoO assignment. For offspring with a heterozygous genotype at

a given variant site, the parental origin of the minor allele was

determined using two methods: Mendelian and haplotype-based

methods, as described in detail in the Results section (Figure 1C).

The haplotype method was not performed when the number of

polymorphic nucleotides observed in either parental or offspring

haplotype within the 1 Mb window of the index variant was less

than 5.
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PoO association tests
Quantitative and binary traits were derived from EHR. Quantita-

tive traits were normalized using rank inverse normal transforma-

tion prior to testing. As the DiscovEHR study is enriched with fa-

milial relationships,12 the associations were tested using mixed

models as implemented in BOLT11 for quantitative traits and

SAIGE18,19 for binary traits to control type 1 error that may result

from relatedness in the samples. Age, age2, sex, age-by-sex interac-

tion, indicator variable for genotyping array, and 10 principal

components of ancestry calculated from array genotypes were

included as covariates in the model. The associations were tested

under additive and PoO models as described in detail in the result

section. Traits were not included in downstream analyses or inter-

pretation if there was no estimated heritability or if the genomic

inflation factor was greater than 1.5 under additive or PoOmodels.

To control multiplicity, variants were not tested if there were fewer

than 5 heterozygous individuals of paternal inheritance or 5 het-

erozygous individuals of maternal inheritance with observed

traits, assuming these variants have minimal power to reject the

null hypothesis. Note that since neither the traits derived from

EHR nor the additive and various PoO models are independent,

a strict Bonferroni correction based on the product of the number

of variants, traits, andmodels tested will result in an overly conser-

vative threshold. For simplicity, we have corrected for multiple

testing using an experiment-wise approach based on the number

of variants, unless otherwise indicated.

Power simulations
The power estimates to detect PoO effects were simulated under

the assumption that the true effects exhibit uniparental, polar

dominance, or bipolar dominance patterns. The following

parameters were used: total sample size ¼ 134,049, number of

offspring ¼ 22,051 (as in the DiscovEHR study), alpha ¼ 5 3

10�8, and ranges of MAFs and effect sizes. The genotypic counts

for a given MAF were derived assuming Hardy-Weinberg equilib-

rium. The phenotypes were simulated from a normal distribution

with the assumed difference in means per genotype and standard

deviation of 1. For the additive model, half of the heterozygous

genotypic counts were simulated from paternal distribution, while

the other half were simulated from maternal distribution. The as-

sociation between simulated genotypes and phenotypes was then

tested under additive, parental, and differential models. The pro-

cess was repeated 10,000 times and the proportion of simulations

yielding p values more significant than alpha was used to estimate

power.
Results

Identification of offspring in DiscovEHR study

To find parent-offspring relationships among the 134,049

participants of European ancestry in the DiscovEHR study,

we estimated the genome-wide IBD in all pairs of individ-

uals using array genotype data. There were 28,562 pairs

with genome-wide IBD1 greater than 0.8, which were in-

ferred as parent-offspring relationships (Figure 1A). Then,

we used age and sex information to assign father, mother,

and offspring in these relationships. As a result, we found a

total of 22,051 offspring, of which 4,896 had both parents,

11,815 had mothers, and 5,340 had fathers present in the

study (Figure 1B).
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Figure 1. Identification of parent-offspring relationships and PoO assignment in DiscovEHR study
(A) Genome-wide identity-by-descent (IBD) was estimated from genetic data between every pair of individuals in the DiscovEHR study.
Pairs with genome-wide probability of sharing one allele IBD (IBD1) > 0.8 (in red) were inferred to be in parent-offspring relationships.
(B) In each parent-offspring relationship, offspring, father, and mother were inferred based on age and sex information. The number of
offspring with one parent or both parents in the study is indicated in the corresponding area of the Venn diagram.
(C) Parent-of-origin (PoO) of variants was assigned among offspring with at least one parent available. For each heterozygous genotype,
PoO of the minor allele was assigned using two methods. When at least one available parental genotype is homozygous, PoO was deter-
mined based on Mendelian segregation (left). When the available parental genotype(s) is/are heterozygous, PoO was estimated by
comparing the haplotypes around the variant between offspring and each available parent (right). See text for detailed methods.
PoO assignment of genetic variants in offspring

