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Adaptive eQTLs reveal the evolutionary
impacts of pleiotropy and tissue-specificity
while contributing to health and disease

Melanie H. Quiver1 and Joseph Lachance1,*

Large numbers of expression quantitative trait loci (eQTLs) have recently been identified in humans, and many of these regulatory

variants have large allele frequency differences between populations. Here, we conducted genome-wide scans of selection to identify

adaptive eQTLs (i.e., eQTLs with large population branch statistics). We then tested if tissue pleiotropy affects whether eQTLs are

more or less likely to be adaptive and identified tissues that have been key targets of positive selection during the last 100,000 years.

Top adaptive eQTL outliers include rs1043809, rs66899053, and rs2814778 (a SNP that is associated with malaria resistance). We found

that effect sizes of eQTLs were negatively correlated with population branch statistics and that adaptive eQTLs affect two-thirds as many

tissues as do non-adaptive eQTLs. Because the tissue breadth of an eQTL can be viewed as a measure of pleiotropy, these results imply

that pleiotropy inhibits adaptation. The proportion of eQTLs that are adaptive varies by tissue, and we found that eQTLs that regulate

expression in testis, thyroid, blood, or sun-exposed skin are enriched for signatures of positive selection. By contrast, eQTLs that regulate

expression in the cerebrum or female-specific tissues have a relative lack of adaptive outliers. Scans of selections also reveal that many

adaptive eQTLs are closely linked to disease-associated loci. Taken together, our results indicate that eQTLs have played an important role

in recent human evolution.
Introduction

Regulatory mutations and changes in gene expression can

lead to functional differences in anatomy, physiology, and

behavior that are evolutionarily important.1–6 Polymor-

phic sites that influence gene expression are known as

expression quantitative trait loci (eQTLs), and many of

these sites are relevant to human health and disease.7–9

Although identifying specific nucleotides that cause dif-

ferences in gene expression can be challenging,10 many

eQTLs have been identified in model and non-model or-

ganisms.11–13 In recent years, hundreds of thousands of

human eQTLs have been cataloged in the Genotype-Tis-

sue Expression (GTEx) project and RegulomeDB data-

bases.14–17 Many of these eQTLs act in a tissue-specific

manner, and by studying adaptive eQTLs, it is possible

to identify the tissues that have been the primary targets

of recent human evolution. Although eQTL effect sizes

and directions of effect tend to be conserved among hu-

man populations,18 array and sequence data reveal that

gene expression patterns vary across populations19,20

(though some of these differences may be due to technical

artifacts21). Many eQTLs have divergent allele frequencies

across populations, and local adaptation may underlie

these differences.22,23 Hereditary disease risks have

evolved in the recent past,24,25 and many of these

changes are likely due to positive selection acting on reg-

ulatory DNA.

Adaptation is a fundamental concern of evolutionary

biology, and recent years have seen a contentious debate

about whether adaptation tends to proceed via non-syn-
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onymous changes in coding regions (amino acid changes)

or due to changes in gene regulation.26–28 Of particular

relevance is the fact that less than only 1.5% of the hu-

man genome is coding,29 and many scans of positive se-

lection have implicated intergenic regions of the human

genome.30,31 Regardless of the proportion of the human

genome that is functional,32,33 there are multiple reasons

why some changes in gene expression may be beneficial.

Unlike non-synonymous changes that affect protein se-

quences across the body, eQTLs can modify gene expres-

sion in a tissue-specific manner, and gene expression

can also be optimized for a given environment.34

Although many eQTLs are likely to be evolving neutrally,

there is a growing body of empirical evidence that regula-

tory DNA is an important target of selection in hu-

mans.35–38

Many methods of detecting positively selected alleles

exist, including population branch statistics (PBS).39–41

These within-species scans of selection use genetic dis-

tances between multiple populations to identify outlier

loci that have undergone accelerated evolution along one

branch of a population-level phylogenetic tree. Scans of se-

lection that examine population differentiation, such as

PBS, are well-suited for detecting selection that has

occurred on a continental scale during the last 100,000

years.42 Because PBS scores do not rely on extended haplo-

type heterozygosity, they are robust to whether adaptive

alleles are due to new mutations or standing genetic varia-

tion. PBS scores are also able to detect partial sweeps.

Evolutionary theory informs our understanding about

which types of eQTLs are expected to be adaptive. As
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formulated by Fisher and Orr, the geometric model of

adaptation posits that mutations of a small effect are

more likely to be positively selected than mutations of a

large effect when populations are close to a fitness opti-

mum.43–46 Because of this, we predict that adaptive eQTLs

are unlikely to involve large changes in gene expression.

