HGGA, Volume 3

Supplemental information

Transethnic analysis of psoriasis susceptibility

in South Asians and Europeans enhances

fine mapping in the MHC and genome wide

Philip E. Stuart, Lam C. Tsoi, Rajan P. Nair, Manju Ghosh, Madhulika Kabra, Pakeeza A. Shaiq, Ghazala K. Raja, Raheel Qamar, B.K. Thelma, Matthew T. Patrick, Anita Parihar, Sonam Singh, Sujay Khandpur, Uma Kumar, Michael Wittig, Frauke Degenhardt, Trilokraj Tejasvi, John J. Voorhees, Stephan Weidinger, Andre Franke, Goncalo R. Abecasis, Vinod K. Sharma, and James T. Elder

Table of Contents

- Figure S1. Principal component analysis of the European and South Asian cohorts of this study.
- Figure S2. QQ-plots for the three genome-wide meta-analyses of psoriasis associations.
- Figure S3. Manhattan plots of psoriasis associations.
- Figure S4. Forest plots for two newly established psoriasis risk loci.
- Figure S5. Comparing accuracy of HLA alleles imputed for a set of 397 South Asians when using a SNP2HLA reference panel of the same 397 South Asians vs. increasingly large random subsets of the European-ancestry T1DGC reference panel.
- Figure S6. Boxplots comparing sample imputation accuracy of 2-field protein alleles for five HLA genes as a function of 19 different SNP2HLA reference panels for a validation set of 397 people of South Asian ancestry.
- Figure S7. Boxplots comparing allelic imputation accuracy of 2-field protein alleles for five HLA genes as a function of 19 different SNP2HLA reference panels for a validation set of 397 people of South Asian ancestry.
- Figure S8. Boxplots comparing sample imputation accuracy of 2-field protein alleles for two HLA genes as a function of 11 different SNP2HLA reference panels for a validation set of 397 people of South Asian ancestry.
- Figure S9. Boxplots comparing allelic imputation accuracy of 2-field protein alleles for two HLA genes as a function of 11 different SNP2HLA reference panels for a validation set of 397 people of South Asian ancestry.
- Figure S10. Boxplots comparing sample imputation accuracy of 2-field protein alleles for *HLA-DQA1* as a function of 11 different SNP2HLA reference panels for a validation set of 397 people of South Asian ancestry.
- Figure S11. Boxplots comparing allelic imputation accuracy of 2-field protein alleles for *HLA-DQA1* as a function of 11 different SNP2HLA reference panels for a validation set of 397 people of South Asian ancestry.
- Figure S12. Boxplots comparing sample imputation accuracy of 2-field protein alleles for five HLA genes as a function of 20 different SNP2HLA reference panels for four validation sets of people of European ancestry.
- Figure S13. Boxplots comparing allelic imputation accuracy of 2-field protein alleles for five HLA genes as a function of 20 different SNP2HLA reference panels for four validation sets of people of European ancestry.
- Figure S14. Boxplots comparing sample imputation accuracy of 2-field protein alleles for *HLA-DQA1* as a function of seven different SNP2HLA reference panels for four validation sets of people of European ancestry.
- Figure S15. Boxplots comparing allelic imputation accuracy of 2-field protein alleles for *HLA-DQA1* as a function of seven different SNP2HLA reference panels for four validation sets of people of European ancestry.

- Figure S16. Comparison of HLA imputation accuracies achieved with the best-performing reference panels of this study vs. those obtained using a recently published multi-ancestry panel.
- Figure S17. Imputed 1-field HLA-A, HLA-B, HLA-C and HLA-DPA1 allele frequencies for the European (EUR) and South Asian (SAS) datasets of this study.
- Figure S18. Imputed 1-field *HLA-DPB1*, *HLA-DQA1*, *HLA-DQB1* and *HLA-DRB1* allele frequencies for the European (EUR) and South Asian (SAS) datasets of this study.
- Figure S19. Imputed 2-field *HLA-A*, *HLA-B*, *HLA-C* and *HLA-DPA1* allele frequencies for the European (EUR) and South Asian (SAS) datasets of this study.
- Figure S20. Imputed 2-field *HLA-DPB1*, *HLA-DQA1*, *HLA-DQB1* and *HLA-DRB1* allele frequencies for the European (EUR) and South Asian (SAS) datasets of this study.
- Figure S21. Comparison of imputed class I HLA frequencies for this study with genotyped HLA frequencies for corresponding populations in the National Marrow Donor Program (NMDP) database.
- Figure S22. Comparison of imputed class II HLA frequencies for this study with genotyped HLA frequencies for corresponding populations in the National Marrow Donor Program (NMDP) database.
- Figure S23. Plots of rounds 1–4 of stepwise analysis of psoriasis association in the extended MHC region in people of South Asian ancestry.
- Figure S24. Plots of rounds 5–6 of stepwise analysis of psoriasis association in the extended MHC region in people of South Asian ancestry.
- Figure S25. Matrix of pairwise linkage disequilibrium among variants of the South Asian association model for the MHC region.
- Figure S26. Plots of rounds 1–4 of stepwise analysis of psoriasis association in the extended MHC region in people of European ancestry.
- Figure S27. Plots of rounds 5–8 of stepwise analysis of psoriasis association in the extended MHC region in people of European ancestry.
- Figure S28. Plots of rounds 9–12 of stepwise analysis of psoriasis association in the extended MHC region in people of European ancestry.
- Figure S29. Plots of rounds 13–16 of stepwise analysis of psoriasis association in the extended MHC region in people of European ancestry.
- Figure S30. Pairwise linkage disequilibrium among variants of the European association model for the MHC region.
- Figure S31. Plots of rounds 1–4 of stepwise analysis of psoriasis association in the extended MHC region in people of South Asian or European ancestry.
- Figure S32. Plots of rounds 5–8 of stepwise analysis of psoriasis association in the extended MHC region in people of South Asian or European ancestry.
- Figure S33. Plots of rounds 9–12 of stepwise analysis of psoriasis association in the extended MHC region in people of South Asian or European ancestry.

- Figure S34. Plots of rounds 13–16 of stepwise analysis of psoriasis association in the extended MHC region in people of South Asian or European ancestry.
- Figure S35. Plots of rounds 17–19 of stepwise analysis of psoriasis association in the extended MHC region in people of South Asian or European ancestry.
- Figure S36. Pairwise linkage disequilibrium among variants of the transethnic association model for the MHC region.
- Figure S37. Pairwise linkage disequilibrium between variants of the South Asian and European association models for the MHC region.
- Figure S38. Plots comparing association effect sizes in South Asians vs. Europeans for all variants in the European regression model for the MHC region.
- Figure S39. Pairwise linkage disequilibrium between variants of the South Asian and transethnic association models for the MHC region.
- Figure S40. Pairwise linkage disequilibrium between variants of the European and transethnic association models for the MHC region.
- Figure S41. Comparisons between the number of population-specific LD proxies, significance of association, and size of credible interval sets for the psoriasis risk loci.
- Figure S42. Scatterplots comparing strength of linkage disequilibrium between South Asians and Europeans for all MHC variants selected by stepwise association analysis for South Asians, Europeans, or South Asians and Europeans combined.
- Figure S43. Scatterplots of the relationship of significance of MHC association with variant imputation quality.
- Table S1. Characteristics of the 10 studies analyzed for psoriasis associations.
- Table S2. Validation sets used to assess accuracy of imputation for European ancestry individuals.
- Table S3. Control of population stratification for 10 studies analyzed for psoriasis associations in theMHC region.
- Table S4. Heterogeneity of log(OR) effect sizes across studies in each meta-analysis.
- Table S5. Credible interval analysis for all established non-MHC loci in the EUR and transethnic metaanalyses.
- Table S6. The independent signals identified in the meta-analysis.
- Table S7. Accuracy of 1-field and 2-field HLA alleles imputed by a SNP2HLA reference panel of 397individuals of South Asian ancestry.
- Table S8. Data sources for SNP2HLA reference panels constructed and tested by this study.
- Table S9. Composition of 19 SNP2HLA reference panels constructed and tested for imputation of MHC variants in South Asians.
- Table S10. Accuracy of 2-field HLA protein alleles imputed by the best-performing SNP2HLA panels forindividuals of South Asian ancestry.

- Table S11. Accuracy of HLA alleles imputed by the best-performing SAS panel for populations in the phase 3 1000 Genomes dataset.
- Table S12. Composition of 20 SNP2HLA reference panels constructed and tested for imputation ofMHC variants in Europeans.
- Table S13. Accuracy of 2-field HLA protein alleles imputed by the best-performing SNP2HLA panels forindividuals of European ancestry.
- Table S14. Counts and densities of coding, non-coding and immune-related genes in the extendedMHC region.
- Table S15. Frequency distribution of variants in the imputed genotype datasets for the MHC region,cross-classified by reference panel source, MHC region and ancestry.
- Table S16. Frequency distribution of variants in the imputed genotype datasets for the MHC region,cross-classified by minor allele frequency, imputation quality, MHC region and ancestry.
- Table S17. Frequency distribution of variants in the imputed genotype datasets for the MHC region,cross-classified by variant type, MHC region and ancestry.
- Table S18. Proportion of MHC reference panel variants analyzed for association with psoriasis, crossclassified by minor allele frequency, MHC region and ancestry.
- Table S19. Frequency distribution of imputed MHC variants analyzed for association with psoriasis,cross-classified by reference panel source, MHC region and ancestry.
- Table S20. Frequency distribution of imputed MHC variants analyzed for association with psoriasis,cross-classified by minor allele frequency, imputation quality, MHC region and ancestry.
- Table S21. Frequency distribution of imputed MHC variants analyzed for association with psoriasis,cross-classified by variant type, MHC region and ethnic population.
- Table S22. Annotations and protein-changing surrogates for associated variants in the extended MHCregion for people of South Asian ancestry.
- Table S23. Parameters of 95% Bayesian credible sets for the five MHC psoriasis association signals inthe final full regression model for people of South Asian ancestry.
- Table S24. Psoriasis associations from stepwise analysis of the extended MHC region for eight studiesof European ancestry.
- Table S25. Annotations and protein-changing surrogates for associated variants in the extended MHCregion for people of European ancestry.
- Table S26. Parameters of 95% Bayesian credible sets for the 14 MHC psoriasis association signals inthe final full regression model for people of European ancestry.
- Table S27. Psoriasis associations from stepwise analysis of the extended MHC region for ten studies ofSouth Asian or European ancestry.
- Table S28. Annotations and protein-changing surrogates for associated variants in the extended MHCregion for people of South Asian or European ancestry.
- Table S29. Parameters of 95% Bayesian credible sets for the 17 MHC psoriasis association signals inthe final full regression model for people of South Asian or European ancestry.

- Table S30. Enrichment of variant types in full MHC regression models compared to the set of analyzedMHC variants.
- Table S31. Enrichment of variant types in the MHC region compared to the whole genome.
- Table S32. Complete results for stepwise conditional analysis of South Asian, European and transethnic psoriasis associations in the extended MHC region.
- Table S33. Comparison of total and decomposed goodness of fit of within-population vs. crosspopulation association models for the MHC region.
- Table S34. Mean imputation quality of variants in the imputed genotype datasets for the classicalMHC region, cross-classified by minor allele frequency, ancestry, and reference panel.
- Table S35. Comparison of 95% Bayesian credible sets for four MHC association signals occurring inboth the transethnic association model and in at least one of the two monoethnic associationmodels.
- Table S36. Comparison of total and decomposed goodness of fit of transethnic vs. monoethnicassociation models for the MHC region.
- Table S37. Most significant cis-eQTL effects in relevant tissues for noncoding psoriasis-associated MHC variants with a Bayesian posterior probability > 0.50.
- Table S38. Functional annotation of noncoding psoriasis-associated MHC variants with a Bayesian posterior probability exceeding 0.50.

Supplemental methods

Additional methods for construction of SNP2HLA reference panels Additional methods for validation of SNP2HLA reference panels Additional methods for association analysis of MHC variants Selection and processing of imputed multiallelic variants Principal components analysis of South Asians Phenotypic variance explained MHC variant annotation Enrichment analysis

Supplemental web resources

Supplemental references

Figure S1. Principal component analysis of the European and South Asian cohorts of this study. Plot of the first two axes of a principal component analysis of the 44,161 individuals of European ancestry (denoted with a green J) and 4310 individuals of South Asian ancestry (denoted with a cyan P) analyzed by this study. The EUR and SAS individuals of this study were analyzed with the 26 global populations of phase 3 of the 1000 Genomes Project. Only those EUR and SAS individuals passing all quality control filters, including removal of population outliers detected with PCA, are plotted here.

Figure S2. QQ-plots for the three genome-wide meta-analyses of psoriasis associations. Quantilequantile plots of observed vs. expected $-\log_{10}$ of association p-values are plotted for the South Asian (SAS), European (EUR) and transethnic (SAS+EUR) meta-analyses in panels A, B and C, respectively.

Figure S4. Forest plots for two newly established psoriasis risk loci. Odds ratios and their 95% confidence intervals are plotted for the association of psoriasis with two psoriasis risk variants (rs2103876 in panel A and rs12046909 in panel B) newly established by the transethnic meta-analysis. Results for the eight European ancestry cohorts are shown in the first 8 rows, for the two South Asian (SAS) cohorts in the next two rows, and the overall meta-analysis result is shown at the bottom.

Figure S5. Comparing accuracy of HLA alleles imputed for a set of 397 South Asians when using a SNP2HLA reference panel of the same 397 South Asians vs. increasingly large random subsets of the European-ancestry T1DGC reference panel. Results are shown for 1-field (panel A) and 2-field (panel B) alleles of eight HLA genes. The left and right parts of each panel show accuracies when using the South Asian (SAS) and T1DGC SNP2HLA panels, respectively. Leave-one-out cross-validation was used to estimate imputation accuracies for the South Asian panel. For the T1DGC panel, eight randomly sampled subsets were assessed, with sample sizes of 397, 653, 1306, 1959, 2613, 3919, 4572 and 5225, representing 7.6%, 12.5%, 25%, 37.5%, 50%, 75%, 87.5% and 100% of the full T1DGC panel, respectively. In each panel, lines connect accuracies based on South Asian and European reference panels of equal sizes (n=397).

Figure S6. Boxplots comparing sample imputation accuracy of 2-field protein alleles for five HLA genes as a function of 19 different SNP2HLA reference panels for a validation set of 397 people of South Asian ancestry. Panels are listed in decreasing order of their mean rank across 12 performance metrics based on the Wilcoxon signed rank test and the paired t-test. Sample imputation accuracy for a given HLA gene is measured for each individual in the validation set by subtracting, from 1, one-half of the sum for that individual of the positive differences in genotyped vs. imputed dosages of all 2-field alleles of that gene in the reference panel.

Figure S7. Boxplots comparing allelic imputation accuracy of 2-field protein alleles for five HLA genes as a function of 19 different SNP2HLA reference panels for a validation set of 397 people of South Asian ancestry. Panels are listed in decreasing order of their mean rank across 12 performance metrics based on the Wilcoxon signed rank test and the paired t-test. Allelic imputation accuracy for a given HLA gene is measured for each 2-field allele of that gene in the reference panel by computing the squared Pearson correlation of vectors of genotyped and imputed dosages of that allele for all individuals in the validation set.

Figure S8. Boxplots comparing sample imputation accuracy of 2-field protein alleles for two HLA genes as a function of 11 different SNP2HLA reference panels for a validation set of 397 people of South Asian ancestry. Panels are listed in decreasing order of their mean rank across 12 performance metrics based on the Wilcoxon signed rank test and the paired t-test. Sample imputation accuracy for a given HLA gene is measured for each individual in the validation set by subtracting, from 1, one-half of the sum for that individual of the positive differences in genotyped vs. imputed dosages of all 2-field alleles of that gene in the reference panel.

Figure S9. Boxplots comparing allelic imputation accuracy of 2-field protein alleles for two HLA genes as a function of 11 different SNP2HLA reference panels for a validation set of 397 people of South Asian ancestry. Panels are listed in decreasing order of their mean rank across 12 performance metrics based on the Wilcoxon signed rank test and the paired t-test. Allelic imputation accuracy for a given HLA gene is measured for each 2-field allele of that gene in the reference panel by computing the squared Pearson correlation of vectors of genotyped and imputed dosages of that allele for all individuals in the validation set.

Figure S10. Boxplots comparing sample imputation accuracy of 2-field protein alleles for *HLA-DQA1* as a **function of 11 different SNP2HLA reference panels for a validation set of 397 people of South Asian ancestry.** Panels are listed in decreasing order of their mean rank across 12 performance metrics based on the Wilcoxon signed rank test and the paired t-test. Sample imputation accuracy is measured for each individual in the validation set by subtracting, from 1, one-half of the sum for that individual of the positive differences in genotyped vs. imputed dosages of all 2-field alleles of *HLA-DQA1* in the reference panel.

Figure S11. Boxplots comparing allelic imputation accuracy of 2-field protein alleles for *HLA-DQA1* as a **function of 11 different SNP2HLA reference panels for a validation set of 397 people of South Asian ancestry.** Panels are listed in decreasing order of their mean rank across 12 performance metrics based on the Wilcoxon signed rank test and the paired t-test. Allelic imputation accuracy is measured for each 2-field allele of *HLA-DQA1* in the reference panel by computing the squared Pearson correlation of vectors of genotyped and imputed dosages of that allele for all individuals in the validation set.

Figure S13. Boxplots comparing allelic imputation accuracy of 2-field protein alleles for five HLA genes as a function of 20 different SNP2HLA reference panels for four validation sets of people of European ancestry. Panels are listed in decreasing order of the weighted mean across the four validation sets of their mean rank across 12 performance metrics based on the Wilcoxon signed rank test and the paired t-test. Allelic imputation accuracy for a given HLA gene is measured for each 2-field allele of that gene in the reference panel by computing the squared Pearson correlation of vectors of genotyped and imputed dosages of that allele for all individuals in the validation set.

Figure S14. Boxplots comparing sample imputation accuracy of 2-field protein alleles for *HLA-DQA1* as a function of seven different SNP2HLA reference panels for a validation set of 174 people of European ancestry. Panels are listed in decreasing order of the weighted mean across the four validation sets of their mean rank across 12 performance metrics based on the Wilcoxon signed rank test and the paired t-test. Sample imputation accuracy is measured for each individual in the validation set by subtracting, from 1, one-half of the sum for that individual of the positive differences in genotyped vs. imputed dosages of all 2-field alleles of *HLA-DQA1* in the reference panel.

Figure S15. Boxplots comparing allelic imputation accuracy of 2-field protein alleles for *HLA-DQA1* as a function of seven different SNP2HLA reference panels for a validation set of 174 people of European ancestry. Panels are listed in decreasing order of the weighted mean across the four validation sets of their mean rank across 12 performance metrics based on the Wilcoxon signed rank test and the paired t-test. Allelic imputation accuracy is measured for each 2-field allele of *HLA-DQA1* in the reference panel by computing the squared Pearson correlation of vectors of genotyped and imputed dosages of that allele for all individuals in the validation set.

Figure S16. Comparison of HLA imputation accuracies achieved with the best-performing reference panels of this study vs. those obtained using a recently published multi-ancestry panel. Purple bars display accuracies achieved using the suite of best-performing HLA panels of this study for SAS targets (IKMB+BKT+UM+1KGP-ALL-v2 for *HLA-A,B,C,DQB1,DRB1*; IKMB+BKT+UM for *HLA-DPA1,DPB1*; IKMB+BKT+UM+T1DGC for *HLA-DQA1*) and for EUR targets (T1DGC+1KGP-EUR-v2 for *HLA-A,B,C,DQB1,DRB1*; IKMB+BKT for *HLA-DQA1*). Green bars display accuracy achieved for both SAS and EUR targets with a recently published multi-ancestry panel of 21,546 individuals¹ that is incorporated into the Michigan Imputation Server². The target samples were the HLA-genotyped validation sets used by this study; namely 397 individuals of SAS ancestry and 174–3749 individuals of EUR ancestry. The top and bottom pairs of panels show results for 1- and 2-field allele resolution for SAS and EUR individuals, respectively.

Figure S17. Imputed 1-field HLA-A, HLA-B, HLA-C and HLA-DPA1 allele frequencies for the European (EUR) and South Asian (SAS) datasets of this study. Results for *HLA-A, HLA-B, HLA-C* and *HLA-DPA1* are shown in panels A, B, C and D, respectively. Frequencies for the EUR and SAS populations were estimated as a weighted average of frequencies in psoriasis cases and unaffected controls (weights = 0.015 and 0.985 for EUR and 0.003 and 0.997 for SAS). Alleles with frequencies < 0.01 in both populations are omitted.

Figure S18. Imputed 1-field HLA-DPB1, HLA-DQA1, HLA-DQB1 and HLA-DRB1 allele frequencies for the European (EUR) and South Asian (SAS)

datasets of this study. Results for *HLA-DPB1*, *HLA-DQA1*, *HLA-DQB1* and *HLA-DRB1* are shown in panels A, B, C and D, respectively. Frequencies for the EUR and SAS populations were estimated as a weighted average of frequencies in psoriasis cases and unaffected controls (weights = 0.015 and 0.985 for EUR and 0.003 and 0.997 for SAS). Alleles with frequencies < 0.01 in both populations are omitted.

Figure S19. Imputed 2-field HLA-A, HLA-B, HLA-C and HLA-DPA1 allele frequencies for the European (EUR) and South Asian (SAS) datasets of this study. Results for *HLA-A, HLA-B, HLA-C* and *HLA-DPA1* are shown in panels A, B, C and D, respectively. Frequencies for the EUR and SAS populations were estimated as a weighted average of frequencies in psoriasis cases and unaffected controls (weights = 0.0015 and 0.985 for EUR and 0.003 and 0.997 for SAS). Alleles with frequencies < 0.01 in both populations are omitted.

Figure S20. Imputed 2-field HLA-DPB1, HLA-DQA1, HLA-DQB1 and HLA-DRB1 allele frequencies for the European (EUR) and South Asian (SAS)

datasets of this study. Results for *HLA-DPB1*, *HLA-DQA1*, *HLA-DQB1* and *HLA-DRB1* are shown in panels A, B, C and D, respectively. Frequencies for the EUR and SAS populations were estimated as a weighted average of frequencies in psoriasis cases and unaffected controls (weights = 0.015 and 0.985 for EUR and 0.003 and 0.997 for SAS). Alleles with frequencies < 0.01 in both populations are omitted.

Figure S22. Comparison of imputed HLA class II frequencies for this study with genotyped HLA frequencies for corresponding populations in the National Marrow Donor Program (NMDP) database. HLA allele frequencies estimated for European (EUR) and South Asian (SAS) individuals of this study (bright red and bright cyan, respectively) are plotted next to allele frequencies for European (EURCAU) and South Asian (AINDI) individuals in the NMDP database (dark red and dark cyan, respectively).³ Results for *HLA-DQB1* and *HLA-DRB1* are shown in panels A and B, respectively. 2-field alleles for this study were aggregated, when necessary, to match the g-group designations used by NMDP, which distinguishes alleles that vary in amino acid sequence for the antigen recognition site coded for by exons 2 and 3 of class I and exon 2 of class II HLA genes. Alleles with frequencies < 0.01 in both populations are omitted.

Figure S23. Plots of rounds 1–4 of stepwise analysis of psoriasis association in the extended MHC region in people of South Asian ancestry. The left 4 panels (A–D) show association results after each stepwise round; the right 4 panels (E–H) show association results for the final full regression model containing all variants identified by the stepwise analysis except the one selected at that specific round. Each circle represents the –log(p) of association of an imputed variant, color-coded based on its membership in various categories of MHC genes, as detailed in the key at the bottom. Dashed lines denote thresholds of Bonferroni-corrected significance of 0.05. The locations of the eight HLA genes for which amino acid and protein alleles were imputed are shown at the bottom, along with colored segments denoting the boundaries of the classical MHC region (class I, II and III), the extended MHC class I (I-e) and II (II-e) regions, and flanking MHC regions (f).

Figure S24. Plots of rounds 5–6 of stepwise analysis of psoriasis association in the extended MHC region in people of South Asian ancestry. The left 2 panels (A–B) show association results after each stepwise round; the right 2 panels (C–D) show association results for the final full regression model containing all variants identified by the stepwise analysis except the one selected at that specific round. Each circle represents the –log(p) of association of an imputed variant, color-coded based on its membership in various categories of MHC genes, as detailed in the key at the bottom. Dashed lines denote thresholds of Bonferroni-corrected significance of 0.05. The locations of the eight HLA genes for which amino acid and protein alleles were imputed are shown at the bottom, along with colored segments denoting the boundaries of the classical MHC region (class I, II and III), the extended MHC class I (I-e) and II (II-e) regions, and flanking MHC regions (f).