We assigned the PoO of a total of 9,085,657 imputed vari-

ants that passed quality control and hadMACR 10 among

offspring and were LD pruned (r2 < 0.2). At each variant

site, we assigned the PoO of the minor allele in the hetero-

zygous offspring using two methods (Figure 1C). (1) Men-

delian method: when at least one available parental geno-

type was homozygous for either major or minor allele, PoO

was determined based on Mendelian segregation. For

example, if the genotype of the mother was homozygous

major allele, then the PoO of the minor allele was inferred
% match rate¼number of minor alleles observe

number of minor alleles observ

H

as paternal, while if the genotype of themother was homo-

zygous minor allele, then the PoO of the minor allele was

inferred as maternal. (2) Haplotype method: since the

Mendelian method is uninformative when the available

parental genotype(s) is/are heterozygous, we also esti-

mated PoO by comparing offspring and parental haplo-

types within a 1Mbwindow that carry the same allele (ma-

jor or minor) of the variant. The haplotype comparison

was performed between offspring and each available

parent. The percent match rate, or percent of identical by

state polymorphic nucleotides, was calculated as below.
d in both offspring and parental haplotypes

ed in either offspring or parental haplotype
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The allele that is carried on the offspring-parent haplotype

pair that has a greater match rate was inferred as the allele

that is inherited from the parent. We assessed the accuracy

of the haplotype method for each variant by first applying

it to the heterozygous offspring for whom PoO could be

determined by theMendelianmethod. As a quality control

measure, when the PoO estimated by the haplotype

method was <80% concordant with the PoO determined

by the Mendelian method, only the PoO determined by

the Mendelian method was included in follow-up analysis.

Using this approach, we assigned the PoO of 9,085,586

and 8,801,949 variants (corresponding to 4,178,033,204

and 2,958,665,691 heterozygous genotypes) by the Men-

delian and haplotype methods, respectively, leading to

the overall PoO assignment rate of 99.2% of all heterozy-

gous genotypes among the offspring. Among the

8,801,949 variants for which the haplotype method was

used to estimate PoO, the overall concordance between

the haplotype and Mendelian methods was 98.5%.

Statistical models to find PoO-specific associations

To identify PoO-specific effects, we tested associations un-

der parental and differential models as described below.

Parental models include paternal and maternal models

that contrast trait values in the heterozygous offspring of

the paternally and maternally inherited minor allele,

respectively, with those in the homozygous individuals

of themajor allele. Heterozygous individuals with opposite

or unknown inheritance and homozygous individuals of

the minor alleles are excluded in parental models.

Paternal- and maternal-specific associations were defined

as being associated under one parental model and not

the other. We also evaluated a differential model, which

tests for a difference in trait values between paternally

and maternally inherited alleles, contrasting heterozygous

offspring of paternal and maternal inheritance. For

variant-trait pairs with significant PoO associations, we

also included associations under the additive model

among all available individuals for comparison. While

the parental models may offer greater power to detect

PoO effects due to the larger sample size, only the differen-

tial model directly measures differences between paternal

and maternal alleles.

Testing PoO specificity of additive associations within

imprinted regions

Functional variants that affect imprinted genes with

monoallelic expression may be most likely to exert PoO-

specific effects on traits. Therefore, we examined whether

variants with additive associations within the known im-

printed regions have detectable PoO-specific associations.

We first tested 137,304 variants within a5500 kb window

from 69 known or suggested imprinted genes2,20 (Table S1)

under the additive model across 173 quantitative traits

derived from EHR (Table S2) using the BOLT linear mixed

model.18 These regions constitute approximately 1.3% of

the genome. Six traits failed to produce results, due to
4 Human Genetics and Genomics Advances 2, 100039, July 8, 2021
the absence of estimated heritability. Among the remain-

ing 167 traits, we found 667 additive associations that

were statistically significant (p < 3.6 3 10�7, after correc-

tion for 137,304 variants). We tested these additive associ-

ations under paternal, maternal, and differential models

and found 12 significant PoO-specific associations (p <

7.5 3 10�5, after correction for 667 variant-trait associa-

tions): 4 were paternal-specific and 8 were maternal-spe-

cific associations, among which 4 also had differential as-

sociations (Table 1).