Similarly, pleiotropy (including tissue breadth) can inhibit

adaptation,47 which leads to the prediction that most

adaptive eQTLs will affect a small number of tissues. Scans

of selection in human genomes have revealed that immu-

nity genes tend to be fast-evolving.48,49 There is also evi-

dence from Drosophila that testis-expressed genes evolve

quickly,50 and reproductive genes have experienced

elevated rates of evolution in many vertebrate lineages.51

Because of this, eQTLs that affect fast-evolving tissues are

expected be enriched for adaptive PBS outliers. Despite

these predictions, multiple knowledge gaps exist. The

extent to which eQTL effect sizes and tissue breadth

constrain human adaptation has yet to be tested empiri-

cally. It is also unknown whether tissues that have been

targets of recent human adaptation are the same tissues

that experienced accelerated evolution over deeper time-

scales. Importantly, affordable sequencing has ushered in

an era of population genomics, and thousands of tissue-

specific eQTLs have recently been identified.16 For the first

time, a comprehensive understanding of adaptive eQTLs

in human populations is possible.

Here, we combine continental allele frequencies from

the 1000 Genomes Project (1KGP) with eQTL data from

the GTEx project and RegulomeDB to identify adaptive

eQTLs in human populations. We focus on five questions:

(1) Which eQTLs exhibit signatures of local adaptation?

(2) Are pleiotropic eQTLs less likely to be positively

selected? (3) Does the effect size of an eQTL affect

whether it is adaptive? (4) Which tissues tend to be targets

of local adaptation? (5) To what extent do adaptive eQTLs

overlap with genome-wide association study (GWAS)

results?
PBSAFR ¼ �lnð1� FST ; AFR�EURÞ � lnð1� FST ; A
2

PBSEUR ¼ �lnð1� FST ; AFR�EURÞ � lnð1� FST ; E
2

PBSEAS ¼�lnð1� FST ; AFR�EASÞ � lnð1� FST ; EU
2
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Material and methods

Population genomic data and eQTL datasets
Allele frequencies at 80,701,406 autosomal SNPs were obtained

from phase 3 of the 1KGP.52 Continental super-populations from

the 1KGP were used: Africa (African Caribbean in Barbados [ACB],

African Ancestry in Southwest USA [ASW], Esan in Nigeria [ESN],

Gambian in Western Division – Mandinka [GWD], Luhya in We-

buye, Kenya [LWK], Mende in Sierra Leone [MSL], and Yoruba in

Ibadan, Nigeria [YRI]), Europe (Utah residents with Northern and

WesternEuropeanancestry [CEU], Finnish in Finland [FIN], Iberian

populations in Spain [IBS], British from England and Scotland

[GBR], and Toscani in Italy [TSI]), and East Asia (Chinese Dai in

Xishuangbanna, China [CDX], Han Chinese in Beijing, China

[CHB], Han Chinese South [CHS], Kinh in Ho ChiMinh City, Viet-

nam [KHV]. and Japanese in Tokyo, Japan [JPT]). Sample sizes var-

ied for each continent population: 661 individuals of African

descent, 503 individuals of European descent, and 504 individuals

of East Asian descent. Biallelic SNPs from phase 3 of the 1KGP (as-

certainedviawhole-genomesequencing)weremergedwith rs iden-

tifiers from the IlluminaOmni 2.5Marray, RegulomeDB, andGTEx

project. RegulomeDBscores of 1a, 1b, 1c, 1d, 1e, or 1f indicate that a

SNP is aRegulomeDBeQTL.17 ForV7GTExeQTLs,we requiredsam-

ple sizes of at least 70 individuals per tissue, yielding 48 tissues. To

correct for multiple statistical tests, GTEx eQTLs were required to

have a p value % 10�9 for at least one tissue. Allele frequency and

eQTLdataweremergedusing the dplyrpackage inR.53Genomicpo-

sitions described here are from the GRCh37/hg19 assembly.
Genetic distances and scans of selection
Weir and Cockerham’s FST was calculated for each pairwise combi-

nation of populations (Africa-Europe [AFR-EUR], Africa-East Asia

[AFR-EAS], and Europe-East Asia [EUR-EAS]).54,55 This method of

calculating genetic distances corrects for small sample sizes. Six

types of SNPs were analyzed: variants from the 1KGP (ascertained

via whole-genome sequencing), variants on the Illumina Omni

2.5M array, V7 GTEx eQTLs, RegulomeDB eQTLs, and simulated

neutral loci that were generated via SLiM.56 For each type of

SNP, empirical cumulative distribution functions andmean values

of FST were found for each population pair. To identify adaptive
FR�EASÞ þ lnð1� FST ; EUR�EASÞ
(Equation 1A)

UR�EASÞ þ lnð1� FST ; AFR�EASÞ
(Equation 1B)

R�EASÞ þ lnð1� FST ; AFR�EURÞ
: (Equation 1C)
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SNPs, PBS40,41 were then calculated for V7 GTEx eQTLs using the

following equations:

Undefined and negative values of Weir and Cockerham’s FST
were treated as zero for PBS calculations. Genome-wide distribu-

tions of PBS scores were calculated for each branch (Africa, Europe,

and East Asia). In total, this yielded 1,154,731 PBS scores for V7

GTEx eQTLs. Negative PBS scores were treated as zero. We classi-

fied eQTLs as adaptive outliers if they had PBS scores above the

99th percentile of all eQTLs. Previous studies have indicated that

this is a reasonable PBS threshold.57–59 To correct for the effects

of linkage disequilibrium (LD), we selected the eQTL with the

top PBS score in each 100 kb genomic window. To increase rigor,

analyses were repeated using a cutoff of the top 0.1% eQTL PBS

scores (also LD pruned).