			South Asian model							
			HLA-A	HLA-C	I	MICA	HLA-DRB1			
		Linkage disequilibrium (W _n ²) in South Asian dataset	rs9260313 (C,T)	HLA-C*06 (C*06,other)	rs2442752 (C,T)	rs2428489 (A,C,T)	rs139451799 (–,other)			
del	HLA-A	rs9260313 (C,T)	-	0.06	0.03	0.04	0.00			
uth Asian moo	HLA-C	HLA-C*06 (C*06,other)	0.06	-	0.11	0.08	0.04			
	—	rs2442752 (C,T)	0.03	0.11	_	0.17	0.00			
	MICA	rs2428489 (A,C,T)	0.04	0.08	0.17	_	0.05			
Sol	HLA-DRB1	rs139451799 (,other)	0.00	0.04	0.00	0.05	_			

Figure S25. Matrix of pairwise linkage disequilibrium among variants of the South Asian association model for the MHC region. Variants are listed in the order of their position on chromosome 6, with the alleles used to compute LD in parentheses after each variant. LD values are for the multiallelic W_n^2 coefficient computed in the South Asian dataset, which reduces to the usual r² coefficient when both variants of a pair are biallelic. The magnitude of LD values is accentuated with red shading on a 0 (white) to 1 (dark red) scale. Variants are labeled with a gene name if the variant changes that gene's protein sequence or if it is in substantial LD ($W_n^2 \ge 0.4$) with a protein-changing variant for the gene.

Figure S26. Plots of rounds 1–4 of stepwise analysis of psoriasis association in the extended MHC region in people of European ancestry. The left 4 panels (A–D) show association results after each stepwise round; the right 4 panels (E–H) show association results for the final full regression model containing all variants identified by the stepwise analysis except the one selected at that specific round. Each circle represents the –log(p) of association of an imputed variant, color-coded based on its membership in various categories of MHC genes, as detailed in the key at the bottom. Dashed lines denote thresholds of Bonferroni-corrected significance of 0.05. The locations of the eight HLA genes for which amino acid and protein alleles were imputed are shown at the bottom, along with colored segments denoting the boundaries of the classical MHC region (class I, II and III), the extended MHC class I (I-e) and II (II-e) regions, and flanking MHC regions (f).

Figure S27. Plots of rounds 5–8 of stepwise analysis of psoriasis association in the extended MHC region in people of European ancestry. The left 4 panels (A–D) show association results after each stepwise round; the right 4 panels (E–H) show association results for the final full regression model containing all variants identified by the stepwise analysis except the one selected at that specific round. Each circle represents the –log(p) of association of an imputed variant, color-coded based on its membership in various categories of MHC genes, as detailed in the key at the bottom. Dashed lines denote thresholds of Bonferroni-corrected significance of 0.05. The locations of the eight HLA genes for which amino acid and protein alleles were imputed are shown at the bottom, along with colored segments denoting the boundaries of the classical MHC region (class I, II and III), the extended MHC class I (I-e) and II (II-e) regions, and flanking MHC regions (f).

Figure S28. Plots of rounds 9–12 of stepwise analysis of psoriasis association in the extended MHC region in people of European ancestry. The left 4 panels (A–D) show association results after each stepwise round; the right 4 panels (E–H) show association results for the final full regression model containing all variants identified by the stepwise analysis except the one selected at that specific round. Each circle represents the –log(p) of association of an imputed variant, color-coded based on its membership in various categories of MHC genes, as detailed in the key at the bottom. Dashed lines denote thresholds of Bonferroni-corrected significance of 0.05. The locations of the eight HLA genes for which amino acid and protein alleles were imputed are shown at the bottom, along with colored segments denoting the boundaries of the classical MHC region (class I, II and III), the extended MHC class I (I-e) and II (II-e) regions, and flanking MHC regions (f).

Figure S29. Plots of rounds 13–16 of stepwise analysis of psoriasis association in the extended MHC region in people of European ancestry. The left 4 panels (A–D) show association results after each stepwise round; the right 4 panels (E–H) show association results for the final full regression model containing all variants identified by the stepwise analysis except the one selected at that specific round. Each circle represents the –log(p) of association of an imputed variant, color-coded based on its membership in various categories of MHC genes, as detailed in the key at the bottom. Dashed lines denote thresholds of Bonferroni-corrected significance of 0.05. The locations of the eight HLA genes for which amino acid and protein alleles were imputed are shown at the bottom, along with colored segments denoting the boundaries of the classical MHC region (class I, II and III), the extended MHC class I (I-e) and II (II-e) regions, and flanking MHC regions (f).

[European model													
		HLA-A		Ι	HLA-C			HLA-B			MICA	HLA-DRB1		HLA-DQA1		
Linkage disequilibrium (W _n ²) in European dataset			rs371194629 (–,14mer)	rs1655901 (C,T)	rs75881311 (T,other)	rs1128175 (A,G)	HLA-C*06:02 (6*02,other)	rs41543814 (C,T)	rs72866766 (C,T)	HLA-B aa-171 (H,Y)	HLA-B aa-67 (C,F,M,S,Y)	rs137854633 (–,C,T)	rs147145279 (AA,other)	rs6935999 (A,G)	rs4947340 (C,T)	HLA-DQA1 aa-52 (R,other)
	HLA-A	rs371194629 (–,14mer) rs1655901 (C,T)	- 0.00	0.00	0.00 0.00	0.03 0.02	0.01 0.01	0.03 0.00	0.00 0.01	0.00 0.01	0.07 0.05	0.01 0.00	0.00 0.00	0.00 0.01	0.00 0.00	0.01 0.01
	_	rs75881311 (T,other)	0.00	0.00	-	0.02	0.00	0.00	0.04	0.00	0.03	0.00	0.00	0.00	0.00	0.00
European model	HLA-C	rs1128175 (A,G) HLA-C*06:02 (6*02,other) rs41543814 (C,T)	0.03 0.01 0.03	0.02 0.01 0.00	0.02 0.00 0.00	- 0.04 0.16	0.04 - 0.11	0.16 0.11 -	0.01 0.01 0.01	0.03 0.02 0.04	0.43 0.37 0.19	0.02 0.26 0.14	0.00 0.00 0.00	0.00 0.00 0.01	0.03 0.07 0.02	0.02 0.04 0.01
	HLA-B	rs72866766 (C,T) HLA-B aa-171 (H,Y) HLA-B aa-67 (C,F,M,S,Y) rs137854633 (–,C,T)	0.00 0.00 0.07 0.01	0.01 0.01 0.05 0.00	0.04 0.00 0.03 0.00	0.01 0.03 0.43 0.02	0.01 0.02 0.37 0.26	0.01 0.04 0.19 0.14	- 0.00 0.17 0.02	0.00 - 0.06 0.05	0.17 0.06 - 0.18	0.02 0.05 0.18 –	0.00 0.00 0.01 0.00	0.00 0.05 0.04 0.00	0.00 0.00 0.12 0.04	0.00 0.00 0.08 0.02
	MICA	rs147145279 (AA,other)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	-	0.00	0.00	0.00
	HLA-DRB1	rs6935999 (A,G) rs4947340 (C,T)	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.05	0.04	0.00	0.00	- 0.01	0.01	0.01 0.02
	ΠΙΑ-ΟΥΑΙ	nla-DQA1 aa-52 (K,other)	0.01	0.01	0.00	0.02	0.04	0.01	0.00	0.00	0.08	0.02	0.00	0.01	0.02	_

Figure S30. Pairwise linkage disequilibrium among variants of the European association model for the MHC region. Variants are listed in the order of their position on chromosome 6, with the alleles used to compute LD in parentheses after each variant. LD values are for the multiallelic W_n^2 coefficient computed in the European dataset, which reduces to the usual r^2 coefficient when both variants of a pair are biallelic. The magnitude of LD values is accentuated with red shading on a 0 (white) to 1 (dark red) scale. Variants are labeled with a gene name if the variant changes that gene's protein sequence or if it is in substantial LD ($W_n^2 \ge 0.4$) with a protein-changing variant for the gene. Variant ID rs147415279 is shorthand for a biallelic split of two biallelic indels (rs147415279 and rs559509014) that were genotyped as a single triallelic indel by the 1000 Genomes Project.

Figure S31. Plots of rounds 1–4 of stepwise analysis of psoriasis association in the extended MHC region in people of South Asian or European ancestry. The left 4 panels (A–D) show association results after each stepwise round; the right 4 panels (E–H) show association results for the final full regression model containing all variants identified by the stepwise analysis except the one selected at that specific round. Each circle represents the –log(p) of association of an imputed variant, color-coded based on its membership in various categories of MHC genes, as detailed in the key at the bottom. Dashed lines denote thresholds of Bonferroni-corrected significance of 0.05. The locations of the eight HLA genes for which amino acid and protein alleles were imputed are shown at the bottom, along with colored segments denoting the boundaries of the classical MHC region (class I, II and III), the extended MHC class I (I-e) and II (II-e) regions, and flanking MHC regions (f).

Figure S32. Plots of rounds 5–8 of stepwise analysis of psoriasis association in the extended MHC region in people of South Asian or European ancestry. The left 4 panels (A–D) show association results after each stepwise round; the right 4 panels (E–H) show association results for the final full regression model containing all variants identified by the stepwise analysis except the one selected at that specific round. Each circle represents the –log(p) of association of an imputed variant, color-coded based on its membership in various categories of MHC genes, as detailed in the key at the bottom. Dashed lines denote thresholds of Bonferroni-corrected significance of 0.05. The locations of the eight HLA genes for which amino acid and protein alleles were imputed are shown at the bottom, along with colored segments denoting the boundaries of the classical MHC region (class I, II and III), the extended MHC class I (I-e) and II (II-e) regions, and flanking MHC regions (f).

Figure S33. Plots of rounds 9–12 of stepwise analysis of psoriasis association in the extended MHC region in people of South Asian or European ancestry. The left 4 panels (A–D) show association results after each stepwise round; the right 4 panels (E–H) show association results for the final full regression model containing all variants identified by the stepwise analysis except the one selected at that specific round. Each circle represents the –log(p) of association of an imputed variant, color-coded based on its membership in various categories of MHC genes, as detailed in the key at the bottom. Dashed lines denote thresholds of Bonferroni-corrected significance of 0.05. The locations of the eight HLA genes for which amino acid and protein alleles were imputed are shown at the bottom, along with colored segments denoting the boundaries of the classical MHC region (class I, II and III), the extended MHC class I (I-e) and II (II-e) regions, and flanking MHC regions (f).

Figure S34. Plots of rounds 13–16 of stepwise analysis of psoriasis association in the extended MHC region in people of South Asian or European ancestry. The left 4 panels (A–D) show association results after each stepwise round; the right 4 panels (E–H) show association results for the final full regression model containing all variants identified by the stepwise analysis except the one selected at that specific round. Each circle represents the –log(p) of association of an imputed variant, color-coded based on its membership in various categories of MHC genes, as detailed in the key at the bottom. Dashed lines denote thresholds of Bonferroni-corrected significance of 0.05. The locations of the eight HLA genes for which amino acid and protein alleles were imputed are shown at the bottom, along with colored segments denoting the boundaries of the classical MHC region (class I, II and III), the extended MHC class I (I-e) and II (II-e) regions, and flanking MHC regions (f).

Figure S35. Plots of rounds 17–19 of stepwise analysis of psoriasis association in the extended MHC region in people of South Asian or European ancestry. The left 4 panels (A–D) show association results after each stepwise round; the right 4 panels (E–H) show association results for the final full regression model containing all variants identified by the stepwise analysis except the one selected at that specific round. Each circle represents the –log(p) of association of an imputed variant, color-coded based on its membership in various categories of MHC genes, as detailed in the key at the bottom. Dashed lines denote thresholds of Bonferroni-corrected significance of 0.05. The locations of the eight HLA genes for which amino acid and protein alleles were imputed are shown at the bottom, along with colored segments denoting the boundaries of the classical MHC region (class I, II and III), the extended MHC class I (I-e) and II (II-e) regions, and flanking MHC regions (f).

									South	Asian	+ Eurc	pean	model						
			I	V V II I	пса-а	CCHCR1	HLA-C	I	HLA-B	I		пса-р	MICA				דטוטד	TAP2	I
		Linkage disequilibrium (W ²) in South Asian dataset (upper triangular); in European dataset lower triangular)	rs12660712 (A,C)	rs1736927 (A,C)	rs1655901 (C,T)	rs2844626 (A,T)	HLA-C*06:02 (6*02,other)	rs9378158 (A,G)	HLA-B aa-67 (C,F,M,S,Y)	rs114811870 (C,T)	rs2853998 (C,T)	rs9266716 (C,T)	rs147415279 (AA,other)	rs566864214 (A,G)	rs2734588 (C,other)	rs112540072 (A,G)	rs9271539 (A,G)	rs28573770 (A,T)	rs3104406 (A,G)
	_	rs12660712 (A,C)	_	0.02	0.08	0.01	0.00	0.00	0.02	0.00	0.00	0.11	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	ні д_д	rs1736927 (A,C)	0.03	-	0.02	0.01	0.02	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		rs1655901 (C,T)	0.03	0.02	-	0.03	0.05	0.00	0.04	0.00	0.00	0.05	0.00	0.00	0.02	0.00	0.01	0.00	0.00
_	CCHCR1	rs2844626 (A,T)	0.00	0.07	0.01	_	0.44	0.07	0.14	0.00	0.03	0.01	0.00	0.00	0.02	0.00	0.01	0.00	0.01
odel	HLA-C	HLA-C*06:02 (6*02,other)	0.00	0.00	0.01	0.24	-	0.03	0.35	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.03	0.00	0.01
Ĕ	_	rs9378158 (A,G)	0.00	0.00	0.00	0.04	0.01	-	0.06	0.00	0.01	0.01	0.00	0.00	0.02	0.00	0.00	0.00	0.01
ean	HLA-B	HLA-B aa-67 (C,F,M,S,Y)	0.00	0.05	0.05	0.36	0.37	0.03	-	0.01	0.28	0.19	0.00	0.01	0.07	0.02	0.07	0.01	0.02
o D	_	rs114811870 (C,T)	0.00	0.00	0.01	0.02	0.01	0.00	0.23	-	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.35	0.00
В		rs2853998 (C,T)	0.01	0.01	0.01	0.13	0.01	0.01	0.33	0.02	-	0.04	0.00	0.00	0.01	0.00	0.01	0.00	0.01
	TILA-D	rs9266716 (C,T)	0.00	0.02	0.03	0.04	0.01	0.00	0.35	0.00	0.22	-	0.00	0.00	0.00	0.00	0.01	0.00	0.01
Asia	MICA	rs147415279 (AA,other)	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.01	0.00
lth		rs566864214 (A,G)	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00
SoL		rs2734588 (C,other)	0.00	0.00	0.02	0.02	0.02	0.00	0.06	0.01	0.02	0.05	0.00	0.00	-	0.00	0.00	0.00	0.00
		rs112540072 (A,G)	0.00	0.00	0.00	0.00	0.01	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.01	-	0.01	0.00	0.03
		rs9271539 (A,G)	0.00	0.01	0.01	0.01	0.03	0.01	0.09	0.00	0.01	0.06	0.00	0.00	0.01	0.03	-	0.00	0.00
	TAP2	rs28573770 (A,T)	0.00	0.00	0.01	0.00	0.00	0.00	0.05	0.21	0.00	0.00	0.00	0.00	0.00	0.00	0.01	-	0.00
	_	rs3104406 (A,G)	0.00	0.00	0.00	0.00	0.07	0.00	0.12	0.01	0.02	0.00	0.00	0.00	0.05	0.03	0.00	0.01	-

Figure S36. Pairwise linkage disequilibrium among variants of the transethnic association model for the MHC region. Variants are listed in the order of their position on chromosome 6, with the alleles used to compute LD in parentheses after each variant. LD values on the upper and lower triangulars are for the multiallelic W_n^2 coefficient computed in the South Asian and European datasets, respectively, which reduces to the usual r^2 coefficient when both variants of a pair are biallelic. The magnitude of LD values is accentuated with red shading on a 0 (white) to 1 (dark red) scale. Variants are labeled with a gene name if the variant changes that gene's protein sequence or if it is in substantial LD ($W_n^2 \ge 0.4$) with a protein-changing variant for the gene. Variant ID rs147415279 is shorthand for a biallelic split of two biallelic indels (rs147415279 and rs559509014) that were genotyped as a single triallelic indel by the 1000 Genomes Project.

								Ει	iropea	n mod	el						
				пся-я	I		HLA-C				пса-р		MICA		וובא-טואט	HLA-DQA1	
			rs371194629 (–,14mer)	rs1655901 (C,T)	rs75881311 (T,other)	rs1128175 (A,G)	HLA-C*06:02 (6*02,other)	rs41543814 (C,T)	rs72866766 (C,T)	HLA-B aa-171 (H,Y)	HLA-B aa-67 (C,F,M,S,Y)	rs137854633 (–,C,T)	rs147415279 (AA,other)	rs6935999 (A,G)	rs4947340 (C,T)	HLA-DQA1 aa52 (R,other)	
	HLA-A	rs9260313 (C,T)	0.05	0.70	0.00	0.00	0.06	0.00	0.00	0.00	0.02	0.01	0.00	0.00	0.00	0.01	
vsia el	HLA-C	HLA-C*06 (C*06,other)	0.08	0.05	0.00	0.07	1.00	0.13	0.02	0.06	0.35	0.21	0.00	0.00	0.06	0.02	$LD (W_n^2)$
th A nod	_	rs2442752 (C,T)	0.03	0.02	0.00	0.03	0.10	0.00	0.04	0.14	0.17	0.11	0.00	0.00	0.02	0.02	in South
nog	MICA	rs2428489 (A,C,T)	0.01	0.03	0.00	0.02	0.08	0.06	0.03	0.16	0.29	0.04	0.00	0.00	0.06	0.00	Asians
0,	HLA-DRB1	rs139451799 (–,other)	0.01	0.00	0.00	0.01	0.04	0.01	0.00	0.01	0.05	0.01	0.00	0.00	0.00	0.10	
	HLA-A	rs9260313 (C.T)	0.03	0.49	0.00	0.01	0.01	0.01	0.02	0.01	0.04	0.01	0.00	0.01	0.00	0.00	
lian	HLA-C	HLA-C*06 (C*06.other)	0.01	0.01	0.00	0.05	1.00	0.11	0.01	0.02	0.37	0.26	0.00	0.00	0.07	0.04	$ID(W^2)$
As ר ode	_	rs2442752 (C.T)	0.01	0.01	0.00	0.00	0.04	0.01	0.04	0.08	0.36	0.06	0.00	0.00	0.01	0.03	in Euro-
Dut Dut	MICA	rs2428489 (A.C.T)	0.01	0.03	0.01	0.02	0.03	0.00	0.11	0.02	0.32	0.02	0.00	0.02	0.04	0.03	peans
Ň	HLA-DRB1	rs139451799 (–,other)	0.01	0.00	0.00	0.08	0.01	0.01	0.00	0.00	0.15	0.01	0.00	0.00	0.09	0.11	

Figure S37. Pairwise linkage disequilibrium between variants of the South Asian and European association models for the MHC region.

Variants are listed in the order of their position on chromosome 6, with the alleles used to compute LD in parentheses after each variant. LD values for the top five rows and bottom five rows are the multiallelic W_n^2 coefficient computed in the South Asian and European datasets, respectively, which reduces to the usual r^2 coefficient when both variants of a pair are biallelic. The magnitude of LD values is accentuated with red shading on a 0 (white) to 1 (dark red) scale. Variants are labeled with a gene name if the variant changes that gene's protein sequence or if it is in substantial LD ($W_n^2 \ge 0.4$) with a protein-changing variant for the gene. Variant ID rs147415279 is shorthand for a biallelic split of two biallelic indels (rs147415279 and rs559509014) that were genotyped as a single triallelic indel by the 1000 Genomes Project.

Figure S38. Plots comparing association effect sizes in South Asians vs. Europeans for all variants in the European regression model for the MHC region. The log(OR) of each of the 14 variants in the European model as estimated in the South Asian dataset is plotted against their estimates in the European dataset. The vertical and horizontal bars show the 95% confidence intervals for these estimates in each dataset. Multiallelic variants with *m* alleles are represented by the set of *m*-1 decomposed biallelic variants used for the joint Wald test. Panel A shows OR estimates estimated in the full model containing all variants, and panel B shows unconditional OR estimates for each variant with no other variants in the regression model. Green and red lines depict a 1:1 correspondence and a linear fit, respectively. The Pearson correlation coefficient and its significance are shown in the upper left corner of each plot.

									South	Asian	+ Euro	pean	model						
			Ι	V V III	חנא-א	CCHCR1	HLA-C	Ι	HLA-B	Ι		<u>а-Рл</u> и	MICA	I	I	1990 ע	חנא-טאסו	TAP2	Ι
		Linkage disequilibrium (W _n ²) in South Asian dataset	rs12660712 (A,C)	rs1736927 (A,C)	rs1655901 (C,T)	rs2844626 (A,T)	HLA-C*06:32 (6*02,other)	rs9378158(A,G)	HLA-B aa-67 (C,F,M,S,Y)	rs114811870 (C,T)	rs2853998 (C,T)	rs9266716 (C,T)	rs147415279 (AA,other)	rs566864214 (A,G)	rs2734588 (C, other)	rs112540072 (A,G)	rs9271539 (A,G)	rs28573770 (A,T)	rs3104406 (A,G)
del	HLA-A	rs9260313 (C,T)	0.11	0.12	0.70	0.05	0.06	0.00	0.02	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.01	0.00	0.00
ŭ	HLA-C	HLA-C*06 (C*06,other)	0.00	0.02	0.05	0.44	1.00	0.03	0.35	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.03	0.00	0.01
Asian	—	rs2442752 (C,T)	0.03	0.00	0.02	0.00	0.10	0.05	0.17	0.00	0.01	0.02	0.00	0.00	0.00	0.00	0.04	0.00	0.00
lth ∌	MICA	rs2428489 (A,C,T)	0.22	0.01	0.03	0.23	0.08	0.01	0.29	0.00	0.15	0.51	0.00	0.00	0.02	0.01	0.01	0.00	0.03
Sol	HLA-DRB1	rs139451799 (–,other)	0.00	0.01	0.00	0.01	0.04	0.00	0.05	0.00	0.02	0.01	0.00	0.00	0.01	0.01	0.09	0.00	0.11

Figure S39. Pairwise linkage disequilibrium between variants of the South Asian and transethnic association models for the MHC region. Variants are listed in the order of their position on chromosome 6, with the alleles used to compute LD in parentheses after each variant. LD values are for the multiallelic W_n^2 coefficient computed in the South Asian dataset, which reduces to the usual r^2 coefficient when both variants of a pair are biallelic. The magnitude of LD values is accentuated with red shading on a 0 (white) to 1 (dark red) scale. Variants are labeled with a gene name if the variant changes that gene's protein sequence or if it is in substantial LD ($W_n^2 \ge 0.4$) with a protein-changing variant for the gene. Variant ID rs147415279 is shorthand for a biallelic split of two biallelic indels (rs147415279 and rs559509014) that were genotyped as a single triallelic indel by the 1000 Genomes Project.