Several of these associations were in LD with previously

identified PoO associations, serving as positive controls.

For example, the 7:130738173:T:C variant with maternal-

specific association with high-density lipoprotein choles-

terol (HDL-C) levels, total cholesterol (TC)/HDL-C ratios,

and triglyceride levels is near the maternally expressed

KLF14 (MIM: 609393). The variant is in LD (r2 ¼ 0.97)

with rs4731702, which was previously found to have

maternal-specific associations with KLF14 gene expression

and type 2 diabetes risk in Icelandic and American Indian

populations.2,5 While additive associations of KLF14 locus

with HDL-C and triglyceride levels have been reported, our

results suggest a previously uncharacterized maternal-spe-

cific pattern. Another example is the maternal-specific as-

sociation of the 14:100704203:T:C variant with platelet

counts near the paternally expressed DLK1 (MIM:

176290), which replicates a previously reported associa-

tion of rs7141210 (r2 ¼ 0.81) in the Icelandic popula-

tion.11 This study showed that rs7141210 is associated

with a maternal-specific DNA methylation pattern,

suggesting that the maternally inherited allele may

impair the silencing of maternal gene expression. A third

example is the maternal-specific association of the

20:58872268:G:A variant with thyroid-stimulating hor-

mone (TSH) levels near the maternally expressed GNAS

(MIM: 139320), which confirms a previously reported asso-

ciation of rs139242164 (r2 ¼ 0.62) in the Icelandic popula-

tion.11 Genetic variations in the GNAS gene are a well-es-

tablished cause of pseudo-hypoparathyroidism (PHP) that

is characterized by end-organ resistance to parathyroid

hormone and high levels of circulating TSH.21

Genome-wide PoO association analyses for 154

quantitative traits

To identify PoO-specific effects beyond the known im-

printed regions, we performed genome-wide PoO associa-

tion analyses for quantitative traits under parental and dif-

ferential models using the BOLT linear mixed model.18

Among the 167 traits with non-zero estimated heritability,

13 traits with high genomic inflation (>1.5) under PoO

models were omitted, yielding results for 154 traits

(Figure S1). We found a total of 732 PoO associations

(p < 5 3 10�8) for 725 unique variants, including 341

paternal-specific, 344 maternal-specific, and 49 differential

associations (Tables S3–S5). Notably, only 19 of these asso-

ciations were within known imprinted regions. We at-

tempted to replicate these associations in the UK Biobank



Table 1. PoO specificity among the additive associations identified within imprinted regions

Imprinted region Variant
Nearest
gene Variant effect Trait MAF Num.all Num.offspring Beta.add pval.add Beta.pat pval.pat Beta.mat pval.mat Beta.diff pval.diff

GRB10 7:50234619:T:C C7orf72 Intergenic %
monocytes

0.055 102,797 17,544 �0.09 9.6 3
10�27

�0.13a 1.9 3
10�5a

�0.04 0.15 0.10 0.028

7:50541672:T:C FIGNL1DDC intronic
intronic

%
monocytes

0.034 102,797 17,544 0.07 4.9 3
10�10

0.15a 7.9 3
10�5a

0.04 0.32 �0.12 0.021

7:50359449:C:T IKZF1 Intronic %
monocytes

0.023 102,797 17,544 �0.12 3.2 3
10�19

�0.19a 7.9 3
10�5a

�0.08 0.084 0.14 0.029

IGF2R, SLC22A2, SLC22A3 6:160270606:T:G SLC22A2 Intronic EGFR 0.133 116,211 19,467 0.03 2.4 3
10�9