Integrated haplotype score (iHS) statistics

iHSs quantify selection acting on new mutations (i.e., they can be

used to identify targets of hard selective sweeps).60 Here, we used

precomputed iHS statistics from hapbin61,62 to examine whether

PBS outliers exhibit additional signatures of selection. Representa-

tive populations from the 1KGP were chosen for each continent

(YRI: Africa, CEU: Europe, and CHB: East Asia). For each popula-

tion, iHS statistics were available for autosomal loci with minor

allele frequencies (MAF) >0.05. To enable comparisons between

different types of variants, raw iHSs were converted to popula-

tion-specific percentiles. Distributions of iHS statistics for adaptive

outliers were compared with non-outlier eQTLs using Wilcoxon

rank-sum tests (these comparisons did not involve LD pruning

of either type of eQTL).

SLiM simulations

Computer simulations were used to generate a null dataset of

neutrally evolving loci in Africa, Europe, and East Asia. Using

v.3.2.1 of SLiM,56 we simulated the Gravel model of human demog-

raphy.63 Thismodel includes a Eurasianbottleneck followedby gene

flowbetween each continental population. The recipe for theGravel

model (Section 5.4 of the SLiM 3 Manual) was modified to include

larger chromosome sizes, recent explosive population growth,64

and outputs analogous to 1KGP data (661 AFR, 503 EUR, and 504

EAS individuals). This code was run 22 times to generate a set of vir-

tual autosomes, and PLINK 2 was used to obtain allele frequencies

fromsimulatedvcf files.65Asnotedabove, PBS scoreswere calculated

for a total of 47,643 simulated loci. The SLiM code is available at

https://github.com/LachanceLab/adaptive_eQTLs.
Pleiotropy and tissue breadth
Highly pleiotropic eQTLs modify the expression of a large num-

ber of tissues. We generated tissue breadth scores for each eQTL

by counting the number of tissues affected by each eQTL. These

scores range between 1 and 48 for V7 GTEx eQTLs. To identify

whether adaptive eQTLs affect a different number of tissues

than non-adaptive eQTLs, empirical cumulative distribution

functions and mean values of tissue breadth scores were calcu-

lated for non-adaptive eQTLs and adaptive PBS outliers. Derived

allele frequencies in Africa, Europe, and East Asia were used as

proxies of allele age for comparisons of testis-specific eQTLs

with multi-tissue eQTLs that affect gene expression in the

testis.66 Comparisons of derived allele frequency distributions

used Wilcoxon rank-sum tests.
Effect size comparisons
We tested whether eQTLs with large PBS scores yield large differ-

ences in gene expression. Here, we focused on LD-pruned eQTLs
Human
that only affect a single tissue. Effect sizes for each eQTL and tis-

sue combination were quantified by taking the absolute value of

normalized effect size (NES) under a fixed effect model, i.e., |bFE|.

The ‘‘ggscatter’’ function in the ggpubr R package was used for

local regression (loess) fitting and to quantify how PBS scores

and |bFE| values are correlated. Note that loess fitting allows

non-linear relationships to be identified. This analysis was

repeated for three different continental populations (African,

European, and East Asian) and for all 48 tissues in the V7

GTEx dataset. Wilcoxon rank-sum tests were used to determine

whether single-tissue eQTLs with PBS scores in the top 1% had

effect sizes that differ from eQTLs with PBS scores in the bottom

99%.
Tissue-specific adaptation
For this analysis, we required adaptive outliers to have PBS scores

above the 99th percentile of all eQTLs. After LD pruning, the pro-

portion of eQTLs that are adaptive was found by taking the geo-

metric mean of the number of LD-pruned PBS outliers divided

by the number of eQTLs for each tissue:

outlier proportion¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYk

tissue¼1

PBS outliersObs;tissue
eQTLstissue

k

s
: (Equation 2)

k refers to the total number of tissues. We then found the expected

number of LD-pruned adaptive PBS outliers for each tissue:

PBS outliersExp;tissue ¼ eQTLstissue 3 ðoutlier proportionÞ: (Equation 3)

Enrichment ratio statistics were calculated for each tissue by

comparing the observed number of adaptive PBS outliers to the ex-

pected number of adaptive PBS outliers:

Enrichment ratiotissue ¼ ln

�
PBS outliersObs;tissue
PBS outliersExp;tissue

�
: (Equation 4)

The geometric mean used in Equation 2 ensures that the sum

of all tissue-specific enrichment ratios generated using Equation

4 is zero. Positive enrichment ratios indicate tissues with a rela-

tive excess of adaptive eQTLs, and negative enrichment ratios

indicate tissues with a relative lack of adaptive eQTLs. Enrich-

ment ratio statistics were calculated for 48 V7 GTEx tissues.