									South	Asian	+ Euro	pean	model						
			Ι	V V III	K-K-111	CCHCR1	HLA-C	Ι	HLA-B	I		ט-א-טו	MICA	Ι	I		וורא-טוטב	TAP2	I
		Linkage disequilibrium (W _n ²) in European dataset	rs12660712 (A,C)	rs1736927 (A,C)	rs1655901 (C,T)	rs2844626 (A,T)	HLA-C*06:02 (6*02,other)	rs9378158 (A,G)	HLA-B aa-67 (C,F,M,S,Y)	rs114811870 (C,T)	rs2853998 (C,T)	rs9266716 (C,T)	rs147415279 (AA,other)	rs566864214 (A,G)	rs2734588 (C,other)	rs112540072 (A,G)	rs9271539 (A,G)	rs28573770 (A,T)	rs3104406 (A,G)
	HLA-A	rs371194629 (–,14mer) rs1655901 (CT)	0.03	0.73	0.00	0.07	0.01 0.01	0.00	0.07	0.00 0.01	0.01	0.03 0.03	0.00	0.00	0.00	0.00	0.01 0.01	0.00 0.01	0.00
		rs75881311 (T,other)	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.55	0.00	0.00	0.00	0.00	0.00
odel	HLA-C	rs1128175 (A,G) HLA-C*06:02 (6*02,other) rs41543814 (C,T)	0.00 0.00 0.00	0.02 0.00 0.03	0.02 0.01 0.00	0.00 0.24 0.43	0.04 - 0.11	0.02 0.01 0.01	0.43 0.37 0.19	0.01 0.01 0.05	0.06 0.01 0.00	0.09 0.01 0.01	0.00 0.00 0.00	0.01 0.00 0.00	0.03 0.02 0.00	0.03 0.01 0.00	0.02 0.03 0.00	0.00 0.00 0.01	0.05 0.07 0.00
European m	HLA-B	rs72866766 (C,T) HLA-B aa-171 (H,Y) HLA-B aa-67 (C,F,M,S,Y) rs137854633 (–,C,T)	0.00 0.00 0.00 0.00	0.01 0.00 0.05 0.01	0.01 0.01 0.05 0.00	0.01 0.03 0.36 0.07	0.01 0.02 0.37 0.26	0.01 0.02 0.03 0.01	0.17 0.06 - 0.18	0.00 0.24 0.23 0.03	0.01 0.00 0.33 0.06	0.04 0.03 0.35 0.13	0.00 0.00 0.01 0.00	0.03 0.00 0.03 0.00	0.10 0.00 0.06 0.21	0.00 0.00 0.02 0.02	0.00 0.00 0.09 0.01	0.00 0.05 0.05 0.01	0.00 0.01 0.12 0.04
	MICA	rs147415279 (AA,other)	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
	HLA-DRB1	rs6935999 (A,G) rs4947340 (C,T)	0.00 0.00	0.00 0.00	0.01 0.00	0.00 0.00	0.00 0.07	0.00 0.00	0.04 0.12	0.18 0.01	0.00 0.02	0.00 0.01	0.00 0.00	0.00 0.00	0.00	0.00 0.02	0.01 0.24	0.81 0.02	0.01 0.12
	DQA1	HLA-DQA1 aa-52 (R,other)	0.00	0.00	0.01	0.00	0.04	0.00	0.08	0.01	0.00	0.06	0.00	0.00	0.02	0.02	0.13	0.01	0.01

Figure S40. Pairwise linkage disequilibrium between variants of the European and transethnic association models for the MHC region.

Variants are listed in the order of their position on chromosome 6, with the alleles used to compute LD in parentheses after each variant. LD values are for the multiallelic W_n^2 coefficient computed in the European dataset, which reduces to the usual r^2 coefficient when both variants of a pair are biallelic. The magnitude of LD values is accentuated with red shading on a 0 (white) to 1 (dark red) scale. Variants are labeled with a gene name if the variant changes that gene's protein sequence or if it is in substantial LD ($W_n^2 \ge 0.4$) with a protein-changing variant for the gene. Variant ID rs147415279 is shorthand for a biallelic split of two biallelic indels (rs147415279 and rs559509014) that were genotyped as a single triallelic indel by the 1000 Genomes Project.

Figure S41. Comparisons between the number of population-specific LD proxies, significance of association, and size of credible interval sets for the psoriasis risk loci. a) The number of LD proxies in 1KGP phase 3 data for each non-MHC psoriasis-associated signal from the transethnic meta-analysis. X-axis shows the number of proxies from EUR, and the y-axis shows the number of proxies from SAS. Figure labels: Trans.Adv.CI: signal that has advantage (i.e. lower number of markers) in the 95% credible interval set in the transethnic meta-analysis; Trans.Adv.stat: signal that has advantage (more significant) in the transethnic meta-analysis; Trans.95CI: the number of markers in the 95% credible interval set in the transethnic meta-analysis. The gray dashed line represents a linear fit, and the black line represents a 1:1 relationship. **b)** The log₂(ratio) of the number of LD proxies in EUR vs. SAS (x-axis) is plotted against the log10(p-value) of each marker in the transethnic meta-analysis (y-axis). **c)** The log₂(ratio) of the number of LD proxies in EUR vs. SAS (x-axis) is plotted against the ratio of the number of markers in the 95% credible interval in the EUR vs. transethnic meta-analysis (y-axis). In panels b and c, the blue line represents the linear fit, and the shaded area represents 95% confidence interval of the fitted linear model.

Figure S42. Scatterplots comparing strength of linkage disequilibrium between South Asians and Europeans for all MHC variants selected by stepwise association analysis for South Asians, Europeans, or South Asians and Europeans combined. Panels A and B show results for the W_n^2 and ε' multiallelic coefficients of LD, respectively. For the three multiallelic variants in the regression models, all biallelic split variants are analyzed in addition to the full multiallelic locus. The green and red lines depict a theoretical 1:1 linear correspondence and an empirical linear regression, respectively. The Pearson correlation coefficient and its significance is shown in the upper left corner of each plot, along with the p-value for testing the null hypothesis that the slope (m) of the linear regression fit is not equal to 1.

Figure S43. Scatterplots of the relationship of significance of MHC association with variant imputation quality. For variants in substantial linkage disequilibrium ($W_n^2 \ge 0.4$) with HLA-C*06, which is the most strongly associated locus in the full association model for all three ethnic datasets, the relationship of variant association ($-\log_{10}$ of full model p-value) with weighted mean variant imputation quality (mean Mach-r², effective sample size of each study in dataset as weights), is shown. Linear and loess fits are also plotted (red and green lines, respectively), and the Pearson *r* and Spearman *p* correlation coefficients and their significances are shown in the upper left corner of each plot. Panels A, B and C show results for the South Asian, European and transethnic datasets, respectively

		Ν	o. individua	als		No.	Genotyped S	5NPs ^b	
Study	Ancestry	PsV	Control	Total	N _{eff} ^(a)	classical MHC ^c	flanking MHC ^c	chr1–22	Type of Genotyping Microarray ^d
South Asian, batch 1	Indian	952	855	1807	1802	6533	5201	909,101	exome + genome-wide
South Asian, batches 2+3	Indian, Pakistani	1638	865	2503	2264	3615	2851	508,389	exome + genome-wide
CASP GWAS	European	1336	1367	2703	2703	1235	1553	438,609	genome-wide
Exomechip	European	3845	4020	7865	7861	4547	2186	461,092	exome + genome-wide + custom PsV fine-mapping
GAPC Immunochip	European	2815	6730	9545	7939	1248	1603	489,501	autoimmune & inflammatory disease loci
Genizon GWAS	European	760	992	1752	1721	6032	2734	169,411	genome-wide
Kiel GWAS	European	464	1135	1599	1317	1344	1654	504,625	genome-wide
PAGE Immunochip	European	3167	7380	10,547	8864	5932	2665	160,228	autoimmune & inflammatory disease loci
PsA GWAS	European	1402	1398	2800	2800	10,929	16,961	972,453	genome-wide
WTCCC2 GWAS	European	2178	5172	7350	6130	1541	1737	515,579	genome-wide
All	_	18,557	29,914	48,471	43,401	_	_	_	_

Table S1. Characteristics of the 10 studies analyzed for psoriasis associations.

Abbreviations: CASP, Collaborative Association Study of Psoriasis; GAPC, Genetic Analysis of Psoriasis Consortium; GWAS, genome-wide association study; *N*_{eff}, effective sample size; PAGE, Psoriasis Association of Genetics Extension; PsA, psoriatic arthritis; PsV, psoriasis vulgaris; SNP, single nucleotide polymorphism; WTCCC2, Wellcome Trust Case Control Consortium 2.

^aEffective sample size, computed as $4/(1/N_{PSV} + 1/N_{control})$, is the size of a study with a balanced number of cases and controls having power to detect association equal to that of the actual study.

^bAfter applying all quality control measures.

^cMHC regions: classical (chr6:29.64–33.12 Mb), flanking (chr6:24–29.64 + 33.12–36 Mb); coordinates based on hg19 reference assembly. ^dMicroarrays for South Asian studies: batch1, Illumina OmniExpressExome-8v1-1_B; batch 2, Illumina HumanCoreExome-12v1-1_B; batch 3, Illumina HumanCoreExome-24v1-0_A.

	Ν	Io. samples in	study with ger	notyped 1/2-f	ield HLA allele	es
Psoriasis Study	HLA-A	HLA-B	HLA-C	HLA-DQA1	HLA-DQB1	HLA-DRB1
CASP GWAS	112/112	116/116	558/558	NA	NA	NA
Exomechip	1155/175	1159/904	1714/1714	174/174	91/89	91/0
PAGE Immunochip	96/0	117/16	121/86	NA	86/13	81/0
PsA GWAS	1369/0	1375/995	1392/1391	NA	1366/820	1373/494
Total	2732/287	2767/2031	3785/3749	174/174	1543/922	1545/494

Table S2. Validation sets used to assess accuracy of imputation for European ancestry individuals.

Abbreviations: CASP, Collaborative Association Study of Psoriasis; GWAS, genome-wide association study; NA, not applicable; PAGE, Psoriasis Association of Genetics Extension; PsA, psoriatic arthritis.

			No. covariates		
Study	Ancestry	PC	Geographic ^a	Total	λ _{GC} b
South Asian, batch 1	Indian	5	0	5	1.020
South Asian, batches 2+3	Indian, Pakistani	9	0	9	1.024
CASP GWAS	European	5	2	7	1.008
Exomechip	European	7	4	11	1.015
GAPC Immunochip	European	16	5	21	1.048
Genizon GWAS	European	4	0	4	1.000
Kiel GWAS	European	3	0	3	1.036
PAGE Immunochip	European	6	2	8	1.013
PsA GWAS	European	4	2	6	1.008
WTCCC2 GWAS	European	7	0	7	1.037

 Table S3. Control of population stratification for 10 studies analyzed for psoriasis associations in the

 MHC region.

Abbreviations: CASP, Collaborative Association Study of Psoriasis; GAPC, Genetic Analysis of Psoriasis Consortium; GWAS, genome-wide association study; PAGE, Psoriasis Association of Genetics Extension; PC, principal component; PsA, psoriatic arthritis; WTCCC2, Wellcome Trust Case Control Consortium 2. ^aNumber of geographic cohort indicator covariables after dropping one to avoid complete linear dependency.

^bRobust estimate of the genomic control scaling parameter⁴, a measure of residual population structure, based on association testing of microarray genotypes with genome-wide coverage.

		l² index (%) ^b	Coch	ran Q test p-v	alue ^c
Psoriasis risk variant ^a	SAS	EUR	SAS+EUR	SAS	EUR	SAS+EUR
1:8278116_G/A	0.0	6.1	0.0	4.42E-01	3.83E-01	5.29E-01
1:12054030_G/A	57.7	0.0	14.5	1.24E-01	5.19E-01	3.10E-01
1:24519437_C/A	46.7	0.7	13.7	1.71E-01	4.24E-01	3.17E-01
1:25297184_G/A	0.0	0.0	0.0	9.14E-01	9.53E-01	9.55E-01
1:67713346_T/C	0.0	0.0	0.0	3.83E-01	4.29E-01	5.27E-01
1:152593437_T/C	0.0	43	26.9	9.53E-01	9.18E-02	1.97E-01
1:168507463_C/T	0.0	24.2	15.4	8.19E-01	2.36E-01	3.01E-01
1:206648995_G/A	0.0	0.0	0.0	3.84E-01	5.94E-01	5.58E-01
2:61068822_C/CA	13.7	0.0	0.0	2.82E-01	9.48E-01	7.05E-01
2:62560332_A/G	0.0	0.0	0.0	5.74E-01	4.52E-01	5.52E-01
2:163110536_A/G	0.0	0.0	27.3	4.52E-01	8.42E-01	1.93E-01
3:16996035_G/A	0.0	0.0	0.0	8.34E-01	9.47E-01	9.87E-01
3:101616982_T/C	16.0	10.3	11.3	2.75E-01	3.50E-01	3.38E-01
5:96120198_TAAAC/T	0.0	41.8	28.0	5.17E-01	1.00E-01	1.86E-01
5:131996445_A/G	0.0	4.4	0.0	9.50E-01	3.96E-01	5.05E-01
5:150467189_G/C	0.0	0.0	0.0	8.27E-01	9.53E-01	9.08E-01
5:158829527_A/T	0.0	0.0	0.0	6.40E-01	8.54E-01	9.15E-01
6:577820_A/G	0.0	44.2	45.6	8.22E-01	8.38E-02	5.64E-02
6:20689945_G/A	11.3	57.0	53.0	2.88E-01	2.26E-02	2.38E-02
6:31269946_T/A	0.0	93.8	93.3	5.81E-01	2.85E-21	1.36E-24
6:111913262_C/T	0.0	69.5	60.8	9.73E-01	1.74E-03	6.26E-03
6:138197824_C/T	0.0	17.2	0.0	6.33E-01	2.94E-01	4.64E-01
6:159506600_C/T	0.0	0.0	0.0	5.35E-01	6.56E-01	7.01E-01
7:37385365_A/G	0.0	0.0	0.6	4.78E-01	4.82E-01	4.32E-01
9:32523737_T/C	0.0	0.0	0.0	5.87E-01	5.93E-01	6.83E-01
9:110814693_C/G	52.2	29.7	26.5	1.48E-01	1.91E-01	1.99E-01
10:75594050_G/T	0.0	12.1	10.7	3.67E-01	3.36E-01	3.44E-01
10:81043743_A/G	0.0	7.5	0.0	4.24E-01	3.72E-01	4.44E-01
10:102039458_G/A	0.0	22.5	0.0	6.87E-01	2.65E-01	4.61E-01
11:64123488_TG/T	53.4	0.0	0.0	1.43E-01	6.23E-01	5.80E-01
11:109973130_C/A	0.0	0.0	0.0	4.21E-01	9.44E-01	6.18E-01
11:128385169_G/A	11.3	0.0	0.0	2.88E-01	7.86E-01	6.30E-01
12:56750204_C/T	0.0	59.0	52.3	5.47E-01	1.69E-02	2.64E-02
12:112007756_C/T	0.0	42.0	35.8	9.06E-01	9.84E-02	1.21E-01
13:50794228_G/A	0.0	0.0	0.0	4.05E-01	9.18E-01	9.12E-01

Table S4. Heterogeneity of log(OR) effect sizes across studies in each meta-analysis.

		l² index (%)1	Coch	ıran Q test p-v	alue²
Psoriasis risk variant ³	SAS	EUR	SAS+EUR	SAS	EUR	SAS+EUR
13:99950260_G/A	0.0	14.9	0.0	9.82E-01	3.13E-01	4.85E-01
14:35839236_G/C	0.0	0.0	8.3	4.24E-01	5.72E-01	3.66E-01
14:98667928_T/C	0.0	25.7	8.8	9.64E-01	2.24E-01	3.61E-01
15:31637569_G/C	0.0	0.0	0.0	4.56E-01	6.60E-01	7.25E-01
16:11344903_C/T	0.0	0.0	0.0	7.32E-01	5.03E-01	5.78E-01
16:31057173_C/CAA	46.4	19.5	15.9	1.72E-01	2.75E-01	2.96E-01
17:26124908_G/A	0.0	0.0	0.0	4.33E-01	6.01E-01	5.56E-01
17:73851113_C/A	0.0	0.0	0.0	4.67E-01	7.98E-01	8.85E-01
18:12857002_G/T	0.0	0.0	0.0	9.33E-01	7.87E-01	9.13E-01
18:51791307_T/TTG	0.0	0.0	0.0	7.35E-01	4.49E-01	6.28E-01
19:10463118_G/C	0.0	0.0	0.0	3.55E-01	9.00E-01	6.11E-01
19:10819967_C/T	6.6	45.7	51.2	3.01E-01	7.48E-02	3.03E-02
19:49210869_A/G	0.0	0.0	6.7	6.28E-01	5.39E-01	3.80E-01
20:48561280_T/C	0.0	0.0	0.0	6.70E-01	6.39E-01	7.98E-01
22:21917479_C/T	53.3	0.0	0.0	1.44E-01	5.33E-01	5.15E-01

Table S4. Continued.

Abbreviations: EUR, European; SAS, South Asian.

^aPsoriasis risk variants use a chrom:hg19_position_REF/ALT naming convention.

^bl² index estimates the percentage of variability in the log(OR) effect sizes across studies that is due to real rather than chance differences.

^cCochran's Q test is an extension of the McNemar test that tests for heterogeneity of the log(OR) across studies in each meta-analysis. Nominal p-values are reported and can be multiplied by 50 to provide a Bonferroni correction for multiple testing.

	Establi	shed psoriasis	locus		E	UR 95% Bay	esian Cl		Transethnic 95% Bayesian Cl			
				No.	Bes	t marker		No.	Bes	t marker		No.
ID	Chr	Start pos	End pos	markers	Chr:pos	p-value	РР	markers	Chr:pos	p-value	РР	markers
chr1:8268095	1	8068095	8468095	1222	1:8282233	9.59E-11	32%	16	1:8278116	1.41E-11	30%	28
chr1:12053100	1	11853100	12253100	1475	1:12047028	1.29E-07	4%	83	1:12054030	1.22E-09	7%	23
chr1:24518643	1	24318643	24718643	1285	1:24513154	3.16E-18	30%	17	1:24519437	5.43E-21	22%	14
chr1:25293084	1	25093084	25493084	1267	1:25297184	2.14E-18	24%	43	1:25297184	1.17E-21	24%	43
chr1:67726104	1	67526104	67926104	1299	1:67707690	4.56E-24	21%	11	1:67713346	4.22E-25	21%	10
chr1:69788482	1	69588482	69988482	1065	1:69790226	3.87E-05	9%	192	1:69790226	6.81E-05	7%	281
chr1:78450517	1	78250517	78650517	1140	1:78444764	6.34E-07	79%	10	1:78444764	6.34E-07	80%	11
chr1:152590187	1	152390187	152790187	1238	1:152593549	1.44E-27	5%	25	1:152593437	6.30E-31	5%	25
chr1:168507463	1	168307463	168707463	1466	1:168507463	5.56E-07	61%	30	1:168507463	1.68E-09	91%	10
chr1:172675097	1	172475097	172875097	878	1:172675097	4.83E-07	8%	15	1:172674998	5.84E-07	8%	15
chr1:197671115	1	197471115	197871115	704	1:197814685	6.52E-06	11%	240	1:197704717	2.21E-06	6%	124
chr1:206655331	1	206455331	206855331	866	1:206648995	3.26E-09	28%	7	1:206648995	4.47E-09	28%	8
chr2:61083506	2	60883506	61283506	982	2:61072205	1.30E-23	6%	26	2:61068822	3.76E-23	12%	33
chr2:62551472	2	62351472	62751472	1284	2:62552321	4.21E-11	19%	9	2:62560332	8.59E-13	34%	11
chr2:163260691	2	163060691	163460691	575	2:163110536	1.76E-22	80%	2	2:163110536	1.14E-20	94%	2
chr3:16996035	3	16796035	17196035	1298	3:17011474	1.30E-12	14%	56	3:16996035	3.31E-13	7%	56
chr3:101663555	3	101463555	101863555	1320	3:101616982	1.08E-09	40%	53	3:101616982	1.16E-09	53%	56
chr3:189615475	3	189415475	189815475	1616	3:189662658	6.66E-07	75%	60	3:189662658	1.26E-07	77%	22
chr5:40370724	5	40170724	40570724	1535	5:40435058	8.55E-05	3%	167	5:40435058	0.00032	2%	456
chr5:96119273	5	95919273	96319273	1822	5:96120198	2.32E-20	19%	6	5:96120198	3.31E-22	19%	6
chr5:131996445	5	131796445	132196445	815	5:131996445	1.16E-17	40%	4	5:131996445	1.33E-18	52%	4
chr5:150467189	5	150267189	150667189	1700	5:150469973	1.72E-54	23%	8	5:150467189	7.25E-61	39%	8
chr5:158829527	5	158629527	159029527	1132	5:158829527	5.39E-80	100%	1	5:158829527	2.95E-81	99%	1
chr6:577820	6	377820	777820	1618	6:577820	6.44E-11	97%	1	6:577820	4.79E-10	90%	6
chr6:20678430	6	20478430	20878430	1530	6:20689945	6.34E-13	30%	7	6:20689945	7.22E-13	26%	9
chr6:111913262	6	111713262	112113262	1288	6:111929862	2.47E-45	71%	2	6:111913262	1.04E-48	90%	2
chr6:138197824	6	137997824	138397824	1226	6:138197824	1.15E-25	43%	4	6:138197824	8.11E-28	45%	4
chr6:159506600	6	159306600	159706600	1860	6:159506600	5.26E-09	41%	14	6:159506600	6.36E-09	30%	13
chr7:37386237	7	37186237	37586237	1446	7:37385365	1.19E-09	41%	5	7:37385365	3.00E-09	44%	25
chr9:32523737	9	32323737	32723737	1059	9:32523737	1.03E-10	53%	26	9:32523737	2.36E-12	96%	1
chr9:110817020	9	110617020	111017020	1470	9:110778738	8.47E-10	8%	80	9:110814693	6.38E-10	5%	80
chr9:117558703	9	117358703	117758703	1390	9:117611743	1.85E-05	14%	293	9:117611743	1.38E-05	28%	483
chr10:64369999	10	64169999	64569999	1416	10:64494348	1.04E-05	3%	127	10:64510934	9.61E-06	5%	143
chr10:75599127	10	75399127	75799127	632	10:75599127	1.49E-12	13%	13	10:75594050	1.64E-12	15%	14
chr10:81032532	10	80832532	81232532	1582	10:81043743	3.25E-11	47%	16	10:81043743	1.62E-11	28%	26

Table S5. Credible interval analysis of the EUR and transethnic meta-analyses for established non-MHC psoriasis risk loci.

Table S5. Continu	ued.
-------------------	------

	Establi	shed psoriasis	locus		EUR 95% Bayesian Cl				Trans	ethnic 95%	Bayesian C	1
				No.	Best	t marker		No.	Bes	t marker		No.
ID	Chr	Start pos	End pos	markers	Chr:pos	p-value	РР	markers	Chr:pos	p-value	РР	markers
chr10:89824771	10	89624771	90024771	1075	10:89637201	2.57E-07	68%	24	10:89637201	2.57E-07	59%	20
chr10:102038641	10	101838641	102238641	1157	10:102039458	5.87E-07	6%	57	10:102039458	4.11E-08	5%	58
chr11:64135298	11	63935298	64335298	846	11:64122279	1.62E-09	8%	55	11:64123488	9.57E-11	7%	53
chr11:65593444	11	65393444	65793444	1053	11:65656564	7.27E-07	17%	109	11:65656564	4.51E-07	14%	93
chr11:109962432	11	109762432	110162432	927	11:109959638	2.93E-17	13%	19	11:109973130	4.07E-16	8%	54
chr11:128406438	11	128206438	128606438	1174	11:128410264	3.99E-11	17%	15	11:128385169	1.02E-13	59%	11
chr12:10597207	12	10397207	10797207	1591	12:10594848	5.62E-06	2%	115	12:10573094	5.78E-06	4%	138
chr12:56750204	12	56550204	56950204	635	12:56750204	4.28E-21	3%	80	12:56750204	6.05E-21	3%	78
chr12:112059557	12	111859557	112259557	413	12:112007756	1.63E-07	25%	10	12:112007756	1.76E-08	25%	9
chr12:122668326	12	122468326	122868326	844	12:122661791	8.31E-06	12%	158	12:122661791	9.42E-06	8%	246
chr13:40333369	13	40133369	40533369	1289	13:40302608	1.39E-05	3%	169	13:40302608	6.27E-06	3%	149
chr13:45334194	13	45134194	45534194	968	13:45322344	1.24E-07	29%	6	13:45322344	2.47E-07	27%	7
chr13:50811220	13	50611220	51011220	1076	13:50811220	4.50E-09	20%	44	13:50794228	7.24E-09	19%	47
chr13:99950260	13	99750260	100150260	1438	13:99950260	5.34E-09	8%	28	13:99950260	9.52E-10	7%	42
chr14:35832666	14	35632666	36032666	1499	14:35832666	8.18E-20	86%	5	14:35839236	3.40E-22	100%	1
chr14:98668778:D	14	98468778	98868778	1957	14:98667928	3.08E-08	14%	55	14:98667928	3.18E-08	9%	54
chr15:31637666	15	31437666	31837666	1346	15:31637569	1.37E-09	50%	3	15:31637569	6.93E-10	52%	3
chr16:11365500	16	11165500	11565500	1981	16:11344903	1.20E-10	28%	9	16:11344903	1.05E-10	25%	5
chr16:31004812	16	30804812	31204812	533	16:31057173	2.23E-14	20%	76	16:31057173	2.29E-15	24%	56
chr17:26124908	17	25924908	26324908	1143	17:26124908	1.89E-21	100%	1	17:26124908	3.55E-22	100%	1
chr17:40561579	17	40361579	40761579	838	17:40536575	7.34E-09	17%	35	17:40536575	1.59E-07	12%	136
chr17:73890363	17	73690363	74090363	1011	17:73851113	1.71E-08	11%	43	17:73851113	7.27E-09	16%	47
chr17:78178893	17	77978893	78378893	1622	17:78178830	1.31E-06	13%	12	17:78178893	4.13E-07	16%	11
chr18:12857002	18	12657002	13057002	1381	18:12875316	6.92E-09	47%	3	18:12857002	1.57E-09	55%	3
chr18:51819750	18	51619750	52019750	1243	18:51791307	2.22E-08	2%	74	18:51791307	1.43E-09	3%	75
chr19:10463118	19	10263118	10663118	1200	19:10463118	2.02E-41	100%	1	19:10463118	4.78E-41	100%	1
chr19:10818092	19	10618092	11018092	1101	19:10819967	5.21E-12	14%	18	19:10819967	5.09E-11	14%	21
chr19:49206417	19	49006417	49406417	1456	19:49210869	2.46E-09	11%	33	19:49210869	1.42E-08	9%	34
chr20:48556229	20	48356229	48756229	1360	20:48590791	1.08E-20	9%	41	20:48561280	3.43E-22	5%	37
chr21:36470865	21	36270865	36670865	1287	21:36484440	2.95E-05	6%	150	21:36484440	1.56E-05	10%	131
chr22:21979289	22	21779289	22179289	802	22:21917450	1.69E-08	2%	86	22:21917479	2.62E-09	5%	73

Abbreviations: Chr, chromosome; Cl, credible interval; EUR, European; pos, position; PP, posterior probability.