0.06a 2.3 3
10�5a

0.01 0.46 �0.05 0.021

6:160743692:C:T PLG intronic cholesterol 0.031 93,077 14,619 0.07 1.1 3
10�7

0.07 0.14 0.20a 1.5 3
10�5a

0.13 0.052

CPA4, MEST, MESTIT1, COPG2IT1,
COPG2, KLF14

7:130738173:T:C KLF14 upstream HDL-C 0.481 93,383 14,642 0.04 1.2 3
10�23

0.03 0.064 0.13a 2.1 3
10�16a

0.10a 3.1 3
10�6a

upstream TC/HDL-C
ratio

0.481 93,381 14,629 �0.04 1.4 3
10�17

�0.003 0.84 �0.11a 2.2 3
10�10a

�0.10a 8.1 3
10�6a

upstream triglyceride 0.481 93,365 14,625 �0.04 5.1 3
10�17

�0.01 0.56 �0.10a 1.4 3
10�9a

�0.09 1.3 3
10�4

H19, IGF2, IGF2-AS, INS, ASCL2,
TRPM5, KCNQ1, KCNQ1OT1,
KCNQ1DN, CDKN1C, SLC22A18AS,
SLC22A18, PHLDA2, OSBPL5

11:2875083:G:A CDKN1C intergenic bilirubin 0.087 108,535 17,913 0.05 7.7 3
10�13

0.05 0.054 0.10a 3.5 3
10�5a

0.05 0.17

11:3017489:T:A CARS intronic bilirubin 0.200 108,535 17,913 0.03 8.2 3
10�9

0.03 0.073 0.07a 5.3 3
10�5a

0.03 0.16

DLK1, MEG3 14:100704203:T:C DLK1 upstream platelets 0.329 115,308 19,552 �0.04 3.2 3
10�20

0.02 0.12 �0.10a 2.3 3
10�11a

�0.12a 7.8 3
10�10a

GNAS, GNAS-AS1 20:58872268:G:A GNAS intronic TSH 0.012 101,160 17,401 0.10 1.7 3
10�7

�0.04 0.54 0.40a 2.4 3
10�9a

0.44a 3.0 3
10�6a

Among the 667 associations within the known imprinted regions (p < 3.6 3 10�7) identified under the additive model across 167 quantitative traits, 12 were PoO specific (p < 7.5 3 10�5). Variant is denoted as chromo-
some:position:reference allele:alternate allele on GRCh38 genome build. Num.all, number of all individuals with given traits; Num.offspring, number of offspring with given traits; Beta.add and pval.add, beta coefficient and p
values under additive model; Beta.pat and pval.pat, beta coefficient and p values under paternal model; Beta.mat and pval.mat, beta coefficient and p values under maternal model; Beta.diff and pval.diff, beta coefficient
(modeled on maternal allele compared to the paternal allele) and p values under differential model.
aIndicates significant PoO-specific associations.
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Table 2. PoO-specific associations for quantitative traits identified in the DiscovEHR study (p < 5 3 10�8) that are replicated in the UK Biobank study (p < 0.05)

Variant Nearest gene Variant effect Trait Study MAF Num.all Num.offspring Beta.add pval.add Beta.pat pval.pat Beta.mat pval.mat Beta.diff pval.diff

22:17116671:G:A IL17RACECR6 downstream 30 UTR % monocytes DiscovEHR 0.004 102,797 17,544 �0.42 1.6 3 10�39 �0.67* 1.1 3 10�8* �0.17 0.16 0.48 4.8 3 10�3

UK Biobank 0.007 448,877 4,846 �0.45 2.2 3 10�307 �0.41* 4.7 3 10�3* �0.62 0.011 �0.22 0.45

2:233925128:A:G TRPM8 upstream total bilirubin DiscovEHR 0.003 108,535 17,913 0.35 4.9 3 10�29 0.60* 2.8 3 10�8* 0.11 0.30 �0.45 5.9 3 10�3

UK Biobank 0.005 440,287 4,768 0.28 9.4 3 10�146 0.39* 0.012* 0.11 0.62 �0.28 0.30

1:161478451:C:G FCGR2A intergenic protein DiscovEHR 0.197 108,144 17,857 �0.04 1.1 3 10�17 �0.10* 2.9 3 10�8* �0.03 0.096 0.07 4.3 3 10�3

UK Biobank 0.172 405,404 4,354 �0.04 5.0 3 10�58 �0.10* 3.5 3 10�3* �0.06 0.20 0.04 0.50

17:46812337:C:T WNT3 intronic red blood cells DiscovEHR 0.439 115,524 19,569 0.004 0.23 0.08* 3.2 3 10�9* 0.02 0.25 �0.06 2.2 3 10�4