95% confidence intervals for enrichment ratios were found by

using the Agresti-Coull approach to find the lower and upper

bounds for tissue-specific outlier proportions.67 We also

adjusted for sample size as a covariate using the following

equation:

Enrichment ratiotissue;adjusted ¼Enrichment ratiotissue � ðm ,ntissue þ bÞ:
(Equation 5)

ntissue refers to the number of individuals sampled per tissue. Tis-

sue-specific enrichment ratios were linearly regressed against sam-

ple size, yielding an intercept (m) of 0.0012 and a slope (b) of

�0.2517.
Overlap with GWAS loci
We assessed the overlap between adaptive eQTLs and GWAS loci

by downloading data from the EBI-NHGRI GWAS Catalog.68,69

For this analysis, LD-pruned V7 GTEx eQTLs with PBS scores in

the top 1% were considered to be adaptive. Distances between

adaptive eQTLs and GWAS loci were found using the ‘‘closest’’

function in BEDTools.70
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Figure 1. Genome-wide scans of selec-
tion identify adaptive eQTLs in human
populations
(A–C) Manhattan plot of population
branch statistics (PBS) versus genomic po-
sition for each population: (A) Africa, (B)
Europe, and (C) East Asia. All variants in
the 1KGP, including V7 GTEx eQTLs, are
shown here. LD-pruned adaptive eQTLs
are represented by filled red circles, other
eQTLs are represented by open black cir-
cles, and 1KGP SNPs that are not eQTLs
are represented by open gray circles.
Results

Scans of selection identify adaptive eQTLs

Many presently known eQTLs have large allele frequency

differences between populations, and some of these

eQTLs are targets of local adaptation. We calculated PBS

scores for individuals from Africa, Europe, and East Asia

at every biallelic SNP in the 1KGP (Figure 1). We then

identified the top 1% of all V7 GTEx eQTLs with respect

to PBS for each population. LD pruning yielded 614

eQTLs that are adaptive outliers for Africa, 561 eQTLs

that are adaptive outliers for Europe, and 524 eQTLs

that are adaptive outliers for East Asia. Different numbers

of LD-pruned adaptive outliers were observed for each

branch because African genomes have smaller haplotype

blocks than do European and Asian genomes.52 In

Figure 1, LD-pruned adaptive eQTLs are represented by

filled red circles, other eQTLs are represented by open

black circles, and 1KGP SNPs that are not eQTLs are repre-

sented by open gray circles. Scans of selection reveal that

the strongest PBS signal in many adaptive regions of the

genome is an eQTL (visualized as red-tipped peaks in

the Manhattan plots of Figure 1). Overall, we find that

GTEx eQTLs are 2.53 times as likely than SNPs from the

1KGP to have signatures of positive selection, i.e., PBS

scores above the red lines in Figure 1 (p < 0.0001, chi-

square test of independence).
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Validation of adaptive PBS outliers

Additional lines of evidence reinforce

the claim that LD-pruned eQTLs with

high PBS scores are positively selected

loci, including iHS statistic compari-

sons between eQTLs and non-regula-

tory DNA as well as computer

simulations of neutrally evolving loci.

PBS outliers aremore likely to be found

in genomic regions with extended

haplotype homozygosity than are

other variants from the 1KGP. Exam-

ining non-LD-pruned eQTLs, we find

that these differences are statistically

significant for Africa, Europe, and

East Asia (p < 2.2 3 10�16, Wilcoxon

rank-sum tests). Computer simula-
tions also reveal that eQTLs with PBS scores above the

outlier cutoffs (red lines) in Figure 1 are unlikely to be

neutral. Using SLiM and a modified version of the Gravel

model of human demography, we simulated neutrally

evolving loci in Africa, East Asia, and Europe. Most

simulated neutral loci and non-regulatory SNPs from the

1KGP have small FST statistics (Figure S1). Overall, we find

that 99.8% of all simulated loci have PBS scores that are

below the adaptive outlier cutoffs shown in Figure 1.