	Est	tablishe	ed psoriasis loc	us		EUR 95	5% Bayesian	CI of inde	pendent sigr	nal	EUR + SAS	95% Bayesia	an CI of in	dependent	signal
					No	Be	st marker		No	Length	Bes	t marker		No	Length
ID	Rnd	Chr	Start pos	End Pos	Markers	Chr:pos	P-value	PP	markers	(bp)	Chr:pos	P-value	PP	markers	(bp)
chr1:67726104	1	1	67526104	67926104	1074	1:67623728	2.83E-13	8%	18	24349	1:67624304	9.68E-13	9%	17	24349
chr1:67726104	2	1	67526104	67926104	1060	1:67741314	8.35E-13	15%	13	18189	1:67705574	1.28E-12	53%	2	711
chr2:163260691	1	2	163060691	163460691	323	2:163128824	1.16E-17	100%	1	0	2:163128824	9.69E-17	100%	1	0
chr5:158829527	1	5	158629527	159029527	659	5:158777001	2.66E-52	13%	13	40751	5:158787385	3.04E-62	23%	11	40450
chr5:158829527	2	5	158629527	159029527	645	5:158811162	2.85E-20	15%	11	42850	5:158768365	4.54E-21	35%	10	42850
chr5:158829527	3	5	158629527	159029527	634	5:158687281	4.55E-07	8%	34	159860	5:158687281	8.15E-08	15%	27	170191
chr6:111913262	1	6	111713262	112113262	1006	6:111839019	5.09E-08	51%	9	135649	6:111839019	3.32E-08	58%	9	135649
chr9:110817020	1	9	110617020	111017020	347	9:110845060	7.63E-08	15%	19	16709	9:110845060	2.26E-09	12%	18	21353
chr14:35832666	1	14	35632666	36032666	1115	14:35828741	1.57E-11	81%	4	39773	14:35828741	9.27E-11	69%	4	39773
chr17:26124908	1	17	25924908	26324908	922	17:26103703	1.59E-10	33%	19	42680	17:26103703	8.32E-13	61%	14	33399
chr17:40561579	1	17	40361579	40761579	683	17:40519890	3.54E-09	8%	29	44035	17:40536575	1.46E-08	28%	48	238188
chr20:48556229	1	20	48356229	48756229	885	20:48642702	3.57E-08	54%	13	49855	20:48642702	6.86E-08	50%	14	49855

Table S6. The independent signals identified in the transethnic meta-analysis.

Note: The best marker(s) of the European + South Asian transethnic meta-analysis from the previous round(s) of the conditional analysis were used. Abbreviations: Chr, chromosome; CI, credible interval; EUR, European; pos, position; PP, posterior probability; Rnd, round; SAS, South Asian.

HLA allele resolution ^a	Performance Metric	HLA-A	HLA-B	HLA-C	HLA-DPA1	HLA-DPB1	HLA-DQA1	HLA-DQB1	HLA-DRB1
	sample accuracy (mean) ^b	0.9244	0.8548	0.9368	0.9400	0.8552	0.9693	0.9400	0.9102
1 field	sample accuracy (median) ^b	0.9550	0.8960	0.9600	0.9900	0.9302	0.9850	0.9552	0.9250
1-neid	allelic accuracy (mean) ^c	0.8059	0.8451	0.9477	0.8408	0.5579	0.9352	0.9341	0.9417
	allelic accuracy (median) ^c	0.9421	0.8963	0.9727	0.8408	0.7020	0.9427	0.9498	0.9554
	sample accuracy (mean) ^b	0.8166	0.7696	0.8944	0.9298	0.8490	0.8338	0.8932	0.7950
2 field	sample accuracy (median) ^b	0.8719	0.8325	0.9403	0.9851	0.9250	0.8844	0.9261	0.8400
z-neiù	allelic accuracy (mean) ^c	0.4743	0.6222	0.6212	0.4431	0.5778	0.7224	0.8482	0.5659
	allelic accuracy (median) ^c	0.6070	0.7755	0.8726	0.4651	0.7607	0.8504	0.9396	0.6796

Table S7. Accuracy of 1-field and 2-field HLA alleles imputed by a SNP2HLA reference panel of 397 individuals of South Asian ancestry.

Imputation accuracy of the 397-individual South Asian SNP2HLA panel (UM+BKT+IKMB-SAS) was assessed by leave-one-out cross-validation. ^aNomenclature of HLA alleles follows the most recent system,⁵ where 1-field alleles describe the allele family (often corresponding to serological antigens), and 2-field alleles describe variations in the amino acid sequence.

^bSample accuracy is measured for each individual in the panel by first normalizing the imputed dosages so they sum to 2.0 for each individual across all gene alleles, and then subtracting one-half of the sum for that individual of the positive differences in genotyped vs. imputed dosages of all 1-field or 2-field HLA protein alleles in the reference panel from 1.

^cAllelic accuracy is measured for each HLA 1-field or 2-field allele in the reference panel by first normalizing the imputed dosages so they sum to 2.0 for each individual across all gene alleles, and then computing the squared Pearson correlation of vectors of genotyped and imputed dosages of that allele for all individuals in the panel.

			No	. Individua	ls			HLA-	
Source dataset	South Asian	European	East Asian	African ^a	Admixed American	Iranian	Total	DQA1 quality ^b	Reference
UM	233	0	0	0	0	0	233	good	this study
BKT ^c	23	0	0	0	0	0	23	good	Liu (2015); ⁶ Degenhardt (2019) ⁷
IKMB	143	322	451	312	0	132	1360	good	Liu (2015); ⁶ Degenhardt (2019) ⁷
T1DGC	0	5225	0	0	0	0	5225	poor	Mychaleckyj (2010); ⁸ Jia (2013); ⁹ Onengut-Gumuscu (2015) ¹⁰
Pan-Asian	120	0	410	0	0	0	530	poor	Pillai (2014); ¹¹ Okada (2014) ¹²
1KGP-ALL-v1 ^d	541	526	528	700	371	0	2666	NA	The 1000 Genomes Project Consortium (2015); ¹³ Abi-Rached (2018) ¹⁴
1KGP-ALL-v2 ^e	489	503	504	661	347	0	2504	NA	The 1000 Genomes Project Consortium (2015); ¹³ Abi-Rached (2018) ¹⁴

Table S8. Data sources for SNP2HLA reference panels constructed and tested by this study.

Abbreviations: 1KGP-ALL, 1000 Genomes Project, all populations; BKT, B.K. Thelma, IKMB, Institute of Clinical Molecular Biology (Kiel, Germany);

NA, not applicable; SAS, South Asian; T1DGC, Type 1 Diabetes Genetics Consortium; UM, University of Michigan.

^aIncludes admixed Africans (all 312 of IKMB, 164 of 1KGP-ALL-v1 and 157 of 1KGP-ALL-v2 datasets).

^bOlder data sources (Pan-Asian and T1DGC) used a method for HLA-DQA1 genotyping that misclassified several alleles that commonly occur in many world populations, including HLA-DQA1*01:04–01:06, HLA-DQA1*03:02–03:03, and HLA-DQA1*05:02–05:09.

^cBKT is a small subset of the Immunochip-typed IBD case-control Indian samples of B.K. Thelma described in Liu et al.⁶ that were HLA-genotyped by Degenhardt et al.⁷ but were not included in the final IKMB reference panel (Frauke Degenhardt, 2018, personal communication).

^dPhase 3 1000 Genome Project samples for which both Affymetrix 6.0 microarray and HLA genotypes were available.

^ePhase 3 1000 Genome Project samples for which both phased chromosomal haplotypes of sequence-based variant calls and HLA genotypes were available.

	No. individuals No. variants									No.	
SNP2HLA reference panel	SAS	EUR	Total	1-field HLA	2-field HLA	HLA AA	HLA SNP	HLA indel	non-HLA SNP	Total	HLA genesª
1KGP-ALL-v1	541	526	2666	87	411	749	378	3	2106	3734	5
1KGP-ALL-v2	489	503	2504	87	398	746	376	3	63,106	64,716	5
1KGP-SAS-v1	541	0	541	70	191	622	335	2	2093	3313	5
1KGP-SAS-v2	489	0	489	69	179	621	334	2	57,360	58,565	5
IKMB	143	322	1360	140	369	822	447	5	8803	10,586	8
IKMB+BKT	166	322	1383	140	369	822	447	5	8781	10,564	8
IKMB+BKT+UM	397	322	1614	141	388	828	450	5	2221	4033	8
IKMB+BKT+UM+1KGP-ALL-v2	886	825	4118	87	453	764	385	5	2165	3859	5
IKMB+BKT+UM+T1DGC	397	5547	6839	146	439	854	455	5	1840	3739	8
IKMB+BKT+UM+T1DGC+1KGP-ALL-v2	886	6050	9343	87	472	787	388	5	1817	3556	5
Pan-Asian	120	0	530	95	178	606	1415	1	6169	8464	8
Pan-Asian+T1DGC	120	5225	5755	129	319	753	1244	3	2641	5089	8
T1DGC	0	5225	5225	126	298	715	1615	3	5868	8625	8
UM+BKT+IKMB-SAS	397	0	397	99	226	728	434	2	2284	3773	8
UM+BKT+IKMB-SAS+1KGP-ALL-v2	886	503	2901	87	417	754	379	3	2235	3875	5
UM+BKT+IKMB-SAS+Pan-Asian	517	0	927	108	263	747	444	2	1591	3155	8
UM+BKT+IKMB-SAS+Pan-Asian+T1DGC	517	5225	6152	133	366	816	456	3	1357	3131	8
UM+BKT+IKMB-SAS+T1DGC	397	5225	5622	130	347	813	455	3	1882	3630	8
UM+BKT+IKMB-SAS+T1DGC+1KGP-ALL-v2	886	5728	8126	87	440	776	382	3	1851	3539	5

Table S9. Composition of 19 SNP2HLA reference panels constructed and tested for imputation of MHC variants in South Asians.

Abbreviations: 1KGP, 1000 Genomes Project; ALL, all populations (1000 Genomes); AA, amino acid; BKT, B.K. Thelma, EUR, European; IKMB, Institute of Clinical Molecular Biology (Kiel, Germany); indel, insertion-deletion; SAS, South Asian; SNP, single nucleotide polymorphism; T1DGC, Type 1 Diabetes Genetics Consortium; UM, University of Michigan.

^aNumber of HLA genes with genotypes in panel; HLA-A, -B, -C, -DQB1, -DRB1 for panels with 5 HLA genes and HLA-A, -B, -C, -DPA1, -DQA1, -DQB1, -DRB1 for panels with 8 HLA genes.

		Genes Imputed by SNP2HLA Reference Panel									
		IKMB+B	SKT+UM+1K	GP-ALL-v2		IKMB+E	3KT+UM	IKMB+BKT+UM+ T1DGC			
Performance Metric	HLA-A	HLA-B	HLA-C	HLA-DQB1	HLA-DRB1	HLA-DPA1	HLA-DPB1	HLA-DQA1			
sample accuracy (mean) ^a	0.9535	0.9266	0.9648	0.9741	0.9379	0.9389	0.9308	0.9242			
sample accuracy (median) ^a	1.0000	0.9901	1.0000	1.0000	1.0000	1.0000	0.9850	0.9950			
allelic accuracy (mean) ^b	0.7915	0.8184	0.7659	0.8784	0.8059	0.5525	0.7760	0.7794			
allelic accuracy (median) ^b	0.9634	0.9217	0.9625	0.9647	0.9341	0.8186	0.9545	0.9024			
mean performance rank ^c	2.1	5.2	2.8	1.4	1.3	3.5	1.9	2.0			

Table S10. Accuracy of 2-field HLA protein alleles imputed by the best-performing SNP2HLA panels for individuals of South Asian ancestry.

Imputation performance for each of the three panels was assessed by leave-one-out cross-validation for a set of 397 HLA-genotyped individuals of South Asian ancestry (IKMB-SAS+BKT+UM) that are also part of each reference panel.

Abbreviations: 1KGP, 1000 Genomes Project; ALL, all populations (1000 Genomes); BKT, B.K. Thelma; IKMB, Institute of Clinical Molecular Biology (Kiel, Germany); SAS, South Asian; T1DGC, Type 1 Diabetes Genetics Consortium; UM, University of Michigan.

^aSample accuracy is measured for each individual in the validation set by first normalizing the imputed dosages so they sum to 2.0 for each individual across all gene alleles, and then subtracting one-half of the sum for that individual of the positive differences in genotyped vs. imputed dosages of all 1-field or 2-field HLA alleles in the validation set from 1.

^bAllelic accuracy is measured for each HLA 1-field or 2-field allele in the validation set by first normalizing the imputed dosages so they sum to 2.0 for each individual across all gene alleles, and then computing the squared Pearson correlation of vectors of genotyped and imputed dosages of that allele for all individuals in the validation set.

^cMean performance rank is computed as the mean of the rank of the best panel for 12 different metrics comparing it with all others being assessed (total of 19 panels for HLA-A, -B, -C, -DQB1 and -DRB1 and 11 panels for HLA-DPA1, -DPB1 and -DQA1). These 12 metrics consist of 3 paired-sample comparison measures based on the Wilcoxon signed rank test (mean biserial correlation, no. comparisons where rank sum of panel *i* > rank sum panel *j*, no. comparisons where rank sum panel *i* is significantly > rank sum panel *j*) and 3 paired-sample measures based on the paired t-test (mean paired difference, no. pairs where mean difference of panel *i* minus panel *j* is > 0, no. pairs where mean difference of panel *i* – panel *j* is significantly > 0 based on bootstrapping); each of these 6 paired-sample measures is applied to both the set of 2-field sample accuracies for all individuals in the validation set and the set of allelic accuracies for all 2-field alleles in the validation set.

		mean sa	imple accur	acy for 1KG	P super pop	oulation ^a	mean a	llelic accura	acy for 1KGF	super pop	ulation ^b
Resolution	Gene	AFR	AMR	EAS	EUR	SAS	AFR	AMR	EAS	EUR	SAS
	HLA-A	0.9901	0.9911	0.9913	0.9910	0.9879	0.9598	0.9686	0.9223	0.9763	0.9777
	HLA-B	0.9547	0.9566	0.9655	0.9829	0.9743	0.9079	0.9387	0.9231	0.9305	0.8884
1-field	HLA-C	0.9971	0.9967	0.9986	0.9974	0.9930	0.9955	0.9919	0.9987	0.9995	0.9873
	HLA-DQB1	0.9889	0.9895	0.9922	0.9959	0.9908	0.9868	0.9849	0.9928	0.9942	0.9852
	HLA-DRB1	0.9627	0.9806	0.9889	0.9862	0.9864	0.9667	0.9810	0.9923	0.9829	0.9831
	HLA-A	0.9634	0.9122	0.9309	0.9702	0.9513	0.7452	0.7105	0.7291	0.8855	0.6626
	HLA-B	0.9236	0.8311	0.9311	0.9531	0.9352	0.7436	0.5990	0.8339	0.8339	0.7881
2-field	HLA-C	0.9717	0.9612	0.9722	0.9809	0.9767	0.7516	0.8298	0.8561	0.8444	0.7199
	HLA-DQB1	0.9658	0.9707	0.9668	0.9818	0.9675	0.8240	0.7789	0.7388	0.9423	0.7501
	HLA-DRB1	0.9360	0.8647	0.9421	0.9289	0.9306	0.7463	0.7622	0.7951	0.6895	0.6765

Table S11. Accuracy of HLA alleles imputed by the best-performing SAS panel for populations in the phase 3 1000 Genomes dataset.

Imputation performance of SAS panel IKMB+BKT+UM+1KGP-ALL-v2 was assessed by leave-one-out cross-validation for a set of 661, 347, 504, 503 and 489 HLA-genotyped individuals of the five super populations of phase 3 of the 1000 Genomes project (1000 Genomes), which are also part of this reference panel.

Abbreviations: 1KGP, 1000 Genomes Project, AFR (African 1KGP super population), AMR (mixed American 1KGP super population), EAS (East Asian 1KGP super population), EUR (European 1KGP super population), SAS (South Asian 1KGP super population).¹³

^aSample accuracy is measured for each individual in the validation set by first normalizing the imputed dosages so they sum to 2.0 for each individual across all gene alleles, and then subtracting one-half of the sum for that individual of the positive differences in genotyped vs. imputed dosages of all 1-field or 2-field HLA alleles in the validation set from 1.

^bAllelic accuracy is measured for each HLA 1-field or 2-field allele in the validation set by panel by first normalizing the imputed dosages so they sum to 2.0 for each individual across all gene alleles, and then computing the squared Pearson correlation of vectors of genotyped and imputed dosages of that allele for all individuals in the validation set.

No. individuals No. variants No. 1-field 2-field HLA HLA HLA non-HLA HLA **SNP2HLA reference panel** SNP SAS EUR Total HLA HLA AA indel SNP Total genes^a 1KGP-ALL-v1 1KGP-ALL-v2 64,716 63,106 1KGP-EUR-v1 1KGP-EUR-v2 56,218 57.569 **IKMB** IKMB+BKT IKMB+BKT+1KGP-ALL-v1 IKMB+BKT+1KGP-ALL-v2 IKMB+BKT+1KGP-EUR-v2 IKMB+BKT+T1DGC IKMB+BKT+T1DGC+1KGP-ALL-v1 IKMB+BKT+T1DGC+1KGP-ALL-v2 IKMB+BKT+T1DGC+1KGP-EUR-v2 IKMB+BKT+UM IKMB+BKT+UM+T1DGC IKMB+T1DGC T1DGC T1DGC+1KGP-ALL-v1 T1DGC+1KGP-ALL-v2 T1DGC+1KGP-EUR-v2

Table S12. Composition of 20 SNP2HLA reference panels constructed and tested for imputation of MHC variants in Europeans.

Abbreviations: 1KGP, 1000 Genomes Project; ALL, all populations (1000 Genomes); AA, amino acid; BKT, B.K. Thelma, EUR, European; IKMB, Institute of Clinical Molecular Biology (Kiel, Germany); indel, insertion-deletion; SAS, South Asian; SNP, single nucleotide polymorphism; T1DGC, Type 1 Diabetes Genetics Consortium; UM, University of Michigan.

^aNumber of HLA genes with genotypes in panel; HLA-A, -B, -C, -DQB1, -DRB1 for panels with 5 HLA genes and HLA-A, -B, -C, -DPA1, -DQB1, -DQB1, -DQB1 for panels with 8 HLA genes.

		Genes	Imputed b	y SNP2HLA Re	eference Pane	I
		T1D		IKMB+BKT		
Performance Metric	HLA-A	HLA-DQA1				
sample accuracy (mean) ^a	0.9827	0.9650	0.9830	0.9871	0.9498	0.9601
sample accuracy (median) ^a	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
allelic accuracy (mean) ^b	0.9284	0.7429	0.8552	0.9010	0.8226	0.8704
allelic accuracy (median) ^b	0.9995	0.9396	0.9735	0.9956	0.9218	0.9908
mean performance rank ^c	2.7	4.5	8.3	3.8	2.6	1.1

Table S13. Accuracy of 2-field HLA protein alleles imputed by the best-performing SNP2HLA panels for individuals of European ancestry.

Imputation performance for each of the two panels was assessed by independent validation for a set of up to 3749 HLA-genotyped individuals of European ancestry from four psoriasis case-control studies (CASP-GWAS, Exomechip, PAGE Immunochip, PsA GWAS) that are independent of all assessed reference panels.

Abbreviations: 1KGP, 1000 Genomes Project; BKT, B.K. Thelma; IKMB, Institute of Clinical Molecular Biology (Kiel, Germany); EUR, European; T1DGC, Type 1 Diabetes Genetics Consortium; UM.

^aSample accuracy is measured for each individual in the validation set by first normalizing the imputed dosages so they sum to 2.0 for each individual across all gene alleles, and then subtracting one-half of the sum for that individual of the positive differences in genotyped vs. imputed dosages of all 1-field or 2-field HLA alleles in the validation set from 1.

^bAllelic accuracy is measured for each HLA 1-field or 2-field allele in the validation set by first normalizing the imputed dosages so they sum to 2.0 for each individual across all gene alleles, and then computing the squared Pearson correlation of vectors of genotyped and imputed dosages of that allele for all individuals in the validation set.

^cMean performance rank is computed as the mean of the rank of the best panel for 12 different metrics comparing it with all others being assessed (total of 20 panels for *HLA-A*, *-B*, *-C*, *-DQB1* and *-DRB1* and 7 panels for *HLA -DQA1*). These 12 metrics consist of 3 paired-sample comparison measures based on the Wilcoxon signed rank test (mean biserial correlation, no. comparisons where rank sum of panel *i* > rank sum panel *j*, no. comparisons where rank sum panel *i* is significantly > rank sum panel *j*) and 3 paired-sample measures based on the paired t-test (mean paired difference, no. pairs where mean difference of panel *i* minus panel *j* is > 0, no. pairs where mean difference of panel *i* – panel *j* is significantly > 0 based on bootstrapping); each of these 6 paired-sample measures is applied to both the set of 2-field sample accuracies for all individuals in the validation set and the set of allelic accuracies for all 2-field alleles in the validation set.

chr6 position (Mb hg1					No. g	genes ^b		Density of genes (per Mb)				
Genomic Region ^a	Region start	Region end	Length (Mb)	Coding	Non- coding	Total	Immune	Coding	Non- coding	Total	Immune	
Flanking MHC, telomeric	24.00	25.73	1.73	18	18	36	0	10.4	10.4	20.8	0.0	
Horton Extended MHC, telomeric	25.73	29.64	3.91	109	57	166	2	27.9	14.6	42.5	0.5	
Classical MHC	29.64	33.12	3.48	137	76	213	37	39.4	21.8	61.2	10.6	
Horton Extended MHC, centromeric	33.12	33.37	0.25	16	4	20	3	64.0	16.0	80.0	12.0	
Flanking MHC, centromeric	33.37	36.00	2.63	41	25	66	3	15.6	9.5	25.1	1.1	
Extended MHC	24.00	36.00	12.00	321	180	501	45	26.8	15.0	41.8	3.7	
chr 1-22	NA	NA	2881.03	20,486	24,234	44,720	1752	7.1	8.4	15.5	0.6	

Table S14. Counts and densities of coding, non-coding and immune-related genes in the extended MHC region.