UK Biobank 0.444 449,656 4,855 0.02 9.6 3 10�23 0.07* 3.4 3 10�3* 0.04 0.075 �0.03 0.43

1:115200874:T:G NGF intergenic DiscovEHR 0.476 115,524 19,569 0.01 0.019 0.02 0.13 0.09a 3.0 3 10�11a 0.07 1.7 3 10�5

UK Biobank 0.473 449,656 4,855 0.001 0.67 �0.0002 0.99 0.05a 0.019a 0.05 0.094

6:170235280:G:C DLL1 intergenic DiscovEHR 0.482 115,524 19,569 0.001 0.76 0.02 0.16 0.08a 3.1 3 10�8a 0.06 5.0 3 10�4

UK Biobank 0.489 449,656 4,855 0.003 0.04 0.04 0.081 0.05a 0.028a 0.01 0.73

20:55475672:A:G CBLN4 intergenic DiscovEHR 0.384 115,524 19,569 0.003 0.36 0.01 0.31 0.08a 4.8 3 10�8a 0.06 7.4 3 10�4

UK Biobank 0.376 449,656 4,855 0.002 0.19 0.06 0.014 0.06a 9.1 3 10�3a 0.002 0.94

18:66392331:A:T CDH19 intergenic HDL cholesterol DiscovEHR 0.004 93,383 14,642 �0.04 0.25 0.15 0.21 0.72a 1.7 3 10�8a 0.49 9.1 3 10�3

UK Biobank 0.003 405,671 4,361 �0.01 0.65 0.12 0.40 0.46a 0.047a 0.33 0.22

14:100704203:T:C DLK1 intergenic platelets DiscovEHR 0.329 115,308 19,552 �0.04 3.2 3 10�20 0.02 0.12 �0.10a 2.3 3 10�11a �0.12a 7.8 3 10�10a

UK Biobank 0.335 449,652 4,855 �0.04 1.9 3 10�95 �0.001 0.96 �0.10a 4.5 3 10�4a �0.10a 9.5 3 10�3a

Nine of the PoO-specific associations (p < 5 3 10�8) identified from the genome-wide screen for 154 traits in the DiscovEHR study were replicated in the UK Biobank study (p < 0.05). Variant is denoted as chromosome:-
position:reference allele:alternate allele on GRCh38 genome build. Num.all, number of all individuals with given traits; Num.offspring, number of offspring with given traits; Beta.add and pval.add, beta coefficient and p
values under additive model; Beta.pat and pval.pat, beta coefficient and p values under paternal model; Beta.mat and pval.mat, beta coefficient and p values under maternal model; Beta.diff and pval.diff, beta coefficient
(modeled on maternal allele compared to the paternal allele) and p values under differential model.
aIndicates significant PoO associations.

6
H
u
m
a
n
G
e
n
e
tics

a
n
d
G
e
n
o
m
ics

A
d
va
n
ces

2
,
1
0
0
0
3
9
,
Ju
ly

8
,
2
0
2
1



study consisting of 462,453 individuals of European

ancestry, including 5,015 offspring with at least one

parent. Of the 725 variants and 83 traits with associations

in the DiscovEHR study, 721 variants and 37 traits could be

unambiguously mapped in the UK Biobank study, allow-

ing the examination of 274 associations for replication.