Similarly, 99.6% of non-regulatory variants from the

1KGP have PBS scores that are below the cutoffs used in

this paper. Collectively, these findings provide additional

support that PBS outliers are due to adaptive evolution,

especially in light of recent claims about the pervasiveness

of positive selection.71

eQTLs with the highest PBS scores

Here, we highlight the strongest signatures of adaptation for

each population (Figure 2). rs2814778 has the highest PBS

score for the African branch. This C/T SNP has a striking

geographic pattern: African frequencies of the C allele are

>96% and non-African allele frequencies of the C allele

are <1%. rs2814778 affects the gene expression of DARC,

also known as ACKR1. rs2814778 is in the promoter of

theDARC gene, and the C allele at this regulatory locus con-

fers a null phenotype.72 DARC encodes the Duffy blood

group antigen, which is known to be adaptive with respect



Figure 2. Adaptive eQTLs with strong
signatures of positive selection
(A–C) Genomic regions flanking eQTLs
with the highest PBS score for each conti-
nental population. LD-pruned adaptive
eQTLs are represented by filled red circles,
other eQTLs are represented by open black
circles, and 1KGP SNPs are represented by
open gray circles. hg19 coordinates are
shown. Population-specific 99th percen-
tiles of PBS scores are represented by
dashed red lines.
(D–F) Allele frequencies for 26 populations
from the 1KGP (modified from the Geogra-
phy of Genetics Variants Browser105).
to Plasmodium vivax and malaria.73,74 rs2814778 is also pre-

dictive of neutrophil counts in African Americans.75 Despite

a lack of local recombination hotspots, rs2814778 has negli-

gible amounts of LDwith nearby SNPs. This hints that selec-

tion acting on the Duffy blood group may have acted on

standing genetic variation.73 rs2814778 only modifies

expression in whole blood, and this tissue-specificity and

lack of pleiotropy may contribute strong signatures of posi-

tive selection at this eQTL.

rs1043809 is the eQTL with the highest PBS score for the

European branch. This C/T SNP is near the EPN2, B9D1,

and RNF112 genes at 17p11. At present, the reason why

this genomic region was positively selected in Europe is

unknown. Many eQTLs that are closely linked to

rs1043809 have similar PBS statistics (visualized as a

plateau of points in Figure 2B), which suggests the exis-

tence of an adaptive haplotype rather than of a single SNP.

rs66899053 is the eQTL with the highest PBS score for

the East Asian branch. This A/G SNP modifies expression

of the EEF1A2, PPDPF, PTK6, and SRMS genes, and it is

found in an adaptive haplotype at 20q13. Scans of

selection have previously implicated this genomic region

with respect to Helicobacter pylori infection and gastric

cancer.76 Consistent with this cause, rs66899053

affects gene expression in the stomach and in many other

tissues. Intriguingly, rs66899053 is found in a genomic re-

gion that has previously been shown to contain adap-
Human Genetics and Genomic
tively introgressed Neanderthal alleles

in non-African populations.77,78

rs66899053 is also 427 kb away from

HAR1, a genomic region that has un-

dergone accelerated evolution in hu-

mans following the split between hu-

man and chimpanzee lineages.79

Pleiotropy and the tissue breadth of

eQTLs

We compared the number of tissues

affected by adaptive and non-adaptive

eQTLs to infer whether tissue breadth

constrains adaptive evolution. Each of

the V7 GTEx eQTLs analyzed here
modifies expression in up to 48 tissues. Overall, adaptive

eQTL outliers affect fewer tissues than non-adaptive eQTLs

(Figure 3). This pattern occurs regardless of whether eQTLs

have high PBS scores in Africa, Europe, or East Asia. Non-

adaptive eQTLs affect a mean number of 5.97 tissues. By

contrast, adaptive eQTL outliers affect a mean number of

4.08, 4.11, and 3.84 tissues (African, European, and East

Asian outliers, respectively). These differences between

adaptive outliers and other eQTLs are statistically signifi-

cant (p < 2.2 3 10�16 for all comparisons, Wilcoxon

rank-sum tests). Furthermore, 55.3% of all LD-pruned

adaptive outliers affect a single tissue. Similar patterns arise

if a more stringent PBS score cutoff is used to identify pos-

itive selected eQTLs (Figure S2). Because tissue breadth (the

number of different tissues that each eQTL affects) can be

viewed as a formof pleiotropy, our results indicate that plei-

otropy appears to inhibit adaptation.

Many new genes are known to have testis-specific

expression patterns,80 which suggests that tissue breadth

may be related to allele age. We find that testis-specific

eQTLs tend to have lower derived allele frequencies than

do eQTLs that affect multiple tissues (African p ¼
9.334 3 10�16, European p < 2.2 3 10�16, East Asian p ¼
6.446 3 10�10, Wilcoxon rank-sum tests). As derived allele

frequencies can be used as a proxy of allele age,66 this indi-

cates that testis-specific eQTLs are younger, on average,

than are eQTLs that affect multiple tissues.
s Advances 3, 100083, January 13, 2022 5



Figure 3. Highly pleiotropic eQTLs are less likely to be adaptive
Cumulative distributions and mean number of tissues are shown
for adaptive and non-adaptive eQTLs. Here, adaptive outliers are
LD-pruned eQTLs that have PBS scores in the top 1% of all GTEx
eQTLs. In general, adaptive eQTLs modify gene expression in
fewer tissues than do non-adaptive eQTLs. For each population,
differences in the number of tissues affected by adaptive outliers
and the overall set of GTEx eQTLs are statistically significant (p
< 2.2 10�16 for all comparisons, Wilcoxon rank-sum tests).
Effect sizes of single tissue eQTLs

For each combination of tissue and population, we tested

whether adaptive PBS outliers have different expression ef-

fect sizes than do other eQTLs. Consistent with the Fisher-

Orr geometric model of adaptation, most tissues yield a

weak negative correlation between PBS scores and effect

sizes (Figure 4A; rz�0.2, local regression). In other words,

single-tissue eQTLs with large PBS scores tend to have a

slightly smaller effect on gene expression than do single

tissue eQTLs with small PBS scores. However, due to the

relatively small number of single-tissue eQTLs, most com-

parisons yield p values that fail to meet a Bonferroni

correction cutoff (Figure 4B; Wilcoxon rank-sum tests).