Abbreviations: NA, not applicable.

^aThe extended MHC region of this study (chr6:24-36 Mb) was broken into five segments based on the bounds of the classical MHC and smaller extended MHC regions defined by Horton et al.¹⁵

^bThe numbers of coding and non-coding genes were determined by tallying unique gene symbols in the basic gene annotation set of GENCODE version 33lift37. The numbers of immune-related genes were based on a comprehensive list of immunologically important genes downloaded in July, 2020 from the ImmPort Shared Data repository (see Web Resources).

Reference panel		Classical MH	C ^b		Flanking MH	C⊳	Extended MHC ^b			
source ^a	SAS	EUR	SAS+EUR	SAS	EUR	SAS+EUR	SAS	EUR	SAS+EUR	
1KGP	67,516	62,830	63,932	95,527	85,383	87,451	163,043	148,213	151,383	
HRC	39,452	43,896	43,077	83,250	93,473	91,438	122,672	137,369	134,515	
SNP2HLA (5 gene)	2074	1687	1635	0	0	0	2074	1687	1635	
SNP2HLA (2 gene)	217	398	177	0	0	0	217	398	177	
SNP2HLA (1 gene)	217	214	215	0	0	0	217	214	215	
All	109,476	109,025	109,036	178,747	178,856	178,889	288,223	287,881	287,925	

Table S15. Frequency distribution of variants in the imputed genotype datasets for the MHC region, cross-classified by reference panel source, MHC region and ancestry.

Abbreviations: 1KGP, 1000 Genomes Project; HRC, Haplotype Reference Consortium; EUR, European; SAS, South Asian.

For multiallelic variants, all counts include both the number of biallelic splits and the number of sets of biallelic splits because these splits are intended to be tested both individually and jointly for association.

^aFor the 1KGP and HRC reference panel sources, frequency counts are means because the number of imputed variants from these two sources in the final merged panel varies among the individual case-control studies. Three SNP2HLA reference panels were used for imputing HLA gene variants in the South Asian and European datasets; 5 gene, 2 gene and 1 gene refer, respectively, to the panels used to impute HLA-A/B/C/DQB1/DRB1, HLA-DPA1/DPB1, or HLA-DQA1 variants.

^bMHC regions: classical (chr6:29.64-33.12 Mb), flanking (chr6:24-29.64 + 33.12-36 Mb), extended (chr6:24-36 Mb); coordinates based on hg19 reference assembly.

МНС			No. variants with mean imputation quality ^a 0.00–0.30 0.30–0.50 0.50–0.70 0.70–0.80 0.80–0.90 0.90–0.95 0.95–1.00 Total										
region ^b	Ancestry	MAF ^a	0.00-0.30	0.30-0.50	0.50-0.70	0.70–0.80	0.80-0.90	0.90-0.95	0.95–1.00	Total			
		≥ 0.05	5022	1495	2321	1705	3477	2555	29,221	45,796			
	CAC	0.01–0.05	1123	344	399	372	875	917	8159	12,189			
	SAS	< 0.01	31,701	4389	4197	1507	1815	1177	5273	50,059			
		Total	37,846	6228	6917	3584	6167	4649	42,653	108,044			
		≥ 0.05	6138	1901	1732	1301	3188	3103	27,859	45,222			
Classical		0.01–0.05	1273	324	419	330	840	849	7002	11,037			
Classical	EUK	< 0.01	25,148	5939	5181	2826	3122	1943	7157	51,136			
		Total	32,559	8164	7332	4457	7150	5895	42,018	107,575			
		≥ 0.05	5967	2006	1842	1326	3365	3257	27,689	45,452			
		0.01–0.05	1206	387	442	346	1017	1008	7655	12,061			
	SAS+EUR	< 0.01	25,376	6198	5466	3038	3331	2389	4269	50,067			
		Total	32,549	859	7750	4710	7713	6654	39,613	107,580			
		≥ 0.05	17	214	597	661	1719	2208	17,679	23,095			
	646	0.01–0.05	184	613	1069	972	1809	1351	6218	12,216			
	SAS	< 0.01	102,052	14,543	9799	4218	4412	2525	4575	142,124			
		Total	102,253	15,370	11,465	5851	7940	6084	28,472	177,435			
		≥ 0.05	40	398	2935	2249	2869	2836	12,179	23,506			
Floreling		0.01–0.05	143	568	2122	1527	1685	970	3802	10,817			
Flanking	EUK	< 0.01	80,800	21,619	16,883	6497	6577	3920	6806	143,102			
		Total	80,983	22,585	21,940	10,273	11,131	7226	22,787	177,425			
		≥ 0.05	29	381	2415	2576	3102	3162	11,996	23,661			
		0.01–0.05	122	563	2208	1608	1726	1097	3563	10,887			
	SAS+EUK	< 0.01	82,119	22,701	17,002	6315	7267	3290	4183	142,877			
		Total	82,270	23,645	21,625	10,499	12,095	7549	19,742	177,425			

Table S16. Frequency distribution of variants in the imputed genotype datasets for the MHC region, cross-classified by minor allele frequency, imputation quality, MHC region and ancestry.

Table S16. (Continued)

МНС					No. varia	nts with mea	an imputatio	n quality ^a		
region ^b	Ancestry	MAF ^a	0.00-0.30	0.30-0.50	0.50-0.70	0.70-0.80	0.80-0.90	0.90-0.95	0.95–1.00	Total
		≥ 0.05	5039	1709	2918	2366	5196	4763	46,900	68,891
	CVC	0.01–0.05	1307	957	1468	1344	2684	2268	14,377	24,405
	SAS	< 0.01	133,753	18,932	13,996	5725	6227	3702	9848	192,183
		Total	140,099	21,598	18,382	9435	14,107	10,733	71,125	285,479
		≥ 0.05	6178	2299	4667	3550	6057	5939	40,038	68,728
Extandad	ELID	0.01–0.05	1416	892	2541	1857	2525	1819	10,804	21,854
Extended	EUK	< 0.01	105,948	27,558	22,064	9323	9699	5863	13,963	194,418
		Total	113,542	30,749	29,272	14,730	18,281	13,621	64,805	285,000
		≥ 0.05	5996	2387	4257	3902	6467	6419	39,685	69,113
		0.01-0.05	1328	950	2650	1954	2743	2105	11,218	22,948
	SAS+EUR	< 0.01	107,495	28,899	22,468	9353	10,598	5679	8452	192,944
		Total	114,819	32,236	29,375	15,209	19,808	14,203	59,355	285,005

Frequency counts are restricted to biallelic variants, including splits of multiallelic variants.

Abbreviations: EUR, European; MAF, minor allele frequency; SAS, South Asian.

^aMembership in MAF and imputation quality bins based on the weighted mean of MAF and empirical imputation quality (R²) values, respectively, across studies in the ancestry group, with the effective sample size of each study as weights.

^bMHC regions: classical (chr6:29.64–33.12 Mb), flanking (chr6:24-29.64 + 33.12-36 Mb), extended (chr6:24–36 Mb); coordinates based on hg19 reference assembly.

	C	lassical MH	Cª	F	lanking MH	Cª	E	ktended MH	ICª
Variant Type	SAS	EUR	SAS+EUR	SAS	EUR	SAS+EUR	SAS	EUR	SAS+EUR
SNP	100,186	100,235	100,227	166,306	166,386	166,414	266,492	266,621	266,641
Indel	7146	7146	7153	12,330	12,359	12,364	19,476	19,505	19,517
Structural (≥ 50 bp)	96	96	96	111	111	111	207	207	207
Multiallelic, split ^b	5646	5159	5079	4814	4814	4814	10,460	9973	9893
Multiallelic, full ^c	1432	1450	1456	1312	1431	1464	2744	2881	2920
HLA 1-field allele	141	127	122	0	0	0	141	127	122
HLA 2-field allele	530	328	304	0	0	0	530	328	304
HLA amino acid	1377	1093	1134	0	0	0	1377	1093	1134
HLA SNP	13,164	13,173	13,150	0	0	0	13,164	13,173	13,150
HLA indel	714	707	711	0	0	0	714	707	711
HLA protein-changing	3013	2477	2489	0	0	0	3013	2477	2489
non-HLA protein-changing	2096	2094	2095	2195	2189	2189	4291	4283	4284
All ^d	109,476	109,025	109,036	178,747	178,856	178,889	288,223	287,881	287,925

Table S17. Frequency distribution of variants in the imputed genotype datasets for the MHC region, cross-classified by variant type, MHC region and ancestry.

Abbreviations: EUR, European; Indel, insertion-deletion polymorphism; SAS, South Asian; SNP, single nucleotide polymorphism.

^aMHC regions: classical (chr6:29.64-33.12 Mb), flanking (chr6:24-29.64 + 33.12-36 Mb), extended (chr6:24-36 Mb); coordinates based on hg19 reference assembly.

^bRefers to the individual biallelic variants in the sets that result from splitting of multiallelic variants.

^cRefers to the full sets of multiallelic variants.

^dTotal number of variants, which is less than the sum of all variant type counts because of overlap among some of the variant type categories.

Table S18. Proportion of MHC reference panel variants analyzed for association with psoriasis, cross-classified by minor allele frequency, MHC region and ancestry.

	Proportion of variants analyzed for association ^a										
	Classical MHC ^b				lanking MH	IC ^b	Extended MHC ^b				
MAF	SAS	EUR	SAS+EUR	SAS	EUR	SAS+EUR	SAS	EUR	SAS+EUR		
≥ 0.05	0.797	0.693	0.682	0.953	0.712	0.679	0.849	0.699	0.681		
0.01-0.05	0.836	0.759	0.715	0.815	0.547	0.454	0.826	0.655	0.591		
< 0.01	0.179	0.173	0.092	0.092	0.079	0.038	0.115	0.104	0.052		
Total	0.515	0.454	0.415	0.254	0.191	0.150	0.353	0.290	0.250		

Abbreviations: EUR, European; MAF, minor allele frequency; SAS, South Asian.

^aTo qualify for association testing, the minimum imputation quality (R^2) for a variant among all case-control studies in the analyzed dataset must be ≥ 0.70 .

^bMHC regions: classical (chr6:29.64-33.12 Mb), flanking (chr6:24-29.64 + 33.12-36 Mb), extended (chr6:24-36 Mb); coordinates based on hg19 reference assembly.

Reference nanel	Classical MHC ^b			Flanking MHC ^b			Extended MHC ^b		
source ^a	SAS	EUR	SAS+EUR	SAS	EUR	SAS+EUR	SAS	EUR	SAS+EUR
1KGP	32,242	22,535	21,804	18,771	7809	6901	51,013	30,344	28,705
HRC	22,744	25,275	22,005	26,483	26,136	19,782	49,227	51,411	41,787
SNP2HLA (5 gene)	1163	1149	1106	0	0	0	1163	1149	1106
SNP2HLA (2 gene)	102	312	103	0	0	0	102	312	103
SNP2HLA (1 gene)	135	136	131	0	0	0	135	136	131
All	56,386	49,407	45,149	45,254	33,945	26,683	101,640	83,352	71,832

Table S19. Frequency distribution of imputed MHC variants analyzed for association with psoriasis, cross-classified by reference panel source, MHC region and ancestry.

Abbreviations: 1KGP, 1000 Genomes Project; HRC, Haplotype Reference Consortium; EUR, European; SAS, South Asian.

For multiallelic variants, all counts include both the number of biallelic splits and the number of sets of biallelic splits because these splits are tested both individually and jointly for association.

^aFor the 1KG and HRC reference panel sources frequency counts are means because the number of imputed variants tested for association from these two sources varies across the individual case-control studies. Three SNP2HLA reference panels were used for imputing HLA gene variants in the South Asian and European datasets; 5 gene, 2 gene and 1 gene refer, respectively, to the panels used to impute HLA-A/B/C/DQB1/DRB1, HLA-DPA1/DPB1, or HLA-DQA1 variants.

^bMHC regions: classical (chr6:29.64-33.12 Mb), flanking (chr6:24-29.64 + 33.12-36 Mb), extended (chr6:24-36 Mb); coordinates based on hg19 reference assembly.

МНС	MHC No. variants with mean imputation quality ^a									
region ^b	Ancestry	MAF ^a	0.70–0.75	0.75–0.80	0.80-0.85	0.85–0.90	0.90-0.95	0.95–0.99	0.99–1.00	Total
		≥ 0.05	494	781	1257	2194	2556	5848	23,374	36,504
	SAS	0.01–0.05	71	208	356	504	917	2164	5995	10,215
		< 0.01	198	530	797	960	1177	1943	3330	8935
		Total	763	1519	2410	3658	4650	9955	32,699	55,654
		≥ 0.05	11	107	367	961	2232	5725	22,041	31,444
Characteria	EUR	0.01–0.05	7	55	177	344	758	2033	4969	8343
CIGSSICAL		< 0.01	4	59	273	589	1197	3081	3834	9037
		Total	22	221	817	1894	4187	10,839	30,844	48,824
	SAS+EUR	≥ 0.05	8	84	391	1027	2143	5832	21,594	31,079
		0.01–0.05	3	35	111	276	658	2131	5436	8650
		< 0.01	0	17	72	180	592	1958	2062	4881
		Total	11	136	574	1483	3393	9921	29,092	44,610
Flanking	SAS	≥ 0.05	115	315	585	1105	2208	7249	10,430	22,007
		0.01–0.05	131	459	737	1043	1351	2896	3322	9939
		< 0.01	470	470	1985	2248	2525	2901	1674	12,273
		Total	716	1244	3307	4396	6084	13,046	15,426	44,219
	EUR	≥ 0.05	15	87	226	1391	2827	4209	7970	16,725
		0.01–0.05	6	101	330	664	964	1939	1863	5867
		< 0.01	6	169	692	1769	2399	3922	2299	11,256
		Total	27	357	1248	3824	6190	10,070	12,132	33,848
	SAS+EUR	≥ 0.05	6	55	164	1143	2782	4496	7374	16,020
		0.01–0.05	1	11	105	410	780	1888	1590	4785
		< 0.01	0	13	182	684	1054	2306	1565	5804
		Total	7	79	451	2237	4616	8690	10,529	26,609

Table S20. Frequency distribution of imputed MHC variants analyzed for association with psoriasis, cross-classified by minor allele frequency, imputation quality, MHC region and ancestry.
Table S20. (Continued).

МНС					No. varia	nts with mea	an imputatio	n quality ^a		
region ^b	Ancestry	MAF ^a	0.70-0.75	0.75–0.80	0.80-0.85	0.85–0.90	0.90-0.95	0.95–0.99	0.99–1.00	Total
		≥ 0.05	609	1096	1842	3299	4764	13,097	33,804	58,511
	CVC	0.01–0.05	202	667	1093	1547	2268	5060	9317	20,154
	SAS	< 0.01	668	1838	2782	3208	3702	4844	5004	22,046
		Total	1479	3601	5717	8054	10,734	23,001	48,125	100,711
	ELIP	≥ 0.05	26	194	593	2352	5059	9934	30,011	48,169
Extended		0.01–0.05	13	156	507	1008	1722	3972	6832	14,210
Extended	EUK	< 0.01	10	228	965	2358	3596	7003	6133	20,293
		Total	49	578	2065	5718	10,377	20,909	42,976	82,672
		≥ 0.05	14	139	555	2170	4925	10,328	28,968	47,099
		0.01–0.05	4	46	216	686	1438	4019	7026	13,435
	SAS+EUK	< 0.01	0	30	254	864	1646	4264	3627	10,685
		Total	18	215	1025	3720	8009	18,611	39,621	71,219

Frequency counts are restricted to biallelic variants, including splits of multiallelic variants.

Abbreviations: EUR, European; MAF, minor allele frequency; SAS, South Asian.

^aMembership in MAF and imputation quality bins based on the weighted mean of MAF and empirical imputation quality (R²) values, respectively, across studies in the ancestry group, with the effective sample size of each study as weights.

^bMHC regions: classical (chr6:29.64–33.12 Mb), flanking (chr6:24-29.64 + 33.12-36 Mb), extended (chr6:24–36 Mb); coordinates based on hg19 reference assembly.

	Classical MHC ^a			F	lanking MH	C ^a	Extended MHC ^a			
Variant Type	SAS	EUR	SAS+EUR	SAS	EUR	SAS+EUR	SAS	EUR	SAS+EUR	
SNP	50,513	44,207	40,183	40,383	31,178	24,292	90,896	75,385	64,475	
Indel	4828	4280	4029	4844	2755	2381	9672	7035	6410	
Structural (≥ 50 bp)	39	31	29	27	12	10	66	43	39	
Multiallelic, split ^b	3550	2994	2809	1583	916	793	5133	3910	3602	
Multiallelic, full ^c	732	583	539	197	97	94	929	680	613	
HLA 1-field allele	80	78	72	0	0	0	80	78	72	
HLA 2-field allele	119	107	83	0	0	0	119	107	83	
HLA amino acid	807	704	753	0	0	0	807	704	753	
HLA SNP	7330	5548	5193	0	0	0	7330	5548	5193	
HLA indel	511	380	373	0	0	0	511	380	373	
HLA protein-changing	1659	1497	1483	0	0	0	1659	1497	1483	
non-HLA protein-changing	716	628	522	531	345	284	1247	973	806	
All ^d	56,386	49,407	45,149	45,254	33,945	26,683	101,640	83,352	71,832	

Table S21. Frequency distribution of imputed MHC variants analyzed for association with psoriasis, cross-classified by variant type, MHC region and ethnic population.

Abbreviations: EUR, European; Indel, insertion-deletion polymorphism; SAS, South Asian; SNP, single nucleotide polymorphism.

^aMHC regions: classical (chr6:29.64-33.12 Mb), flanking (chr6:24-29.64 + 33.12-36 Mb), extended (chr6:24-36 Mb); coordinates based on hg19 reference assembly.

^bRefers to the individual biallelic variants in the sets that result from splitting of multiallelic variants.

^cRefers to the full sets of multiallelic variants.

^dTotal number of variants; less than the sum of all variant type counts because of overlap among some of the variant type categories.

					Best protein-changi	ng surrogate based on	
		hg19	nearest gene	LD ^d	۲Dd	p-value ^e	Bayesian PP ^e
Step ^a	Variant ^b	position ^c	(consequence)	$(W_n^2, rank)$	($arepsilon'$, rank)	(p-value, rank)	(PP, rank)
1		21220102	HLA-C	HLA-C*06	HLA-C*06	HLA-C*06	HLA-C*06
T	HLA-C 'UO	31238192	(protein)	(NA, 1)	(NA, 1)	$(1.3 imes 10^{-78}, 2)$	(0.255, 2)
n	rc2420400	21252072	AL645933.2	rs1051786 (<i>MICA</i>)	rs1051786 (<i>MICA</i>)	rs1051786 (<i>MICA</i>)	rs1051786 (<i>MICA</i>)
Z	152420409	51552972	(9.1 kb downstream)	(0.8349, 336)	(0.6271, 183)	(1.7 × 10 ⁻¹¹ , 146)	(0.000, 146)
2	rc2442752	21251764	AL671883.3	HLA-B aa-45	HLA-B Lys45	HLA-B aa-45	HLA-B aa-45
5	152442752	51551704	(7.9 kb downstream)	(0.3794, 75)	(0.2733, 103)	(6.0 × 10 ⁻⁶ , 6)	(0.005, 8)
Λ	rc120451700	22454470	HLA-DRB5	HLA-DRB1 aa-13	HLA-DRB1 Arg13	HLA-DRB1 aa-142	HLA-DRB1 aa-142
4	13139431799	52454479	(31 kb downstream)	(0.9705, 2)	(0.9355, 2)	(2.9 × 10⁻⁶, 4)	(0.008, 4)
E	rc0260212	20016995	HLA-A	HLA-A aa- 97	HLA-A Met97	HLA-A Arg62	HLA-A Arg62
3	159200313	23310992	(3.2 kb downstream)	(0.8210, 2)	(0.7023, 2)	(1.8 × 10 ⁻⁵ , 31)	(0.005, 29)

Table S22. Annotations and protein-changing surrogates for associated variants in the extended MHC region for people of South Asian ancestry.

Abbreviations: aa, amino acid; chr6, chromosome 6; LD, linkage disequilibrium; NA, not applicable, PP, posterior probability.

^aRound of stepwise regression analysis.

^bBuild 151 dbSNP rsID when applicable,

^cBase pair position in hg19 human reference; for classical HLA proteins the position of the center of the coding unit is given; for indels (all of which are insertions into the reference sequence), the position immediately before the insertion point is given.

 ${}^{d}W_{n}^{2}$ and ε' coefficients of linkage disequilibrium can accommodate multiallelic variants; see Subjects and Methods for more details.

^eP-values and Bayesian posterior probabilities based on the final full regression model for associated variants.

	Stepwise-	selected varia	nt	Top varia	Top variant in 95% BCS				Size of 95% BCS				
Step ^a	ID⁵	chr6 position ^c	PP	١D ^b	chr6 position ^c	PP	No. variants	Left bound ^d	Right bound ^d	Length ^d			
1	HLA-C*06	31238192	0.255	rs12199223	31242731	0.266	12	31155785	31269946	114,162			
2	rs2428489	31352972	0.003	rs72657660	31363697	0.075	31	31352972	31371101	18,130			
3	rs2442752	31351764	0.583	rs2442752	31351764	0.583	2868	30859268	31851354	992,087			
4	rs139451799	32454479	0.013	rs139451799	32454479	0.013	571	32386554	32636433	249,880			
5	rs9260313	29916885	0.022	rs9260313	29916885	0.022	2587	29425584	30416864	991,281			

Table S23. Parameters of 95% Bayesian credible sets for the five MHC psoriasis association signals in the final full regression model for people of South Asian ancestry.

Abbreviations: BCS, Bayesian credible set; chr6, chromosome 6; PP, posterior probability.

^aRound of stepwise regression analysis.

^bID is build 151 dbSNP rsID when applicable.

^cBase pair position in hg19 human reference; for classical HLA proteins the position of the center of the coding unit is given; for indels (all of which are insertions into the reference sequence), the position immediately before the insertion point is given.