We replicated 9 PoO associations at the nominal signifi-

cance threshold (p < 0.05) across 6 traits: 4 were

paternal-specific and 5 were maternal-specific associations,

among which one also had differential association (Table

2). The strongest PoO association found was the aforemen-

tioned association of the variant near DLK1 with platelet

counts. When the 9 significant PoO associations were

examined under the additive model for comparison, 5

had stronger associations under the parental or differential

model than the additive model and 4 had no association

under the additive model (p values > 0.05). Quantile-

quantile plots for the 6 traits under each statistical model

are provided in Figure S2.
Genome-wide PoO association analyses for 611 binary

traits

We also conducted genome-wide PoO association analyses

for binary traits based on ICD10 3-digit codes using SAIGE

linear mixed model.19 To mitigate the computational

burden required for testing association for binary traits,

we first tested the differential model as a screen for PoO ef-

fects genome-wide and subsequently examined significant

differential associations under additive and parental

models. Of the 980 traits with at least 20 cases and 20 con-

trols among the offspring, 612 traits were estimated to

have non-zero heritability. All traits except one had

genomic inflation factors below 1.5 (Figure S1), yielding re-

sults for 611 traits. We found 27 significant differential as-

sociations (p< 53 10�8) (Table S6), including two variants

near the imprinted IGF2 (MIM: 147470) locus that were

associated with ICD E11 code for T2D. One of the associ-

ated variants, 11:1680825:A:T, is in LD (r2 ¼ 0.84) with

rs2334499, which was previously identified for PoO-spe-

cific association with T2D in the Icelandic population.2

Consistent with the previous report, the paternal allele

was associated with increased risk (odds ratio [OR] ¼
1.13, p ¼ 0.01), while the maternal allele was associated

with decreased risk (OR ¼ 0.73, p ¼ 4.0 3 10�10), with sig-

nificant differential association (p ¼ 8.5 3 10�10). The

other variant, 11:1690902:G:A, was in low LD measured

by r2 (0.17) with the 11:1680825:A:T variant, but had

high D0 (0.98), indicating LD. Interestingly, while it was

the maternal allele of 11:1680825:A:T that was associated

with reduced risk, it was the paternal allele of

11:1690902:G:A that was associated with reduced risk.

We attempted to replicate the 27 differential associations

in the UK Biobank study, but none reached nominal statis-

tical significance (p < 0.05), likely due to limited power

based on low numbers of cases and offspring in the UK Bio-

bank study.
H

Power simulations for PoO effects

Imprinting can give rise to diverse patterns of PoO effects

of genetic variants: uniparental, polar dominance, and bi-

polar dominance.1 We simulated the power to detect

different types of PoO effects under additive, parental,

and differential models across ranges of effect sizes and

MAFs with fixed parameters matching the DiscovEHR

PoO analysis: total sample size, number of offspring, and

alpha (type 1 error). When a variant affects an imprinted

gene with monoallelic expression from one parental

DNA strand, it can have a uniparental (either maternal or

paternal) effect. Uniparental effects impact phenotypes

in the homozygous and heterozygous individuals who in-

herited the variant from a specific parent but not in the

heterozygous individuals who inherited it from the other

parent (Figure 2A). Our simulations showed that the addi-

tive model has the greatest power for uniparental effects,

even though it does not take into account the phenotypic

difference between heterozygous individuals with paternal

and maternal inheritance. This is due to the fact that the

additive model has the greatest sample size, since it in-

cludes all heterozygous and homozygous individuals,

while parental models only include homozygous major in-

dividuals and heterozygous offspring with PoO from a spe-

cific parent, and the differential model only includes het-

erozygous offspring with PoO assignment and excludes

all homozygous individuals. The simulated result is consis-

tent with our observation in the DiscovEHR study that

most of the PoO associations near the known imprinted

genes with monoallelic expression, likely arising from uni-

parental effects, had stronger p values under the additive

model than the parental or differential model (Table 1).

Alternatively, when a variant exerts phenotypic impacts

only in the heterozygous individuals who inherited the

variant from a specific parent and not in the homozygous

individuals or heterozygous individuals who inherited it

from the other parent, the variant has a polar dominance

effect (Figure 2B). Simulated polar dominance effects

have the greatest power in additive or parental models, de-

pending on the MAF of the variant. Specifically, the power

of the additive model to capture polar dominance effects

increases as the MAF increases up to ~0.2, but beyond

~0.2, the power diminishes because increasing number of

homozygous individuals with no phenotypic alteration re-

duces effect estimates under the additive model. Instead,

the parental model has greater power than the additive

model when MAF is greater than ~0.2. This may explain

some of the observed paternal- and maternal-specific asso-

ciations in Tables 2, S3, and S4 that have stronger associa-

tions under parental models than the additive model. For

example, a common intergenic variant near NGF

(1:115200874:T:G, MAF ¼ 0.48) was significantly associ-

ated with red blood cell counts under the maternal model

(beta ¼ 0.09, p ¼ 3.0 3 10�11) but only had weak associa-

tion under the additive model (beta ¼ 0.01, p ¼ 0.019) (Ta-

ble 2). Lastly, a bipolar dominance effect occurs when a

variant has diverging phenotypic impacts between
uman Genetics and Genomics Advances 2, 100039, July 8, 2021 7