The one exception to this pattern involves thyroid eQTLs

in Europe (p ¼ 8.72 3 10�5, Wilcoxon rank-sum test be-

tween outlier and non-outlier eQTLs). In general, our re-

sults indicate that there are small differences in the effect

sizes of adaptive eQTLs compared with in other eQTLs.

Tissue-specificity of adaptive eQTLs

The proportion of eQTLs that are adaptive varies by tissue.

Here, we used enrichment ratio scores to compare the

observed and expected counts of adaptive PBS outliers for

each tissue (i.e., we compared the relative proportions of

tissue-specific eQTLs with PBS scores above or below each

outlier threshold). Positive enrichment ratio scores indi-

cate tissues that have an excess of adaptive eQTLs

compared with null expectations, and negative enrich-
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ment ratio scores indicate tissues that have a relative lack

of adaptive eQTLs compared with null expectations.

Because enrichment ratio scores use a natural log scale, a

difference of one unit translates to a 2.718-fold difference

in the relative proportion of eQTLs that are adaptive

outliers.

Focusing on individual tissues, testis eQTLs are the most

likely to have high PBS scores, followed by eQTLs that

modify gene expression in the thyroid, whole blood, and

sun-exposed skin (Figure 5A). Our results suggest that

recent human adaptation may have been driven by sexual

selection, metabolism, pathogens, and local environ-

mental conditions. We note that adipose, pancreas, and

liver are moderately enriched for adaptive eQTLs—indi-

cating that diet has also had an evolutionary impact. By

contrast, we find that eQTLs that affect expression in the

prostate, ovary, uterus, or vagina have a relative lack of

adaptive outliers. We also find that eQTLs that affect

expression in the cerebellum are more likely to be adaptive

than are eQTLs that affect expression in the cerebrum.

Pleiotropy contributes to whether tissues are enriched

for adaptive outliers. eQTLs that modify expression in tis-

sues with positive enrichment ratio scores tend to be

eQTLs that affect a small number of additional tissues.

For example, testis eQTLs that are adaptive tend to affect

only a small number of additional tissues, if at all (Figures

S3, S4, and S5). By contrast, eQTLs that modify expression

in tissues with negative enrichment ratio scores tend to be

eQTLs that affect many additional tissues (Figure 5B).

Some tissues have large sample sizes in the GTEx data-

base, including the thyroid, whole blood, sun-exposed

skin, and skeletal muscle (Figure S6). To correct for sample

size as a covariate, we linearly regressed tissue-specific

enrichment ratios against sample size, yielding a set of

adjusted enrichment ratios. Adjusted enrichment ratios

measure how much a given tissue is above or below the

regression line in Figure S7, i.e., they are the residuals.

Many tissues that have positive enrichment ratios also

have positive adjusted enrichment ratios, including testis,

thyroid, liver, transformed fibroblasts, and the cerebellum.

These findings indicate that tissue-specific differences in

the proportions of adaptive outliers are not simply due to

differences in sample sizes.

Overlap with GWAS results

Noting that colocalization of eQTLs and GWAS signals has

previouslybeenused toprioritize target genes that are associ-

ated with complex traits,81–84 we tested the extent to which

adaptive outliers overlap with loci that are associated with

complex traits and disease susceptibility. A total of 29 adap-

tive eQTLs are exact matches with GWAS loci from the EBI-

NHGRI Catalog. Traits associated with these adaptive eQTLs

includewhite blood cell count, schizophrenia risk, BMI, and

eye color. An important consideration is that GWAS loci tag

genomic regions that are associated with complex traits, i.e.

they are sentinel SNPs.85 Causal SNPs are often 10–100 kb

distant from sentinel SNPs,86 and many eQTLs are closely
022



Figure 4. Most adaptive eQTLs do not
have a large effect on gene expression
(A) Population-specific correlations be-
tween PBS and effect size for each tissue.
(B) Results of Wilcoxon rank-sum tests
comparing the effect sizes of adaptive
outlier and non-outlier eQTLs. Uncorrec-
ted (p < 0.05) and Bonferroni corrected p
value cutoffs are indicated by dotted black
and red lines, respectively. Gray shading
indicates tissues that have fewer than 200
LD-pruned single-tissue eQTLs.
linked to GWAS loci. Indeed, the median distance of V7

GTEx eQTLs to GWAS loci is 26.4 kb. Adaptive PBS outliers

have a similar median distance to GWAS loci (26.9 kb). By

contrast, random SNPs from the 1KGP have a median dis-

tance to GWAS loci of 30.2 kb. These differences are statisti-

cally significant: p < 2.2 3 10�16 for all eQTLs compared

with1KGPSNPs, andp¼7.6310�4 for adaptivePBSoutliers

compared with 1KGP SNPs (Wilcoxon rank-sum tests).