^dAll values are bp on chromosome 6 of the hg19 human reference assembly.

					association at		associatio	on in			
		chr6	alle	eles	risk allele	e frequency	entry into	model	final full n	nodel	
Step ^a	Variant ^b	position ^c	risk ^d	nonrisk	cases	controls	OR (95% CI)	p-value	OR (95% CI)	p-value	Vg
1	rs12211087	31269946	А	Т	0.2470	0.0915	3.93 (3.75-4.13)	$2.7 imes 10^{-659}$	NA ^e	NA ^e	NA ^e
			C,F,M,Y	S	NA	NA	NA	$1.3 imes 10^{-85}$	NA	$8.1\times10^{\text{-}75}$	0.00913
			С	other	0.1476	0.1185	1.53 (1.45-1.61)	$5.1 imes 10^{-57}$	1.65 (1.55-1.75)	$1.4 imes 10^{-55}$	NA
2	HLA-B	21224526	F	other	0.2049	0.2586	1.07 (1.02-1.12)	0.0025	1.17 (1.11-1.23)	$1.9 imes 10^{-8}$	NA
Z	amino acid 67	51524550	М	other	0.1277	0.0449	1.57 (1.46-1.69)	$1.1 imes 10^{-34}$	1.61 (1.47-1.75)	$3.3\times10^{\text{-}27}$	NA
			Y	other	0.1202	0.1601	1.00 (0.95-1.05)	0.97	1.15 (1.05-1.25)	0.0014	NA
			other	S	0.6004	0.5821	ref	ref	ref	ref	NA
3	rs1655901	29916804	С	Т	0.5915	0.5187	1.35 (1.30-1.39)	$3.3 imes 10^{-64}$	1.36 (1.32-1.41)	$1.4 imes 10^{-65}$	0.00739
4	rs72866766	31321184	С	Т	0.1093	0.0858	1.34 (1.26-1.43)	$4.8 imes 10^{-21}$	1.47 (1.37-1.57)	$3.7 imes 10^{-29}$	0.00382
5	rs4947340	32435338	Т	С	0.4586	0.3756	1.15 (1.11-1.19)	$1.6 imes 10^{-14}$	1.17 (1.13-1.22)	$1.5 imes 10^{-15}$	0.00182
			C,T	-	NA	NA	NA	$5.0 imes 10^{-12}$	NA	$7.7 imes 10^{-13}$	0.00226
c	rc1270E4622	21224051	С	other	0.3941	0.4545	1.09 (1.04-1.14)	$1.1 imes 10^{-4}$	1.17 (1.11-1.23)	$1.3 imes 10^{-9}$	NA
0	1313/034033	51524651	Т	other	0.0702	0.0253	1.45 (1.30-1.61)	$1.1 imes 10^{-11}$	1.37 (1.23-1.52)	$1.7 imes 10^{-8}$	NA
			other	-	0.4642	0.4799	ref	ref	ref	ref	NA
7	HLA-B amino acid 171	31323979	Y	Н	0.8938	0.8639	1.18 (1.12-1.24)	$1.4 imes 10^{-9}$	1.24 (1.17-1.31)	$4.9\times10^{\text{-14}}$	0.00164
8	rs6935999	32392757	А	G	0.0195	0.0138	1.59 (1.39-1.82)	$1.8 imes 10^{-11}$	1.57 (1.37-1.80)	$9.7 imes 10^{-11}$	0.00093
9	HLA-C*06:02	31238192	C*06:02	other	0.2478	0.0902	2.16 (1.66-2.80)	$7.7 imes 10^{-9}$	2.80 (2.59-3.03)	$6.4 imes 10^{-146}$	0.03006
10	rs75881311	31102273	Т	other	0.9961	0.9944	2.39 (1.82-3.14)	$4.3\times10^{\text{10}}$	2.19 (1.64-2.91)	$7.5 imes 10^{-8}$	0.00096
11	rs371194629	29798581	_	14mer	0.5803	0.5839	1.11 (1.07-1.15)	$3.9 imes 10^{-9}$	1.13 (1.09-1.17)	$2.0 imes 10^{-11}$	0.00117
12	rs41543814	31239430	С	Т	0.6616	0.5793	1.13 (1.08-1.18)	$7.4 imes 10^{-8}$	1.20 (1.14-1.27)	$1.2 imes 10^{-12}$	0.00259
13	rs147145279	31388958	AA	other	0.0023	0.0009	2.95 (1.91-4.57)	$1.2 imes 10^{-6}$	3.00 (1.94-4.64)	$8.5 imes 10^{-7}$	0.00042
14	rs1128175	31150435	G	А	0.8272	0.7702	1.18 (1.10-1.26)	$3.3 imes 10^{-6}$	1.20 (1.12-1.29)	$1.9 imes 10^{-7}$	0.00187
15	HLA-DQA1 Arg52	32609228	other	R	0.6040	0.5466	1.09 (1.05-1.13)	1.1 × 10 ⁻⁵	1.09 (1.05-1.13)	1.1 × 10 ⁻⁵	0.00057

Table S24. Psoriasis associations from stepwise analysis of the extended MHC region for eight studies of European ancestry.

Abbreviations: chr6, chromosome 6; CI, confidence interval; NA, not applicable; OR, odds ratio; ref, reference; V_g, variance in liability explained by the genetic variant.¹⁶

^aRound of stepwise regression analysis.

^bVariant notes: variant ID is build 151 dbSNP rsID when applicable; *HLA-C*06:02* is one biallelic split from a decomposed set of 41 classical 2-field HLA-C alleles; the stepwise-selected variant for triallelic SNP rs75881311 is one of its biallelic splits with G/A+T alleles; rs147145279 is shorthand for two biallelic

indels (rs559509014 and rs147145279) that were genotyped as a single triallelic indel by phase 3 1000 Genomes with –, A and AA alleles, and the stepwiseselected variant is one of the biallelic splits of this triallelic indel; HLA-DQA1 Arg52 is a biallelic split (R/H+S alleles) of a triallelic amino acid variant. ^cBase pair position in hg19 human reference; for amino acids and classical HLA proteins the position of the center of the coding unit is given; for indels (all of which are insertions into the reference sequence), the position immediately before the insertion point is given.

^dRisk allele is based on final full regression model.

^eVariant removed after addition of *HLA-C*06:02* in ninth round reduced its significance below the backward elimination inclusion threshold.

				Best protein-changing surrogate based on					
		hg19	nearest gene	LD ^d	LD ^d	p-value ^e	Bayesian PP ^e		
Step ^a	Variant ^b	position ^c	(consequence)	$(W_n^2, rank)$	($m{arepsilon}'$, rank)	(p-value, rank)	(PP, rank)		
1		24260046	LINC02571	HLA-C*06	HLA-C*06	NIA	N1.0		
T	rs12211087	31269946	(527 bp upstream)	(0.9897, 5)	(0.9773 <i>,</i> 5)	NA	NA		
2		21224526	HLA-B	HLA-B aa-67	HLA-B aa-67	HLA-B aa-67	HLA-B aa-67		
2	нца-в аа-б7	31324536	(protein)	(NA, 1)	(NA, 1)	(8.1 × 10 ⁻⁷⁵ , 1)	(1.000, 1)		
2	rc1655001	20016804	HLA-A	HLA-A aa-62	HLA-A Val99	HLA-A aa-95	HLA-A aa-95		
3	121022901	29910804	(3.1 kb downstream)	(0.5049, 48)	(0.3705, 99)	(9.3 × 10 ⁻⁴⁸ , 7)	(0.000, 7)		
4	***729667766	21221104	HLA-B	HLA-B aa-158	HLA-B aa-158	HLA-B aa- 97	HLA-B aa-97		
4	18/2800/00	31321184	(468 bp downstream)	(0.4424, 14)	(0.4601, 12)	(2.8 × 10 ⁻²³ , 2)	(0.000, 2)		
г	rc4047240	22425220	HLA-DRA	HLA-DRB1 aa-13	HLA-DQA1 Glu175	HLA-DRB1 aa-104	HLA-DRB1 aa-98		
Э	154947340	32435338	(23 kb downstream)	(0.8585, 2)	(0.7484, 2)	(5.0 × 10 ⁻¹² , 47)	(0.000, 47)		
c	re127054622	21224051	HLA-B	HLA-B*13	HLA-B aa-10	HLA-B aa-10	HLA-B aa-10		
D	1513/854033	31324851	(intron)	(0.9976, 15)	(0.5509, 4)	(1.9 × 10 ⁻¹¹ , 5)	(0.033, 5)		
7		21222070	HLA-B	HLA-B aa-171	HLA-B aa-171	HLA-B aa-171	HLA-B aa-171		
/	ILA-B dd-1/1	31323979	(protein)	(NA, 1)	(NA, 1)	(4.9 × 10 ⁻¹⁴ , 1)	(0.996, 1)		
0	maCO3E000	22202757	HLA-DRA	HLA-DRB1*01:02	HLA-DRB1*01:02	HLA-DRB1*01:02	HLA-DRB1*01:02		
ð	120332333	32392/5/	(15 kb upstream)	(0.8376, 13)	(0.8365, 10)	(1.8 × 10 ^{−8} , 20)	(0.005, 20)		
		21220102	HLA-C	HLA-C*06:02	HLA-C*06:02	HLA-C*06:02	HLA-C*06:02		
9	TLA-C 00.02	51250192	(protein)	(NA, 1)	(NA, 1)	(6.4 × 10 ⁻¹⁴⁶ , 2)	(0.288, 2)		
10	rc7E001011	21102222	PSORS1C1	rs115749638 (<i>MUCL3</i>)	rs115749638 (<i>MUCL3</i>)	HLA-B aa-97	HLA-B*39:01		
10	13/3001311	51102275	(intron)	(0.2173, 12)	(0.2812, 12)	(4.4 × 10 ⁻⁵ , 22)	(0.000, 17)		
11	rc271104620	20700501	HLA-G	rs9260156 (<i>HLA-A</i>)	HLA-A Arg163	HLA-A Val95	HLA-A Val95		
11	13371194029	29/90301	(3'-UTR)	(0.6027, 420)	(0.5091, 387)	(3.0 × 10 ⁻⁹ , 93)	(0.000, 93)		
10	rc / 1 E / 2 O 1 /	21220420	HLA-C	rs41543814 (<i>HLA-C</i>)	rs41543814 (<i>HLA-C</i>)	rs41543814 (<i>HLA-C</i>)	rs41543814 (<i>HLA-C</i>)		
12	1341343014	51259450	(protein)	(NA, 1)	(NA, 1)	(1.2 × 10 ⁻¹² , 1)	(0.992, 1)		
12	rc1/171/15270f	21222052	HCP5	rs41556715 (<i>MICA</i>)	rs41556715 (<i>MICA</i>)	rs41556715 (<i>MICA</i>)	rs41556715 (<i>MICA</i>)		
13	13147143279	21200220	(intron)	(0.9505, 4)	(0.9474, 4)	(5.3 × 10⁻ ⁶ , 14)	(0.025, 11)		
11	rc1120175	21150/25	POU5F1	HLA-C aa-99	rs3130981 (<i>CDSN</i>)	HLA-C aa-99	HLA-C Cys99		
14	131120173	31130433	(1.9 kb upstream)	(0.8454, 3)	(0.6574, 14)	(1.3 × 10⁻⁶, 6)	(0.011, 11)		
15		22600220	HLA-DQA1	HLA-DQA1 Arg52	HLA-DQA1 Arg52	HLA-DQA1 Arg52	HLA-DQA1 Arg52		
10	TLA-DUAL AIGJZ	32003220	(protein)	(NA, 1)	(NA, 1)	$(1.1 imes 10^{-5}, 1)$	(0.048,1)		

Table S25. Annotations and protein-changing surrogates for associated variants in the extended MHC region for people of European ancestry.

Abbreviations: aa, amino acid; chr6, chromosome 6; LD, linkage disequilibrium; NA, not applicable, PP, posterior probability.

^aRound of stepwise regression analysis.

^bBuild 151 dbSNP rsID when applicable

^cBase pair position in hg19 human reference; for classical HLA proteins the position of the center of the coding unit is given; for indels (all of which are insertions into the reference sequence), the position immediately before the insertion point is given.

 ${}^{d}W_{n}^{2}$ and ε' coefficients of linkage disequilibrium can accommodate multiallelic variants; see Subjects and Methods for more details.

^eP-values and Bayesian posterior probabilities based on the final full regression model for associated variants.

^frs147145279 is shorthand for two biallelic indels (rs559509014 and rs147145279) that were genotyped as a single triallelic indel by phase 3 1000 Genomes Project with –, A and AA alleles, and the stepwise-selected variant is one of the biallelic splits of this triallelic indel.

	Stepwise-selected variant			Top variar	nt in 95% BCS		Size of 95% BCS			
		chr6			chr6		No.	Left	Right	
Step ^a	١D ^b	position ^c	PP	ID	position ^c	PP	variants	bound ^d	bound ^d	Length ^d
2	HLA-B aa-67	31324536	1.000	HLA-B aa-67	31324536	1.000	1	31324535	31324537	3
3	rs1655901	29916804	1.000	rs1655901	29916804	1.000	1	29916804	29916804	1
4	rs72866766	31321184	1.000	rs72866766	31321184	1.000	1	31321184	31321184	1
5	rs4947340	32435338	0.965	rs4947340	32435338	0.965	1	32435338	32435338	1
6	rs137854633	31324851	0.543	rs137854633	31324851	0.543	7	31324851	31325932	1082
7	HLA-B aa-171	31323979	0.996	HLA-B aa-171	31323979	0.996	1	31323978	31323980	3
8	rs6935999	32392757	0.752	rs6935999	32392757	0.752	18	32384283	32681927	297,645
9	HLA-C*06:02	31238192	0.288	rs12189871	31251924	0.712	2	31236526	31251924	15,399
10	rs75881311	31102273	0.217	rs75881311	31102273	0.217	23	30968398	31495960	527,563
11	rs371194629	29798581	0.022	rs1736927	29796115	0.033	47	29784514	29820218	35,705
12	rs41543814	31239430	0.992	rs41543814	31239430	0.992	1	31239430	31239430	1
13	rs147145279 ^e	31388958	0.124	rs147145279 ^e	31388959	0.124	1852	30890201	31884909	994,709
14	rs1128175	31150435	0.180	rs1128175	31150435	0.180	662	30666027	31646746	980,720
15	HLA-DQA1 Arg52	32609228	0.048	HLA-DQA1 Arg52	32609228	0.048	6766	32109547	33108809	999,263

Table S26. Parameters of 95% Bayesian credible sets for the 14 MHC psoriasis association signals in the final full regression model for people of European ancestry.

Abbreviations: aa, amino acid; BCS, Bayesian credible set; chr6, chromosome 6; PP, posterior probability.

^aRound of stepwise regression analysis.

^bID is build 151 dbSNP rsID when applicable.

^cBase pair position in hg19 human reference; for amino acids and classical HLA proteins the position of the center of the coding unit is given; for indels (all of which are insertions into the reference sequence), the position immediately before the insertion point is given.

^dAll values are bp on chromosome 6 of the hg19 human reference assembly.

^ers147145279 is shorthand for two biallelic indels (rs559509014 and rs147145279) that were genotyped as a single triallelic indel by phase 3 1000 Genomes Project with –, A and AA alleles, and the stepwise-selected variant is one of the biallelic splits of this triallelic indel.

					association at		on at	associatio	on in	
		chr6	alle	eles	risk allele	frequency	entry into	model	final full n	nodel
Step ^a	Variant ^b	position ^c	risk ^d	nonrisk	cases	controls	OR (95% CI)	p-value	OR (95% CI)	p-value
1	rs12211087	31269946	А	Т	0.2593	0.0921	4.09 (3.90-4.28)	$5.3 imes 10^{-779}$	NA ^e	NA ^e
			C,M,Y	F <i>,</i> S	NA	NA	NA	$3.0 imes 10^{-94}$	NA	$1.3 imes 10^{-134}$
			С	other	0.1363	0.1148	1.55 (1.47-1.63)	$5.3 imes10^{-64}$	1.98 (1.86-2.10)	$4.0 imes 10^{-105}$
n	HLA-B	21224526	other	F	0.7957	0.7404	0.93 (0.89-0.97)	$6.2 imes 10^{-4}$	1.04 (0.98-1.10)	0.22
Z	amino acid 67	51524550	М	other	0.1445	0.0485	1.55 (1.45-1.66)	$3.3 imes10^{-39}$	1.30 (1.20-1.40)	$1.3 imes 10^{-11}$
			Y	other	0.1125	0.1550	1.03 (0.98-1.08)	0.31	1.25 (1.18-1.33)	1.3×10^{13}
			other	S	0.5974	0.5779	ref	ref	ref	ref
3	rs1655901	29916804	С	Т	0.5882	0.5151	1.35 (1.31-1.39)	$3.5 imes 10^{-72}$	1.30 (1.25-1.34)	$1.0 imes10^{-49}$
4	rs2734588	31496467	other	С	0.2036	0.1659	1.24 (1.19-1.30)	$5.9 imes 10^{-24}$	1.11 (1.06-1.17)	$6.5 imes10^{-6}$
5	rs2853998	31327164	Т	С	0.7081	0.6544	1.17 (1.12-1.22)	$1.0 imes 10^{-13}$	1.17 (1.12-1.23)	$3.1 imes 10^{-12}$
6	rs114811870	31324938	С	Т	0.9738	0.9669	1.50 (1.35-1.67)	$1.7 imes 10^{-13}$	1.91 (1.69-2.15)	$3.0\times10^{\text{-}25}$
7	rs28573770	32679275	А	Т	0.0146	0.0108	1.90 (1.62-2.24)	$3.6 imes 10^{-15}$	1.72 (1.46-2.02)	$5.5 imes 10^{-11}$
8	HLA-C*06:02	31238192	C*06:02	other	0.2601	0.0908	2.25 (1.76-2.88)	$1.5 imes 10^{-10}$	3.18 (2.95-3.43)	$3.2\times10^{\text{-}200}$
9	rs2844626	31229552	Т	А	0.4995	0.3626	1.18 (1.12-1.24)	$5.9 imes 10^{-10}$	1.20 (1.14-1.26)	$1.8 imes 10^{-11}$
10	rs1736927	29796115	А	С	0.4718	0.4863	1.11 (1.07-1.15)	$2.3\times10^{\text{-9}}$	1.10 (1.06-1.14)	$5.5 imes 10^{-8}$
11	rs9271539	32590028	G	А	0.7165	0.6610	1.11 (1.07-1.15)	$6.8 imes10^{-8}$	1.17 (1.12-1.21)	$1.7 imes 10^{-15}$
12	rs9378158	31305761	G	А	0.0647	0.0676	1.19 (1.11-1.27)	$2.7 imes 10^{-7}$	1.16 (1.09-1.24)	$9.9 imes10^{-6}$
13	rs112540072	32338289	G	А	0.9481	0.9266	1.20 (1.12-1.28)	$2.4 imes 10^{-7}$	1.19 (1.11-1.27)	$1.2 imes 10^{-6}$
14	rs566864214	31480770	А	G	0.9964	0.9945	1.87 (1.46-2.40)	$6.3 imes 10^{-7}$	1.94 (1.51-2.48)	1.7×10^{-7}
15	rs9266716	31349727	Т	С	0.7259	0.7149	1.13 (1.08-1.18)	$5.8 imes10^{-7}$	1.14 (1.09-1.20)	$1.0 imes 10^{-7}$
16	rs147145279	31388958	AA	other	0.0021	0.0009	2.74 (1.78-4.21)	$4.7 imes10^{-6}$	2.78 (1.80-4.28)	$3.5 imes10^{-6}$
17	rs12660712	29734634	С	А	0.9756	0.9679	1.24 (1.12-1.36)	2.7×10^{-5}	1.24 (1.12-1.37)	2.2×10^{-5}
18	rs3104406	32682443	A	G	0.4881	0.3971	1.08 (1.04-1.12)	2.2 × 10 ⁻⁵	1.08 (1.04-1.12)	2.2 × 10 ⁻⁵

Table S27. Psoriasis associations from stepwise analysis of the extended MHC region for ten studies of South Asian or European ancestry.

Abbreviations: chr6, chromosome 6; CI, confidence interval; NA, not applicable; OR, odds ratio; PP, posterior probability (Bayesian); ref, reference. ^aRound of stepwise regression analysis.

^bVariant notes: variant ID is build 151 dbSNP rsID when applicable; the stepwise-selected variant for triallelic SNP rs2734588 is one of its biallelic splits with C/A+G alleles; HLA-C*06:02 is one biallelic split from decomposed sets of 74 and 41 classical 2-field HLA-C alleles for the South Asian and European studies, respectively; rs147145279 is shorthand for two biallelic indels (rs559509014 and rs147145279) that were genotyped as a single triallelic indel by phase 3 1000 Genomes Project with –, A and AA alleles, and the stepwise-selected variant is one of the biallelic splits of this triallelic indel.

^cBase pair position in hg19 human reference; for amino acids and classical HLA proteins the position of the center of the coding unit is given; for indels (all of which are insertions into the reference sequence), the position immediately before the insertion point is given.

^dRisk allele is based on final full regression model.

^eVariant removed after addition of HLA-C*06:02 in eighth round reduced its significance below the backward elimination inclusion threshold.

				Best protein-changing surrogate based on						
		hg19	nearest gene	LD in EUR ^d	LD in EUR ^d	LD in SAS ^d	LD in SAS ^d	p-value ^e	Bayesian PP ^e	
Step ^a	Variant ^b	position ^c	(consequence)	$(W_n^2, rank)$	($m{arepsilon}'$, rank)	$(W_n^2$, rank)	($m{arepsilon}'$, rank)	(p-value, rank)	(PP, rank)	
1	rc12211007	21260046	<i>LINC02571</i> (527	HLA-C*06	HLA-C*06	HLA-C*06	HLA-C*06	NIA	NIA	
1	1812211087	31269946	bp upstream)	(0.9897, 5)	(0.9773, 5)	(0.9861, 5)	(0.9686, 5)	NA	NA	
n		21224526	ULA D (protoin)	HLA-B aa-67	HLA-B aa-67	HLA-B aa-67	HLA-B aa-67	HLA-B aa-67	HLA-B aa-67	
Z	ILA-D dd-07	51524550	пLA-в (protein)	(NA, 1)	(NA, 1)	(NA, 1)	(NA, 1)	(1.3 × 10 ⁻¹³⁴ , 1)	(1.000, 1)	
2	rc1655001	20016804	HLA-A (3.1 kb	HLA-A aa-62	HLA-A Val95	HLA-A aa-62	HLA-A Ala152	HLA-A Glu62	HLA-A Glu62	
5	131033901	29910804	downstream)	(0.5049, 48)	(0.3705, 100)	(0.5563, 12)	(0.5702, 39)	(9.0 × 10 ⁻⁴⁰ , 4)	(0.000, 4)	
			MCCD1 (272 hr		Ш ∧_ ₽*12·02	rs28399976	rs28399976	rs2229094	rs144223778	
4	rs2734588	31496467	unstream)	(0.2110, 154)	(0 1022 172)	(MSH5)	(MSH5)	(LTA)	(HSPA1B)	
			upstream	(0.2110, 154)	(0.1933, 173)	(0.1715, 161)	(0.1875, 116)	(8.7 × 10 ⁻⁵ , 42)	(0.001, 39)	
5	rc7853008	3132716/	<i>HLA-B</i> (2.2 kb	HLA-B aa-9	HLA-B His9	HLA-B aa-9	HLA-B His9	HLA-B Asp9	HLA-B aa-9	
	132055556	51527104	upstream)	(0.5429, 2)	(0.5019, 2)	(0.7884, 2)	(0.7329, 2)	(9.9 × 10 ⁻¹¹ , 2)	(0.034, 2)	
						rs41560824	rs41560824	rs41556417	rs41556417	
6	rs114811870	31324938	<i>HLA-B</i> (5'-UTR)	(0.0410.10)	(0 0105 10)	(MICA)	(MICA)	(HLA-B)	(HLA-B)	
				(0.5415, 10)	(0.5155, 10)	(0.7998, 21)	(0.8322, 21)	(2.6 × 10 ⁻²¹ , 13)	(0.000, 13)	
			AI 662789 1 (6 5	rs140654840	rs140654840	rs140654840	rs140654840	rs16870005	rs16870005	
7	rs28573770	32679275	kh unstream)	(TAP2)	(TAP2)	(TAP2)	(TAP2)	(TSBP1)	(TSBP1)	
			ko upstrearinj	(0.6124, 47)	(0.6411, 34)	(0.7140, 23)	(0.7627, 22)	(6.5 × 10 ⁻⁹ , 28)	(0.001, 28)	
8	ΗΙ Δ-C*06·02	21228102	HIA-C (protein)	HLA-C*06:02	HLA-C*06:02	HLA-C*06:02	HLA-C*06:02	HLA-C*06:02	HLA-C*06:02	
	MLA C 00.02	51250152	neA e (protein)	(NA, 1)	(NA, 1)	(NA, 1)	(NA, 1)	(3.2 × 10 ⁻²⁰⁰ , 2)	(0.664, 1)	
			<i>НІ А-С</i> (7 0 kb	rs1576	rs1576	rs1576	rs2308592	HI A-B*51	HIΔ-R*51	
9	rs2844626	31229552	downstream)	(CCHCR1)	(CCHCR1)	(CCHCR1)	(HLA-C)	$(9.8 \times 10^{-11} \ 2)$	(0.106.2)	
			downstreamy	(0.5764, 49)	(0.4794, 51)	(0.5713, 50)	(0.4905, 72)	(5.6 × 10 , 2)	(0.100, 2)	
				rs9260156	HLA-A Leu156	HI A-A aa-95	HLA-A Val95	rs543623321	rs543623321	
10	rs1736927	29796115	HLA-G (intron)	(HLA-A)	(0.5826, 108)	(0.5352, 184)	(0.5083, 176)	(HLA-A)	(HLA-A)	
				(0.6659 <i>,</i> 97)	(0.0020) 200)	(010002) 201)	(0.0000) 1707	(2.6 × 10 ⁻⁷ , 86)	(0.003, 84)	
11	rs9271539	32590028	HLA-DQA1 (15.1	HLA-DRB1 aa-233	HLA-DRB1 aa-233	HLA-DRB1 aa-13	HLA-DRB1 Ser12	HLA-DRB1 aa-13	HLA-DRB1 aa-13	
<u> </u>	.332,1333	32330020	kb upstream)	(0.8311, 3)	(0.7739, 3)	(0.8799, 3)	(e=0.80368, 3)	(7.5 × 10 ⁻¹² , 4)	(0.000, 4)	
12	rs9378158	31305761	<i>HLA-B</i> (15.9 kb	HLA-C aa-156	HLA-C*07:04	HLA-B*15	HLA-C*07:01	HLA-C*07:01	HLA-C*07:01	
14	132310130	51505/01	downstream)	(0.2674, 173)	(0.2961, 240)	(0.3347, 141)	(0.3244, 146)	(2.5 × 10⁻⁵, 6)	(0.016, 6)	

Table S28. Annotations and protein-changing surrogates for associated variants in the extended MHC region for people of South Asian or European ancestry.