A B C

Figure 2. Simulation of power to detect PoO effects under different statistical models
Power to detect PoO effects under additive, parental, and differential models was simulated across ranges of minor allele frequencies
(MAFs) and effect sizes assuming diverse patterns of PoO effects that could result from imprinting: (A) uniparental, (B) polar dominance,
and (C) bipolar dominance effect. Bar plots at the top are illustrative examples of the various patterns of PoO effects that can result from
imprinting. The horizontal axis displays a range of simulated effect sizes. The left vertical axes display the % power to detect the effect
across a range of MAFs ordered on the right vertical. See text for detailed methods.
individuals of paternal and maternal inheritance without

any impacts on homozygous individuals (Figure 2C). For

bipolar dominance effects, the differential model has the

greatest power even though it has the smallest sample
8 Human Genetics and Genomics Advances 2, 100039, July 8, 2021
size, with just heterozygous offspring with PoO assign-

ment, because the effect estimates are largest when con-

trasting heterozygous offspring with paternal and

maternal inheritance. On the contrary, the additive model



has very limited power, even though it has the largest sam-

ple size, because the effects of paternal andmaternal alleles

will cancel each other, and there are no phenotypic im-

pacts in homozygous individuals. This may explain some

of the observed differential associations in Tables S5 and

S6 that have stronger associations under the differential

model than under the additive or parental models. For

example, the association of a 30 UTR variant of ST8SIA5

(18:46674932:C:A) with total cholesterol to HDL-C ratio

was strongest under the differential model (p ¼ 1.4 3

10�9) and weaker under the parental models with opposite

effect directions (beta ¼ 0.85, p ¼ 1.7 3 10�6 under the

paternal model and beta ¼ �0.60, p ¼ 8.8 3 10�5 under

the maternal model) but had no association under the ad-

ditive model (beta ¼ 0.02, p ¼ 0.71) (Table S5).
Discussion

Variants that affect imprinted genes can have PoO effects

on traits and contribute to their variance; however, these

effects may not be well captured by standard additive

models that do not model parental origin. To address

this, studies have employed approaches to assign parental

origin of genetic variants based on known pedigrees and

employed statistical models to specifically test for PoO ef-

fects, leading to the discovery of PoO-specific associations

for various traits.2,8–10 The current study extends previous

efforts by assigning the parental origin of genetic variants

based on parent-offspring relationships inferred from ge-

netic and demographic data in the absence of known pedi-

gree and employing a high-throughput approach to detect

PoO effects across hundreds of traits extracted from EHR in

a large clinically ascertained study.

From the genome-wide screen for PoO effects in the Dis-

covEHR study, we identified 732 PoO associations across

154 quantitative traits and 27 PoO associations across

611 binary traits. Many of the associations that we found

in the DiscovEHR study could not be replicated in the

UK Biobank study primarily due to the relatively modest

number of offspring (5,015), as well as lack of matching

quantitative traits, and limited number of cases for binary

clinical outcomes. This is evident by the observation that

even well-established PoO associations with strong p

values in the DiscovEHR study (i.e., KLF14 locus for

lipids,2 GNAS locus for TSH,11 and IGF2 locus for type 2

diabetes2) (Tables S3–S6), did not reach nominal signifi-

cance for replication (p < 0.05) in the UK Biobank study.

Therefore, we anticipate that some of the associations

that failed to replicate in the UK Biobank study may repli-

cate in future studies that are better powered. Power for de-

tecting PoO effects can be enhanced by employing study

populations enriched for familial relationships and ap-

proaches that enable PoO assignment in a larger number

of individuals. For example, approaches to leverage sec-

ond-degree relatives for PoO assignment, such as in a study

of the Icelandic population with extended pedigree infor-
H

mation,2 may further improve power. This may be possible

in the absence of known pedigree structures by identifying

second-degree relationships based on kinship estimates

from genetic data, determining ancestors and descendants

based on age, and assigning the parental side of the ances-

tors based on additional information such as mitochon-

drial DNA or Y chromosome.