Although close proximity to GWAS loci need not imply

that regulatory variants are causal, physical linkage can

have implications for health inequities.87 This is because

local adaptation results in large allele frequency differences

between populations for not only the direct targets of selec-

tion but also for the linked loci.88 The combination of posi-

tive selection acting on eQTLs and genetic hitchhiking

may contribute to population-level differences in function-

ally important traits, including hereditary disease risks.
Discussion

We found that most adaptive alleles do not have large ef-

fect sizes and that tissue pleiotropy appears to inhibit adap-

tation.89 eQTLs that modify expression in a small number

of tissues are more likely to have large allele frequency dif-

ferences between populations than are eQTLs that affect a

large number of tissues. These results are consistent with

the Fisher-Orr model, which posits that large phenotypic

changes are less likely to be adaptive than are small

changes.43–46
Human Genetics and Genomic
Multiple tissues that are enriched

for adaptive outliers are involved in

resistance to pathogen pressure (e.g.

blood, esophageal mucosa, and the

skin), and there is prior evidence

that the immune response is an

important selective pressure.90 We

also found that eQTLs that modify

gene expression in the cerebellum

are more likely to be adaptive than

are eQTLs that modify gene expres-

sion in other brain tissues. Further-

more, eQTLs that affect male-specific

tissues (testis and prostate) are more

likely to be adaptive than are eQTLs
that affect female-specific tissues (uterus, ovary, and va-

gina). One contributing factor is that eQTLs that regulate

expression in female tissues tend to be more pleiotropic,

i.e., they affect a larger number of additional tissues. An

additional contributing factor is that variability in repro-

ductive success is greater for males than for females

(Bateman’s principle).91 This suggests that the accelerated

evolution of testis eQTLs may be driven by increased sex-

ual selection acting on males. There is also prior evidence

that spermatogenesis has been a key target of positive se-

lection in human evolution.92 An additional consideration

is that young mammalian duplicate genes often have

divergent expression patterns, particularly with respect to

the testis.93,94 The evolution of tissue specificity is an

important mechanism of neofunctionalization and sub-

functionalization, and multiple adaptive eQTLs (e.g.,

rs796497, rs11668109, and rs4630823) modify the expres-

sion of recently duplicated genes. Overall, our results indi-

cate that eQTLs are important targets of adaptation.

Indeed, there is increasing evidence of selection-driven

expression differences between human populations.95

We focused on evolution that occurred in the last

100,000 years; different eQTLs and tissues may have

been adaptive over longer timescales. That said, our find-

ings mirror results from comparative transcriptomics of

humans and chimpanzees: recent genetic changes are

more likely to affect expression in testes than in the

brain.96 Here, we focused on detecting signatures of posi-

tive selection. We note that gene expression is a trait that
s Advances 3, 100083, January 13, 2022 7



Figure 5. Tissue enrichment of adaptive
eQTLs
Positive enrichment ratio scores indicate a
relative excess of adaptive eQTLs for a
particular tissue (red), and negative enrich-
ment ratio scores indicate a relative lack of
adaptive eQTLs for a particular tissue
(black).
(A) Tissues are ranked by enrichment ratio
score. Here, adaptive outliers are LD-
pruned eQTLs that have PBS scores in the
top 1% of all GTEx eQTLs. 95% confidence
intervals for each enrichment ratio are
shown.
(B) Tissues with high enrichment ratios
tend to have eQTLs that affect less than
10 tissues, and tissues with low enrichment
ratios tend to have eQTLs that affect more
than 40 tissues.
can also be under stabilizing97 or purifying98,99 selection.

Furthermore, enrichment ratio statistics are not the only

way to identify tissues that are key targets of adaptation.

Some tissues may have played an important role in human

evolution simply because they have more eQTLs than

other tissues, i.e., they have a larger mutational target

size. With this in mind, we note that a large number V7

GTEx eQTLs modify gene expression in thyroid tissue,

tibial nerves, and sun-exposed skin (Figure S8). Finally,

large PBS scores may be due to genetic hitchhiking and se-

lection acting on closely linked loci. Nevertheless, we note

that the PBS outliers identified in this paper constitute the

set of eQTLs with the largest allele frequency differences

between continental populations.