Table S28. (Continued).

				Best protein-changing surrogate based on					
		hg19	nearest gene	LD in EUR ^d	LD in EUR ^d	LD in SAS ^d	LD in SAS ^d	p-value ^e	Bayesian PP ^e
Step ^a	Variant ^b	position ^c	(consequence)	(W ² , rank)	(ε' <i>,</i> rank)	(W ² , rank)	(ε' <i>,</i> rank)	(p-value, rank)	(PP, rank)
12	rc112E40072	22220200	TCDD1 (introp)	HLA-DRB1*01:01	HLA-DRB1*01:01	HLA-DRB1 aa-30	HLA-DRB1*01:01	HLA-DRB1*01:01	HLA-DRB1*01:01
12	13112540072	52556269	ISBPI (IIIIIOII)	(0.4935, 31)	(0.4653, 45)	(0.6365, 17)	(0.6330, 17)	(5.2 × 10 ⁻⁵ , 8)	(0.009, 8)
14	rs566864214	31480770	MICB (1.9 kb downstream)	HLA-B aa-158 (0.0737, 23)	HLA-B aa-158 (0.1029, 23)	HLA-B aa-158 (0.0207, 60)	HLA-B aa-158 (e=0.0334, 60)	rs16822820 (<i>HLA-DRB1</i>) (9.8 × 10 ⁻⁵ , 16)	HLA-B*51:01 (0.000, 24)
10	rc0266716	21240727	AL671883.3 (5.9	HLA-B aa-163	HLA-B*07	HLA-B aa-116	HLA-B*44:03	HLA-B Thr163	HLA-B Thr163
12	159200710	51549727	kb downstream)	(0.4128, 168)	(0.3491, 170)	(0.4515, 211)	(0.3672, 232)	(9.5 × 10 ⁻⁶ , 68)	(0.002, 68)
				rs41556715	rs41556715	rs41556715	rs41556715	rs41556715	rs41556715
16	rs147145279 ^f	31388958	HCP5 (intron)	(MICA)	(MICA)	(MICA)	(MICA)	(MICA)	(MICA)
				(0.9505, 4)	(0.9474, 4)	(0.7999 <i>,</i> 5)	(0.8368, 5)	(1.8 × 10 ⁻⁵ , 5)	(0.043, 5)
			NI 615020 5 12 6	rs41551813	rs41551813	rs61730331	rs61730331	<i>Ш∧_</i> ₽*51·∩1	rs41551813
17	rs12660712	29734634	AL043333.3(3.0)	(HLA-G)	(HLA-G)	(OR2I1P)	(OR2I1P)	$(1.4 \times 10^{-4}.24)$	(HLA-G)
			KD UOWIIStream)	(0.7624, 136)	(0.7547, 136)	(0.4951, 49)	(0.4887, 49)	(1.4 × 10 , 24)	(0.000, 275)
10	rc2104406	27687112	AL662789.1 (3.3	HLA-DQA1 aa-25	HLA-DQA1 aa-25	HLA-DRB1 aa-67	HLA-DRB1 Leu67	HLA-DQA1 aa-25	HLA-DQA1 aa-25
10	133104400	52002445	kb upstream)	(0.3647, 145)	(0.3334, 144)	(0.5896, 138)	(0.4870, 139)	$(1.4 imes 10^{-4}, 4)$	(0.013, 2)

Abbreviations: aa, amino acid; chr6, chromosome 6; EUR, people of European ancestry; LD, linkage disequilibrium; NA, not applicable, PP, posterior probability;

SAS, people of South Asian ancestry.

^aRound of stepwise regression analysis.

^bBuild 151 dbSNP rsID when applicable

^cBase pair position in hg19 human reference; for classical HLA proteins the position of the center of the coding unit is given; for indels (all of which are insertions into the reference sequence), the position immediately before the insertion point is given.

 ${}^{d}W_{n}^{2}$ and ε' coefficients of linkage disequilibrium can accommodate multiallelic variants; see Subjects and Methods for more details.

^eP-values and Bayesian posterior probabilities based on the final full regression model for associated variants.

^frs147145279 is shorthand for two biallelic indels (rs559509014 and rs147145279) that were genotyped as a single triallelic indel by phase 3 1000 Genomes Project with –, A and AA alleles, and the stepwise-selected variant is one of the biallelic splits of this triallelic indel.

	Stepwise-	selected varia	nt	Top varia	nt in 95% BCS		Size of 95% BCS				
-		chr6			chr6		No.	Left	Right		
Step ^a	ID⁵	position ^c	PP	ID ^b	position ^c	PP	variants	bound ^d	bound ^d	Length ^d	
2	HLA-B aa-67	31324536	1.000	HLA-B aa-67	31324536	1.000	1	31324535	31324537	3	
3	rs1655901	29916804	1.000	rs1655901	29916804	1.000	1	29916804	29916804	1	
4	rs2734588	31496467	0.014	rs3093547	31541848	0.081	459	31002742	31973511	970,770	
5	rs2853998	31327164	0.942	rs2853998	31327164	0.942	2	31324709	31327164	2456	
6	rs114811870	31324938	0.349	rs114811870	31324938	0.349	6	31323480	31326410	2931	
7	rs28573770	32679275	0.133	rs28573770	32679275	0.133	17	32340792	32679275	338,484	
8	HLA-C*06:02	31238192	0.664	HLA-C*06:02	31238192	0.664	2	31236946	31251924	14,979	
9	rs2844626	31229552	0.541	rs2844626	31229552	0.541	13	31229552	31324935	95,384	
10	rs1736927	29796115	0.012	rs3215482	29796126	0.023	92	29784514	29913232	128,719	
11	rs9271539	32590028	0.562	rs9271539	32590028	0.562	2	32589791	32590028	238	
12	rs9378158	31305761	0.040	rs9501557	31231306	0.137	5376	30805799	31804729	998,931	
13	rs112540072	32338289	0.275	rs112540072	32338289	0.275	3057	31840408	32836111	995,704	
14	rs566864214	31480770	0.253	rs566864214	31480770	0.253	10	31007124	31773521	766,398	
15	rs9266716	31349727	0.119	rs9266716	31349727	0.119	106	31140068	31541848	401,781	
16	rs147145279 ^e	31388958	0.184	rs147145279 ^e	31388959	0.184	8935	30889260	31888869	999,610	
17	rs12660712	29734634	0.032	rs12660712	29734634	0.032	6416	29234827	30233996	999,170	
18	rs3104406	32682443	0.061	rs3104406	32682443	0.061	8965	32183589	33181884	998,296	

Table S29. Parameters of 95% Bayesian credible sets for the 17 MHC psoriasis association signals in the final full regression model for people of South Asian or European ancestry.

Abbreviations: aa, amino acid; BCS, Bayesian credible set; chr6, chromosome 6; PP, posterior probability.

^aRound of stepwise regression analysis.

^bID is build 151 dbSNP rsID when applicable.

^cBase pair position in hg19 human reference; for amino acids and classical HLA proteins the position of the center of the coding unit is given; for indels (all of which are insertions into the reference sequence), the position immediately before the insertion point is given.

^dAll values are bp on chromosome 6 of the hg19 human reference assembly.

^ers147145279 is shorthand for two biallelic indels (rs559509014 and rs147145279) that were genotyped as a single triallelic indel by phase 3 1000 Genomes Project with –, A and AA alleles, and the stepwise-selected variant is one of the biallelic splits of this triallelic indel.

		Nur	mber of varia	ints	Fold-en	richment	Enrichment p-value		
Population	Variant type	Regression model	Classical MHC ^a	Extended MHC ^a	Classical MHC ^a	Extended MHC ^a	Classical MHC ^a	Extended MHC ^a	
	all	5	56,390	101,640	NA	NA	NA	NA	
	HLA protein-changing	1	1659	1659	6.80	12.25	0.14	0.079	
	non-HLA protein-changing	0	716	1247	0.00	0.00	1.00	1.00	
South Asian	indel	1	4828	9672	2.34	2.10	0.36	0.39	
South Asian	structural (≥ 50 bp)	0	39	66	0.00	0.00	1.00	1.00	
	full multiallelic	1	732	929	15.41	21.88	0.063	0.045	
	split multiallelic	2	3550	5133	6.35	7.92	0.035	0.023	
	multiallelic (all)	3	4282	6062	7.90	10.06	0.0039	0.0019	
	all	14	49,407	83,352	NA	NA	NA	NA	
	HLA protein-changing	5	1497	1497	11.79	19.89	$4.0 imes 10^{-5}$	$3.2 imes 10^{-6}$	
	non-HLA protein-changing	0	628	973	0.00	0.00	1.00	1.00	
Europoop	indel	3	4280	7035	2.47	2.54	0.12	0.11	
European	structural (≥ 50 bp)	0	31	43	0.00	0.00	1.00	1.00	
	full multiallelic	2	583	680	12.11	17.51	0.012	0.0057	
	split multiallelic	4	2994	3910	4.71	6.09	0.0082	0.0033	
	multiallelic (all)	6	3577	4590	5.92	7.78	$2.6 imes10^{-4}$	$5.7 imes10^{-5}$	
	all	17	45,159	71,832	NA	NA	NA	NA	
	HLA protein-changing	2	1483	1483	3.58	5.70	0.11	0.047	
	non-HLA protein-changing	0	522	806	0.00	0.00	1.00	1.00	
South Asian	indel	1	4029	6410	0.66	0.66	0.80	0.80	
+ European	structural (≥ 50 bp)	0	29	39	0.00	0.00	1.00	1.00	
	full multiallelic	1	539	613	4.93	6.89	0.18	0.14	
	split multiallelic	3	2809	3602	2.84	3.52	0.085	0.051	
	multiallelic (all)	4	3348	4215	3.17	4.01	0.033	0.015	

Table S30. Enrichment of variant types in full MHC regression models compared to the set of analyzed MHC variants.

Abbreviations: NA, not applicable.

^aMHC regions: classical (chr6:29.64-33.12 Mb), extended (chr6:24-36 Mb); coordinates based on hg19 reference assembly.

		Nu	mber of varia	nts	Fold-en	richment	Enrichme	nt p-value
Population ^a	Variant type ^b	Classical MHC ^c	Extended MHC ^d	Whole genome	Classical MHC ^c	Extended MHC ^d	Classical MHC ^c	Extended MHC ^d
	all	58,996	102,123	13,661,501	NA	NA	NA	NA
	protein-changing	938	1,241	40,966	5.30	4.05	$1.5\times10^{\text{-820}}$	$7.0\times10^{\text{-822}}$
All	indel	4,231	9,436	1,478,852	0.66	0.85	1.00	1.00
	structural (≥ 50 bp)	65	100	9,753	1.54	1.37	6.2 ×10 ⁻⁴	0.0014
	multiallelic	1,065	1,841	236,146	1.04	1.04	0.079	0.036
	all	54,257	88,781	10,215,054	NA	NA	NA	NA
	protein-changing	857	1,126	31,922	5.05	4.06	$8.0\times10^{\text{-}718}$	$3.2\times10^{\text{-}749}$
South Asian	indel	3,899	8,241	1,171,219	0.63	0.81	1.00	1.00
	structural (≥ 50 bp)	61	90	7,331	1.57	1.41	$6.2 imes 10^{-4}$	0.0010
	multiallelic	1,021	1,689	182,099	1.06	1.07	0.042	0.0038
	all	53,326	87,148	9,763,639	NA	NA	NA	NA
	protein-changing	824	1,089	30,831	4.89	3.96	$1.0 imes 10^{-668}$	$8.5\times10^{\text{-}704}$
European	indel	3,814	8,088	1,129,099	0.62	0.80	1.00	1.00
	structural (≥ 50 bp)	58	83	7,036	1.51	1.32	0.0019	0.0081
	multiallelic	1,004	1,665	174,417	1.05	1.07	0.049	0.0031

Table S31. Enrichment of variant types in the MHC region compared to the whole genome.

Abbreviations: NA, not applicable.

^aPopulations as defined by phase 3 1000 Genomes: All includes 2504 individuals from 26 different populations; South Asian includes 489 individuals from five South Asian populations, and European includes 503 individuals from five European populations.

^bVariant types based on autosomal variants in release 5 of phase 3 of the 1000 Genomes Project with minor allele frequency ≥ 0.01 in the designated population.

^cClassical MHC: chr6:29.64–33.12 Mbp in hg19 reference assembly.

^dExtended MHC: chr6:24–36 Mbp in hg19 reference assembly.

Table S32. Complete results for stepwise conditional analysis of South Asian, European and transethnic psoriasis associations in the extendedMHC region.

See Excel file mmc2.xlsx in Supplemental information. The COL_KEY and Variant_KEY worksheets of this file describe the column headers, and how to interpret the nature of the various types of variants analyzed for association.

			0	df		А	IC		-	۲jur's R ^{2(e)}		
model 1 (within-pop.) ^a	model 2 (cross-pop.) ^b	Model Subset	model 1	model 2	model 1	model 2	Δ ^c	Evidence Ratio ^d	model 1	model 2	Δ	
		full	21	23	-1228.35	-1169.07	-59.28	$7.4 imes 10^{12}$	0.268	0.257	0.011	
SAS in SAS	ELID tone in SAS	covariates	15	15	-345.73	-347.29	1.56	$4.6 imes 10^{-1}$	0.079	0.080	-0.001	
5A2 III 5A2	EUR-LOPS IN SAS	HLA-C*06	1	1	-582.18	-594.15	11.97	$2.5 imes10^{-3}$	0.123	0.127	-0.004	
		other variants	5	7	-300.44	-227.64	-72.80	6.4×10^{15}	0.066	0.051	0.015	
		full	21	33	-1228.35	-1171.72	-56.63	2.0×10^{12}	0.268	0.262	0.006	
SAS in SAS	ELID full in SAS	covariates	15	15	-345.73	-335.64	-10.09	1.6×10^{2}	0.079	0.077	0.002	
SAS in SAS	EUR-TUILIN SAS	EUR-IUII III SAS	HLA-C*06	1	1	-582.18	-521.35	-60.84	1.6×10^{13}	0.123	0.111	0.012
		other variants	5	17	-300.44	-314.74	14.30	$7.9 imes 10^{-4}$	0.066	0.074	-0.008	
		full	82	80	-14805.54	-14378.27	-427.27	6.0×10^{92}	0.304	0.296	0.009	
ELIP topE in ELIP	SAS in EUP	covariates	74	74	-9991.09	-10049.17	58.09	$2.4\times10^{\text{-13}}$	0.198	0.200	-0.002	
EOR-top5 III EOR	SAS III EUK	HLA-C*06	1	1	-2878.65	-3259.53	380.88	$2.0\times10^{\text{-83}}$	0.064	0.072	-0.008	
		other variants	7	5	-1935.80	-1069.57	-866.24	1.3×10^{188}	0.042	0.023	0.019	
EUR-full in EUR		full	92	80	-15086.99	-14378.27	-708.72	$\textbf{7.9} \times \textbf{10}^{\textbf{153}}$	0.310	0.296	0.014	
	SAS in EUP	covariates	74	74	-9853.78	-10049.17	195.40	3.7×10^{43}	0.195	0.200	-0.005	
	SAS ITEON	HLA-C*06	1	1	-2292.53	-3259.53	967.00	1.0×10^{210}	0.051	0.072	-0.021	
		other variants	17	5	-2940.68	-1069.57	-1871.12	$2.0 imes 10^{406}$	0.064	0.023	0.041	

Table S33. Comparison of total and decomposed goodness of fit of within-population vs. cross-population association models for the MHC region.

Abbreviations: AIC, Akaike Information Criterion; df, degrees of freedom; EUR, European; SAS, South Asian.

^aWithin-population models are built by stepwise analysis within a single population, and the model parameters (coefficients and standard errors) are estimated for that same population (e.g., "EUR-full in EUR" refers to the full regression model that was selected and estimated in the same European dataset).

^bCross-population models are built by stepwise analysis in one population, but the model parameters are estimated in another population (e.g., "EUR-top5 in SAS" refers to the five most significant variants of the full regression model that was selected in the European dataset but with parameters re-estimated in the South Asian dataset).

^cThe difference in AIC of models 1 and 2. Negative values indicate that model 1 has more support; positive values that model 2 has more support. Absolute differences of 10 or more indicate that the poorer model has essentially no support of being the best approximating model of the two being compared.

^dEvidence ratio = relative likelihood of model 1 versus model 2 = $1/\exp((AIC_1-AIC_2)/2)$.

^eAlso known as Tjur's D (coefficient of discrimination), equal to the difference in the average model-predicted probability of having psoriasis between psoriasis cases and unaffected controls.

		Mean imputat	ion quality (R ²)	for variants imp	uted using refe	rence panel ^a
MAF ^b	Ancestry	1KGP+HRC	SNP2HLA (5 genes)°	SNP2HLA (2 genes) °	SNP2HLA (1 gene) °	All
	SAS	0.8265	0.9762	0.9724	0.9917	0.8298
≥ 0.05	EUR	0.8051	0.9887	0.9877	0.9625	0.8098
	SAS+EUR	0.8066	0.9871	0.9750	0.9632	0.8105
	SAS	0.8544	0.8848	0.8518	0.7274	0.8545
0.01–0.05	EUR	0.8280	0.9490	0.9199	0.8914	0.8304
	SAS+EUR	0.8402	0.9285	0.8756	0.8772	0.8418
	SAS	0.2974	0.2161	0.1922	0.2917	0.2959
< 0.01	EUR	0.4176	0.3627	0.4414	0.1516	0.4170
	SAS+EUR	0.3968	0.3471	0.3756	0.1602	0.3962
	SAS	0.5841	0.6448	0.5361	0.7599	0.5852
Total	EUR	0.6212	0.7975	0.8399	0.7554	0.6246
	SAS+EUR	0.6183	0.8124	0.7229	0.7536	0.6212

Table S34. Mean imputation quality of variants in the imputed genotype datasets for the classicalMHC region, cross-classified by minor allele frequency, ancestry, and reference panel.

Only biallelic variants are considered, including splits of multiallelic variants.

Abbreviations: 1KGP, 1000 Genomes Project; EUR, European; HRC, Haplotype Reference Consortium; MAF, minor allele frequency; NA, not applicable; SAS, South Asian.

^aAverage imputation quality computed as a weighted mean of empirical values, weighted by the effective sample size of each study in the ancestry dataset.

^bMembership in MAF bins is based on a weighted mean of MAF values for each study in the ancestry group, with the effective study sample size as weights.

^cThree SNP2HLA reference panels were used for imputing HLA gene variants in the South Asian and European datasets; 5 gene, 2 gene and 1 gene refer, respectively, to the panels used to impute HLA-A/B/C/DQB1/DRB1, HLA-DPA1/DPB1, or HLA-DQA1 variants.

Table S35. Comparison of 95% Bayesian credible sets for four MHC association signals occurring in both the transethnic association model and in at least one of the two monoethnic association models.

	95% Bayesian credible set													
Stepwise-		Top variant		PP	of top v	variant		No. vari	ants	Interval length (kb)				
selected variant	SAS	EUR	SAS+EUR	SAS	EUR	SAS+EUR	SAS	EUR	SAS+EUR	SAS	EUR	SAS+EUR		
HLA-C*06:02	rs12199223	rs12189871	HLA-C*06:02	0.266	0.712	0.664	11	2	2	108.7	15.0	15.0		
HLA-B aa-67	NA	HLA-B aa-67	HLA-B aa-67	NA	1.000	1.000	NA	1	1	NA	0.003	0.003		
rs1655901	NA	rs1655901	rs1655901	NA	1.000	1.000	NA	1	1	NA	0.001	0.001		
rs147145279ª	NA	rs147145279ª	rs147145279ª	NA	0.229	0.184	NA	3910	8935	NA	997.6	999.6		

To ensure an unbiased comparison, credible sets were recomputed for all three ancestry association models after restricting the variant sets to markers passing the imputation quality threshold of $r^2 \ge 0.70$ for all eight European and both South Asian studies.

Abbreviations: aa, amino acid; EUR, European; NA, not applicable; PP, posterior probability; SAS, South Asian.

^aVariant rs147145279 is shorthand for two biallelic indels (rs559509014 and rs147145279) that were genotyped as a single triallelic indel by phase 3 1000 Genomes Project with –, A and AA alleles, and the stepwise-selected variant is one of the biallelic splits of this triallelic indel.

			df			А	IC		Tjur's R ^{2(e)}				
model 1 (transethnic) ^a	model 2 (monethnic) ^b	Model Subset	model 1	model 2	model 1	model 2	Δc	Evidence Ratio ^d	model 1	model 2	Δ		
		full	35	21	-1213.32	-1228.35	15.04	$5.4 imes10^{-4}$	0.271	0.268	0.003		
	SAS in SAS	covariates	20	15	-416.52	-345.73	-70.79	2.4×10^{15}	0.094	0.079	0.014		
SASTEUR III SAS	3A3 III 3A3	HLA-C*06	1	1	-442.02	-582.18	140.17	$3.7\times10^{\text{-}31}$	0.095	0.123	-0.028		
		other variants	19	5	-354.78	-300.44	-54.34	6.3×10^{11}	0.083	0.066	0.017		
		full	35	33	-1213.32	-1171.72	-41.59	1.1×10^9	0.271	0.262	0.009		
		covariates	20	15	-416.52	-335.64	-80.88	3.7×10^{17}	0.094	0.077	0.017		
SAS+EUR III SAS	EUR III SAS	HLA-C*06	1	1	-442.02	-521.35	79.33	$5.9\times10^{\text{-18}}$	0.095	0.111	-0.017		
		other variants	19	17	-354.78	-314.74	-40.04	5.0×10^{8}	0.083	0.074	0.009		
		full	94	80	-15117.71	-14378.27	-739.44	3.7×10^{160}	0.311	0.296	0.015		
		covariates	74	74	-9860.92	-10049.17	188.25	$1.3\times10^{\text{-}41}$	0.195	0.200	-0.005		
SAS+EUR III EUR	SAS III EUR	HLA-C*06	1	1	-2355.60	-3259.53	903.93	5.2×10^{197}	0.053	0.072	-0.019		
		other variants	19	5	-2901.19	-1069.57	-1831.62	2.7×10^{451}	0.063	0.023	0.040		
		full	94	92	-15117.71	-15086.99	-30.72	4.7×10^{6}	0.311	0.310	0.001		
		covariates	74	74	-9860.92	-9853.78	-7.15	3.6×10^{1}	0.195	0.195	0.000		
SAS+EUR III EUR	EURINEUR	HLA-C*06	1	1	-2355.60	-2292.53	-63.07	5.0×10^{13}	0.053	0.051	0.002		
		other variants	19	17	-2901.19	-2940.68	39.50	2.7×10^{-9}	0.063	0.064	-0.001		
		full	110	96	-17237.47	-16461.37	-776.10	3.4×10^{168}	0.320	0.306	0.014		
SAS+EUR in	SAS in	covariates	90	90	-10944.17	-11163.09	218.91	$2.9\times10^{\text{-48}}$	0.195	0.201	-0.006		
SAS+EUR	SAS+EUR	HLA-C*06	1	1	-2931.78	-4015.65	1083.87	4.4×10^{236}	0.059	0.080	-0.021		
		other variants	19	5	-3361.52	-1282.63	-2078.89	5.4×10^{397}	0.066	0.025	0.041		
		full	110	108	-17237.47	-17123.59	-113.88	5.4×10^{24}	0.320	0.318	0.002		
SAS+EUR in	EUR in	covariates	90	90	-10944.17	-10884.18	-59.99	1.1×10^{13}	0.195	0.194	0.001		
SAS+EUR	SAS+EUR	HLA-C*06	1	1	-2931.78	-2915.15	-16.63	4.1×10^3	0.059	0.058	0.000		
		other variants	19	17	-3361.52	-3324.26	-37.26	$1.2 imes 10^8$	0.066	0.065	0.001		

Table S36. Comparison of total and decomposed goodness of fit of transethnic vs. monoethnic association models for the MHC region.