Interestingly, of nine associations that we discovered

and replicated, only one association at the DLK1 locus re-

sides within the known imprinted regions. This raises the

possibility that PoO effects may be more common and

widespread than were previously thought. While around

100 genes in humans are known to be imprinted based

on the currently available evidence,20,22 high-throughput

approaches applied to multiple tissue types in various

developmental stages may reveal tissue- and time-specific

imprinting effects on a larger number of genes. In line

with this, recent studies that examined genome-wide

PoO-specific DNA methylation patterns suggested that

the DNA methylation pattern associated with imprinting

is widespread and extends beyond the known imprinted

regions.11,23 In addition to imprinting, parental genetic ef-

fects where the genotypes of the parents directly affect the

phenotype of the offspring can lead to apparent PoO ef-

fects.24–26 As we gain more evidence that PoO effects influ-

ence multiple complex traits, it would be important to es-

timate the extent to which PoO effects explain the

variance of those traits.

Imprinting can give rise to diverse patterns of PoO ef-

fects of genetic variants on traits,1 which in turn influence

the power to detect these effects under different statistical

models. Based on our power simulations, the additive

model has better power to detect associations resulting

from uniparental effects than the parental model in the

given parameter space. Nonetheless, parental models pro-

vide more accurate effect size estimates for the causative

parental allele because the additive model would underes-

timate them by not differentiating the causative and

non-causative parental alleles. In addition, parental and

differential models can be better powered for detecting as-

sociations resulting from polar or bipolar dominance ef-

fects than the additive model. This suggests that accurately

accounting for the PoO effects of genetic variants can in-

crease the statistical power and identify novel association

signals that are not captured under the additive model.

Furthermore, knowing the PoO-specific nature of genetic

associations and effects can help accurately assess the risk

conferred by the variants in the carriers and understand

the molecular mechanism behind the genetic associations.

Many of the strongest PoO associations that we identi-

fied from the genome- and phenotype-wide scan for PoO

effects in the DiscovEHR study have stronger associations

under the additive model and are suspected to result

from uniparental effects (based on their proximity to

known imprinted genes with monoallelic expression).

This observation might give the impression that a large

portion of the associations with underlying PoO effects
uman Genetics and Genomics Advances 2, 100039, July 8, 2021 9



could have been discovered with the additive model alone

at lower computational burden. However, we note that

PoO models have smaller sample sizes than the additive

model in the current study and that there are many PoO

associations that have stronger associations under PoO

models than the additive model, potentially driven by

either polar or bipolar dominance effects, which could be

missed if tested only under the additive model. In addi-

tion, without regular follow-up evaluation of the associa-

tions found under the additive model with PoO models,

there may be a substantial missed opportunity to discrim-

inate between additive and PoO effects. While it is not

possible to extrapolate a universal cost-benefit from our

current study due to limited power and the small number

of true positives, we anticipate that future studies with

greater statistical power and better mechanistic under-

standing of the PoO effects could help address this issue

with more confidence.

In summary, we report a bioinformatic and statistical

approach to screen for PoO effects of genetic variants

and its application in the DiscovEHR study enriched with

familial relationships and phenotypic data derived from

ERH. The current study provides a valuable reference point

for future studies aimed to find PoO effects and suggests

the need for approaches that can increase statistical power

to detect PoO effects, methods to assess the contribution of

PoO effects to genetic heritability of complex traits, and ef-

forts to delineate the mechanisms behind the observed

PoO associations by incorporating epigenetic and tran-

scriptomic resources and experimental models.
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Figure S1. Distribution of genomic inflation factors under PoO models 
 
 

 
 
 
Distribution of lambdaGC values from GWAS results across 167 quantitative and 
612 binary traits under different PoO statistical models is shown. 13 quantitative 
and 1 binary traits with genomic inflation >1.5 under any statistical model were 
omitted from further analyses. 
  



Figure S2. Quantile-Quantile plots under each statistical model for 6 traits 
with significant and replicated PoO associations 
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