We note that eQTLs have largely been ascertained in in-

dividuals that have European ancestry. This ascertainment

bias causes known eQTLs to be enriched for common

alleles in Europe.100 Despite this bias, adaptive eQTLs in

Africa, Europe, and East Asia yielded similar patterns of

pleiotropy and tissue specificity. An additional consider-

ation is that rare alleles are underrepresented in the set

of known eQTLs. This occurs because the statistical power

to detect an eQTL is maximized when SNPs have large

MAFs.101 As sample sizes increase in the future, additional

rare eQTLs will be able to be discovered.102 However,

these rare eQTLs are unlikely to have high FST statistics

and PBS scores.54

In conclusion, many eQTLs have been positively

selected, and these adaptive eQTLs reveal important details

about the recent evolution of our species. Going forward,

our evolutionary understanding of eQTLs will grow as

future studies examine other timescales,103 additional

types of natural selection (including stabilizing and purify-
8 Human Genetics and Genomics Advances 3, 100083, January 13, 2
ing selection),104 eQTLs affecting newly duplicated genes,

and archaic introgression of regulatory DNA.38
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Figure S1. GTEx and RegulomeDB eQTLs tend to have higher values of FST statistics 
than random SNPs from the 1KGP. Genetic distances between different pairs of 
populations were calculated using Weir and Cockerham’s FST: (A) African and European 
populations, (B) African and East Asian populations, and (C) European and East Asian 
populations. For each pair of populations, FST distributions are similar for 1000 Genomes 
Project and simulated SNPs (i.e., there is overlap between the black and light gray 
curves).  Similarly, FST distributions are similar for non-adaptive GTEx V7 eQTLs, SNPs 
on the Illumina Omni 2.5M array, and RegulomeDB eQTLs (i.e., there is overlap between 
the maroon, medium gray, and red curves). 



 

 
 

 
Figure S2. Pleiotropy results are robust to the use of a more stringent adaptive outlier 
threshold. Here, adaptive outliers are LD-pruned eQTLs that have PBS scores in the top 
0.1% of all GTEx eQTLs. Cumulative distributions and mean number of tissues are shown 
for adaptive and non-adaptive eQTLs. In general, adaptive eQTLs modify gene 
expression in fewer tissues than non-adaptive eQTLs. For each population, differences 
in the number of tissues affected by adaptive outliers and the overall set of GTEx eQTLs 
are statistically significant (p-value < 2.2 10-16 for all comparisons, Wilcoxon rank sum 
tests). 
 



 

 

 
Figure S3. Tissue-specificity of African PBS outliers. A grid of 48 rows and 614 columns 
is shown, where each row corresponds to a different tissue and each column corresponds 
to a different adaptive eQTL for the African branch. Filled cells reveal which tissues are 
affected by each adaptive eQTL. Background colors indicate the number of tissues 
affected by each adaptive eQTL (e.g., red indicates eQTLs that modify expression in a 
single tissue). Tissues are rank-ordered by total number of adaptive eQTLs.  



 

 

 

 
Figure S4. Tissue-specificity of European PBS outliers. A grid of 48 rows and 561 
columns is shown, where each row corresponds to a different tissue and each column 
corresponds to a different adaptive eQTL for the European branch. Filled cells reveal 
which tissues are affected by each adaptive eQTL. Background colors indicate the 
number of tissues affected by each adaptive eQTL (e.g., red indicates eQTLs that modify 
expression in a single tissue). Tissues are rank-ordered by total number of adaptive 
eQTLs.  



 

 
 

 
Figure S5. Tissue-specificity of East Asian PBS outliers. A grid of 48 rows and 524 
columns is shown, where each row corresponds to a different tissue and each column 
corresponds to a different adaptive eQTL for the East Asian branch. Filled cells reveal 
which tissues are affected by each adaptive eQTL. Background colors indicate the 
number of tissues affected by each adaptive eQTL (e.g., red indicates eQTLs that modify 
expression in a single tissue). Tissues are rank-ordered by total number of adaptive 
eQTLs. 



 

 
 

 
Figure S6. Enrichment ratios are not independent of sample size per tissue. Equation for 
the regression line: Enrichment Ratio = 0.0012 x (Sample Size) – 0.2517. Tissues with 
positive adjusted enrichment ratios are above the red line, and tissues with negative 
adjusted enrichment ratios are below the red line. 
  



 

 
 

 
Figure S7. Tissue enrichment results after correcting for the sample size differences 
using a linear model. Here, adaptive outliers are LD-pruned eQTLs that have PBS scores 
in the top 1% of all GTEx eQTLs. 95% confidence intervals for each adjusted enrichment 
ratio are shown. Adjusted enrichment ratios are the residuals from Figure S7. Note that 
there is no single optimal way to correct for sample sizes (nonlinear regression would 
give different adjusted enrichment ratios). 
  



 

 
 

 
Figure S8. Numbers of adaptive outliers and eQTLs for each tissue. Each point 
represented a different tissue, with the size of each point indicating sample size (numbers 
of individuals). Here, adaptive outliers are LD-pruned eQTLs that have PBS scores in the 
top 1% of all V7 GTEx eQTLs. 
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