Abbreviations: AIC, Akaike Information Criterion; df, degrees of freedom; EUR, European; SAS, South Asian.

^aTransethnic models are built by stepwise analysis in a dataset combining two ethnic groups, and the parameters (coefficients and standard errors) are estimated in either of the individual ethnic groups or their combination (e.g., "SAS+EUR in EUR" refers to the regression model that was selected in the transethnic South Asian + European dataset but with parameters re-estimated in the European dataset)

^bMonoethnic models are built by stepwise analysis in a dataset for a single ethnic group, and the parameters are estimated in either of the individual ethnic groups or their combination (e.g., "SAS in SAS+EUR" refers to the regression model that was selected in the South Asian dataset but with parameters re-estimated in the combined South Asian + European dataset)

^cThe difference in AIC of models 1 and 2. Negative values indicate that model 1 has more support; positive values that model 2 has more support. Absolute differences of 10 or more indicate that the poorer model has essentially no support of being the best approximating model of the two being compared.

^dEvidence ratio = relative likelihood of model 1 versus model 2 = $1/\exp((AIC_1-AIC_2)/2)$.

^eAlso known as Tjur's D (coefficient of discrimination), equal to the difference in the average model-predicted probability of having psoriasis between psoriasis cases and unaffected controls.

			most significant cis-eQTL result (target gene, sign risk allele effect, p-value) for variant									
Tissue ^a	Study ^b	Ν	rs1655901	rs2844626	rs72866766	rs137854633	rs2853998	rs2442752	rs6935999	rs4947340	rs9271529	
Skin (normal <i>,</i> PsV lesional)	PsV RNAseq	171	—	<i>PSORS1C1</i> (+, 1e-04)	<i>MICA</i> (-, 1e-03)	_	—	<i>C4A</i> (+, 3e-06)	—	HLA-DRB1 (-, 1e-13)	<i>C4A</i> (+, 2e-05)	
Skin (not sun- exposed)	GTEx	517	<i>ZFP57</i> (+, 1e-09)	<i>C4A</i> (-, 7e-15)	<i>MICA</i> (–, 5e-10)	_	<i>MIR6891</i> (+, 4e-08)	<i>PSORS1C3</i> (+, 2e-11)	NS	_	HLA-DRB5 (+, 2e-41)	
Skin (sun exposed)	GTEx	605	<i>HCP5B</i> (+, 4e-15)	HLA-C (+, 7e-15)	CCHCR1 (-, 7e-14)	-	<i>MIR6891</i> (+, 3e-09)	<i>C4A</i> (+, 5e-08)	HLA-DRB5 (-, 1e-04)	_	<i>HLA-DRB5</i> (+, 3e-45)	
Skin	TwinsUK	370	<i>ZFP57</i> (+, 1e-10)	<i>CCHCR1</i> (+, 2e-10)	<i>PSORS1C3</i> (+, 2e-07)	_	<i>HLA-В</i> (-, 2e-23)	<i>PSORS1C3</i> (+, 1e-13)	_	HLA-DQA2 (+, 1e-44)	_	
Fibroblasts (cultured)	GTEx	483	HCG4P7 (+, 9e-26)	<i>AL645933.2</i> (−, 9e-11)	<i>MICA</i> (-, 8e-15)	_	<i>AL645933.2</i> (−, 5e-06)	<i>C4A</i> (+, 1e-05)	<i>LY6G5C</i> (-, 4e-04)	_	<i>C4B</i> (-, 2e-08)	
Fibroblasts	GENCORD	186	GABBR1 (+, 1e-02)	AL645933.2 (-, 2e-06)	<i>MICA</i> (-, 7e-11)	<i>HLA-В</i> (-, 6е-14)	<i>AL645933.2</i> (-, 5e-08)	<i>AL645933.2</i> (+, 6e-03)	<i>CSNK2B</i> (-, 3e-03)	<i>ZBTB22</i> (+, 3e-03)	HLA-DRB5 (+, 3e-03)	
Whole blood, PBMCs	eQTLGen Consortium	32K	—	<i>C4B</i> (+, 8e-93)	<i>MICA</i> (-, 4e-103)	_	_	HLA-B (+, 8e-192)	HLA-DRB6 (-, 1e-10)	HLA-DQA2 (+, 3e-310)	HLA-DRB6 (-, 3e-10)	
Whole blood	GTEx	670	HCP5B (+, 2e-24)	HLA-C (+, 1e-39)	<i>MICA</i> (-, 3e-13)	_	<i>MIR6891</i> (+, 6e-15)	<i>NOTCH4</i> (-, 2e-14)	NS	_	HLA-DRB5 (+, 1e-39)	
Whole blood	Lepik (2018)	471	<i>AL645939.5</i> (+, 4e-12)	HLA-C (+, 3e-08)	<i>MICA</i> (-, 1e-17)	_	<i>HLA-В</i> (-, 1e-11)	<i>IER3</i> (–, 3e-08)	_	_	HLA-DRB5 (+, 3e-39)	
Whole blood	TwinsUK	195	<i>НСР5В</i> (+, 9е-10)	<i>CCHCR1</i> (+, 3e-08)	<i>PSORS1C3</i> (+, 7e-05)	_	<i>HLA-В</i> (-, 7е-08)	<i>LINC00243</i> (–, 2e-07)	_	HLA-DQA2 (+, 9e-36)	_	
B cells (CD19⁺)	CEDAR	262	HLA-A (+, 7e-13)	<i>TNXB</i> (+, 2e-03)	HLA-C (+, 1e-05)	HLA-C (-, 7e-04)	HLA-C (-, 1e-02)	HLA-C (+, 3e-07)	<i>NCR3</i> (-, 9e-07)	HLA-DRB5 (-, 2e-07)	HLA-DRB1 (+, 2e-16)	
B cells (CD19⁺)	Fairfax (2012)	282	HLA-A (+, 7e-13)	HCG27 (+, 2e-05)	HLA-C (+, 2e-04)	HLA-C (-, 2e-09)	ATP6V1G2 (+, 1e-05)	HCG22 (+, 2e-05)	NCR3 (-, 2e-06)	HLA-DRB1 (-, 1e-11)	HLA-DRB1 (+, 1e-17)	
B cells (naïve)	Schmiedel (2018)	91	DHX16 (+, 4e-03)	<i>МІСВ</i> (-, 1е-03)	<i>POU5F1</i> (-, 4e-03)	<i>HLA-В</i> (-, 1е-03)	HCG22 (-, 5e-03)	HLA-B (+, 2e-02)	<i>AGPAT1</i> (−, 3e-03)	HLA-DRB1 (-, 9e-11)	HLA-DRB5 (+, 3e-05)	

Table S37. Most significant cis-eQTL effects in relevant tissues for noncoding psoriasis-associated MHC variants with a Bayesian posterior probability > 0.50.

				most sig	gnificant cis-eQ	TL result (target	gene, sign risl	k allele effect,	p-value) for	variant	
Tissue ^a	Study ^b	Ν	rs1655901	rs2844626	rs72866766	rs137854633	rs2853998	rs2442752	rs6935999	rs4947340	rs9271529
LCLs	GTEx	147	HLA-F-AS1 (+, 7e-06)	HLA-C (+, 4e-07)	NS	_	<i>HCG22</i> (-, 7e-08)	HLA-C (-, 2e-08)	NS	—	HLA-DRB9 (-, 1e-14)
LCLs	GENCORD	190	<i>ZFP57</i> (+, 4e-06)	<i>HCG22</i> (–, 7e-06)	<i>MICA</i> (-, 2e-06)	<i>HLA-В</i> (-, 1e-12)	<i>HLA-В</i> (-, 3e-08)	<i>SKIV2L</i> (-, 4e-04)	<i>NOTCH4</i> (+, 3e-03)	HLA-DRB1 (-, 1e-17)	HLA-DRB5 (+, 3e-13)
LCLs	GEUVADIS	445	<i>AL645939.5</i> (+, 8e-14)	<i>AL645933.2</i> (−, 1e-12)	<i>MICA</i> (-, 4e-10)	<i>HLA-В</i> (-, 2e-16)	<i>AL645933.2</i> (−, 1e-12)	HLA-C (-, 6e-09)	<i>HSPA1A</i> (-, 8e-04)	HLA-DQA1 (-, 5e-47)	HLA-DRB5 (+, 8e-19)
LCLs	TwinsUK	418	HLA-F-AS1 (+, 4e-26)	<i>RNF5</i> (-, 6e-18)	<i>MICA</i> (-, 2e-09)	_	<i>HLA-В</i> (-, 5e-25)	<i>HCG22</i> (+, 1e-16)	_	HLA-DQA2 (+, 1e-71)	_
NK cells (CD56 ^{dim} CD16⁺)	Schmiedel (2018)	90	HLA-F-AS1 (+, 6e-06)	<i>CCHCR1</i> (+, 9e-05)	<i>SKIV2L</i> (-, 8e-03)	<i>DDAH2</i> (-, 7e-03)	<i>MDC1-AS1</i> (-, 9e-03)	<i>PPP1R18</i> (+, 5e-03)	HSPA1L (-, 2e-02)	HLA-DQA2 (+, 1e-06)	HLA-DRB5 (+, 7e-05)
Primary T cells (PHA-stim)	GENCORD	184	<i>AL645939.5</i> (+, 9e-06)	<i>AL645933.2</i> (−, 8e-05)	<i>MICA</i> (-, 6e-07)	<i>HLA-В</i> (-, 2e-16)	<i>HLA-В</i> (-, 3e-06)	<i>ABCF1</i> (-, 1e-03)	<i>PSMB8</i> (+, 3e-03)	HLA-DQA2 (+, 1e-21)	HLA-DRB5 (+, 1e-15)
CD4 ⁺ T cells (naïve)	BLUEPRINT	167	_	<i>CCHCR1</i> (+, 1e-12)	<i>AL662844.4</i> (-, 1e-05)	_	_	HLA-B (+, 8e-09)	—	—	_
CD4⁺ T cells (naïve)	CEDAR	290	HLA-A (+, 2e-05)	<i>ABCF1</i> (+, 6e-03)	HLA-C (+, 2e-06)	<i>HLA-C</i> (-, 1e-05)	HLA-C (-, 1e-04)	<i>HLA-C</i> (+, 1e-09)	HLA-DQB1 (+, 2e-03)	HLA-DRB1 (-, 3e-08)	HLA-DRB1 (+, 4e-15)
CD4⁺ T cells (naïve)	Kasela (2017)	282	<i>VARS2</i> (-, 3e-03)	<i>HCG27</i> (+, 6e-06)	<i>AGPAT1</i> (-, 2e-03)	<i>VARS2</i> (+, 2e-07)	<i>HCG27</i> (+, 5e-05)	<i>HLA-C</i> (+, 3e-05)	—	HLA-DRB1 (-, 3e-12)	HLA-DRB1 (+, 3e-12)
CD4⁺ T cells (naïve)	Schmiedel (2018)	88	HLA-F-AS1 (+, 5e-05)	<i>CCHCR1</i> (+, 6e-04)	CCHRC1 (-, 4e-03)	<i>HLA-В</i> (-, 5е-07)	<i>MRPS18B</i> (+, 1e-03)	<i>MPIG6B</i> (+, 7e-03)	HSPA1L (-, 1e-03)	HLA-DQA1 (-, 3e-08)	HLA-DRB5 (+, 8e-05)
CD4 ⁺ T cells (anti-CD3-CD28)	Schmiedel (2018)	88	<i>PPP1R11</i> (-, 5e-03)	HLA-C (+, 1e-03)	VWA7 (+, 2e-02)	AL645933.2 (+, 8e-03)	<i>MDC1</i> (-, 6e-04)	<i>ABHD16A</i> (-, 2e-02)	<i>LTB</i> (+, 2e-02)	HLA-DQB2 (+, 2e-08)	HLA-DRB5 (+, 6e-06)

Table S37. (Continued).

Table S37. (Continued).

				most sig	nificant cis-eQ	TL result (target	gene, sign risl	k allele effect,	p-value) for v	variant	
Tissue ^a	Study ^b	Ν	rs1655901	rs2844626	rs72866766	rs137854633	rs2853998	rs2442752	rs6935999	rs4947340	rs9271529
CD8⁺ T cells (naive)	CEDAR	277	HLA-A (+, 5e-08)	HLA-E (+, 3e-04)	<i>HLA-C</i> (-, 2e-05)	<i>HLA-C</i> (-, 4e-05)	HLA-C (-, 9e-08)	HLA-C (+, 9e-09)	NS	HLA-DRB5 (-, 2e-07)	HLA-DRB1 (+, 1e-15)
CD8⁺ T cells (naive)	Kasela (2017)	271	HLA-A (+, 2e-04)	<i>ATP6V1G2</i> (+, 1e-03)	<i>ATAT1</i> (+, 5e-03)	HLA-C (-, 2e-06)	HCG27 (+, 9e-05)	HLA-C (+, 6e-05)	_	HLA-DRB1 (-, 2e-09)	HLA-DRB1 (+, 2e-13)
CD8⁺ T cells (naïve)	Schmiedel (2018)	89	HLA-F-AS1 (+, 1e-05)	<i>CCHCR1</i> (+, 8e-04)	<i>NFKBIL1</i> (+, 2e-02)	<i>HLA-В</i> (-, 3e-05)	MDC1 (-, 2e-03)	<i>NELFE</i> (-, 2e-03)	<i>LY6G5C</i> (-, 3e-03)	HLA-DQA2 (+, 1e-05)	HLA-DRB5 (+, 7e-07)
CD8 ⁺ T cells (anti-CD3-CD28)	Schmiedel (2018)	88	<i>GNL1</i> (-, 8e-05)	<i>HCG27</i> (+, 1e-03)	CCHCR1 (-, 3e-03)	<i>PRRC2A</i> (-, 4e-03)	<i>MDC1</i> (-, 4e-03)	<i>PPP1R10</i> (-, 2e-04)	<i>RNF5</i> (-, 8e-03)	HLA-DQA1 (-, 2e-08)	HLA-DRB5 (+, 2e-04)
T _{REG} cells (naïve)	Schmiedel (2018)	89	<i>HLA-F-AS1</i> (+, 2e-05)	<i>CCHCR1</i> (+, 7e-04)	<i>ATAT1</i> (-, 3e-03)	<i>HLA-В</i> (-, 2е-07)	<i>DHX16</i> (+, 1e-02)	<i>PRRT1</i> (-, 2e-02)	HLA-DQB2 (-, 1e-02)	HLA-DQB2 (+, 2e-06)	HLA-DRB5 (+, 3e-05)
T _{REG} cells (memory)	Schmiedel (2018)	89	<i>HLA-F-AS1</i> (+, 6e-11)	NRM (-, 1e-02)	<i>PPT2</i> (–, 3e-04)	<i>MICB</i> (+, 2e-03)	<i>NCR3</i> (–, 3e-03)	<i>FLOT1</i> (-, 3e-03)	PSMB9 (–, 5e-04)	HLA-DQA2 (+, 5e-06)	HLA-DRB5 (+, 9e-06)
T _H 1 cells	Schmiedel (2018)	82	HLA-F-AS1 (+, 6e-07)	<i>CCHCR1</i> (+, 2e-04)	<i>PRRC2A</i> (+, 4e-04)	<i>HLA-В</i> (-, 2e-05)	<i>DDX39B</i> (-, 2e-02)	<i>VWA7</i> (+, 3e-03)	HSPA1L (- <i>,</i> 6e-03)	HLA-DQB2 (+, 4e-05)	<i>RXRB</i> (+, 8e-04)
T _H 1/17 cells	Schmiedel (2018)	88	<i>HLA-F-AS1</i> (+, 5e-09)	<i>CCHCR1</i> (+, 9e-03)	<i>DDX39B</i> (+, 1e-03)	<i>HLA-В</i> (-, 1е-06)	HLA-B (-, 2e-02)	<i>VWA7</i> (+, 2e-02)	<i>AIF1</i> (-, 4e-03)	HLA-DQB2 (+, 3e-06)	<i>LY6G5C</i> (-, 8e-03)
T _H 17 cells	Schmiedel (2018)	89	<i>HLA-F-AS1</i> (+, 5e-05)	<i>CCHCR1</i> (+, 3e-05)	<i>DDX39B</i> (+, 2e-03)	<i>HLA-В</i> (-, 2е-05)	<i>FLOT1</i> (-, 3e-03)	<i>TNF</i> (+, 2e-02)	HLA-DQB2 (-, 1e-03)	HLA-DQB2 (+, 2e-07)	HLA-DRB5 (+, 1e-04)
T _H 2 cells	Schmiedel (2018)	89	HLA-F-AS1 (+, 3e-04)	<i>CCHCR1</i> (+, 5e-05)	DDX39B (+, 1e-03)	<i>HLA-В</i> (-, 7е-05)	HLA-B (-, 2e-02)	<i>TNF</i> (+, 2e-03)	C6orf47 (-, 5e-04)	HLA-DQA2 (+, 9e-07)	HLA-DRB5 (+, 1e-05)
T _{FH} cells	Schmiedel (2018)	89	HLA-F-AS1 (+, 8e-08)	<i>CCHCR1</i> (+, 9e-05)	<i>DDX39B</i> (+, 2e-03)	<i>HLA-В</i> (-, 2е-05)	<i>SNHG32</i> (+, 1e-02)	HLA-E (+, 1e-03)	<i>PSMB8</i> (-, 3e-03)	HLA-DQB2 (+, 8e-05)	HLA-DRB5 (+, 5e-05)

				most sig	gnificant cis-eQ ⁻	TL result (target	gene, sign risk	allele effect,	p-value) for	variant	
Tissue ^a	Study ^b	Ν	rs1655901	rs2844626	rs72866766	rs137854633	rs2853998	rs2442752	rs6935999	rs4947340	rs9271529
Monocytes	BLUEPRINT	191	_	<i>CCHCR1</i> (+, 2e-13)	<i>MICA</i> (-, 3e-11)	_	—	<i>HLA-В</i> (+, 9е-07)	_	—	—
Monocytes	CEDAR	286	HLA-A (+, 4e-08)	HLA-E (+, 2e-03)	<i>HLA-C</i> (+, 6e-05)	<i>HLA-C</i> (-, 2e-08)	HLA-C (-, 7e-05)	HLA-C (+, 3e-11)	<i>CSNK2B</i> (-, 2e-02)	HLA-DRB5 (-, 3e-08)	HLA-DRB1 (+, 1e-18)
Monocytes	Quach	200	HLA-F	HLA-C	<i>MICA</i>	<i>HLA-В</i>	AL645933.2	HLA-C	<i>AGER</i>	HLA-DQA2	HLA-DRB5
(naïve)	(2016)		(-, 1e-03)	(+, 1e-20)	(-, 7e-10)	(-, 3е-05)	(-, 2e-11)	(-, 6e-10)	(+, 2e-05)	(+, 7e-18)	(+, 7e-20)
Monocytes	Fairfax	421	HLA-A	<i>HCG27</i>	HLA-C	<i>HLA-C</i>	<i>PBX2</i>	<i>HLA-C</i>	HLA-DRB1	HLA-DRB1	HLA-DRB1
(naïve)	(2014)		(+, 4e-20)	(+, 1e-08)	(+, 4e-04)	(-, 2e-14)	(-, 1e-06)	(+, 4e-05)	(+, 2e-04)	(-, 4e-12)	(+, 2e-26)
Monocytes	Schmiedel	79	HLA-F	<i>CCHCR1</i>	HSPA1B	<i>CSNK2B</i>	<i>EHMT2</i>	<i>GPANK1</i>	HLA-DQA1	HLA-DQA2	HLA-DRB5
(CD14 ^{high} CD16⁻)	(2018)		(-, 6e-04)	(+, 5e-05)	(-, 4e-03)	(-, 1e-02)	(–, 3e-02)	(-, 4e-03)	(+, 2e-03)	(+, 3e-08)	(+, 2e-03)
Monocytes	Schmiedel	90	HLA-F-AS1	<i>PSORS1C3</i>	<i>DDX39B</i>	<i>HLA-В</i>	<i>CSNK2B</i>	<i>FLOT1</i>	HSPA1L	HLA-DQA2	HLA-DQA1
(CD14 ⁻ CD16 ⁺)	(2018)		(+, 1e-03)	(-, 2e-02)	(+, 6e-03)	(-, 2е-04)	(+, 8e-03)	(-, 3e-03)	(-, 1e-03)	(+, 2e-08)	(+, 9e-05)
Monocytes	Quach	184	HLA-F	HLA-C	<i>MICA</i>	<i>HLA-В</i>	<i>AL645933.2</i>	<i>HLA-C</i>	<i>CSNK2B</i>	HLA-DQA1	HLA-DRB5
(LPS stim.)	(2016)		(-, 3e-02)	(+, 7e-15)	(-, 2e-07)	(-, 2е-05)	(-, 5e-08)	(-, 1e-06)	(-, 4e-04)	(-, 3e-13)	(+, 2e-17)
Monocytes	Quach	196	HLA-F	HLA-C	<i>MICA</i>	<i>HLA-В</i>	<i>AL645933.2</i>	HLA-C	<i>AGER</i>	HLA-DQA1	HLA-DRB5
(Pam₃CSK₄ stim.)	(2016)		(-, 9e-03)	(+, 3e-18)	(-, 3e-07)	(-, 3е-03)	(−, 3e-09)	(-, 1e-06)	(+, 5e-03)	(-, 2e-16)	(+, 3e-18)
Monocytes	Quach	191	HLA-F	HLA-C	<i>MICA</i>	<i>HLA-В</i>	<i>AL645933.2</i>	HLA-C	<i>AGER</i>	HLA-DQA2	HLA-DRB5
(R848 stim.)	(2016)		(-, 6e-04)	(+, 7e-09)	(-, 9e-08)	(-, 2е-09)	(-, 2e-09)	(-, 7e-06)	(+, 5e-03)	(+, 8e-14)	(+, 7e-17)
Monocytes	Quach	198	HLA-F	HLA-C	<i>MICA</i>	<i>AL671883.3</i>	<i>AL645933.2</i>	HLA-C	HLA-DOB	HLA-DQA2	HLA-DRB5
(IAV stim.)	(2016)		(-, 1e-03)	(+, 1e-11)	(-, 4e-09)	(+, 4e-09)	(−, 8e-09)	(-, 1e-05)	(-, 6e-04)	(+, 1e-22)	(+, 2e-19)
Monocytes	Fairfax	370	HLA-A	<i>LST1</i>	HLA-C	HLA-C	HLA-C	HLA-C	<i>STK19</i>	HLA-DRB5	HLA-DRB1
(IFN24 stim.)	(2014)		(+, 1e-08)	(+, 6e-05)	(+, 4e-03)	(-, 2e-10)	(-, 1e-06)	(+, 4e-05)	(+, 3e-04)	(-, 1e-11)	(+, 1e-28)
Monocytes	Fairfax	256	HLA-A	VARS2	ATP6V1G2	HLA-C	HLA-C	HLA-C	DDX39B	HLA-DRB5	HLA-DRB1
(LPS2 stim.)	(2014)		(+, 2e-22)	(-, 3e-04)	(-, 3e-03)	(-, 2e-08)	(-, 4e-07)	(+, 9e-03)	(-, 3e-03)	(-, 4e-08)	(+, 6e-22)
Monocytes	Fairfax	325	HLA-A	<i>C2</i>	<i>SNHG32</i>	VARS2	HLA-C	HLA-C	HLA-DRB1	HLA-DRB1	HLA-DRB1
(LPS24 stim.)	(2014)		(+, 8e-18)	(+, 1e-04)	(-, 3e-03)	(+, 8e-09)	(-, 5e-07)	(+, 1e-04)	(+, 3e-03)	(-, 3e-11)	(+, 5e-20)

Table S37. (Continued).

Table S37.	(Continued).
------------	--------------

		most significant cis-eQTL result (target gene, sign risk allele effect, p-value) for variant									
Tissue ^a	Study ^b	Ν	rs1655901	rs2844626	rs72866766	rs137854633	rs2853998	rs2442752	rs6935999	rs4947340	rs9271529
Macrophages (naïve)	Alasoo (2018)	84	<i>TRIM26</i> (+, 8e-03)	<i>RNF5</i> (-, 1e-03)	<i>MICA</i> (-, 1e-05)	<i>HLA-C</i> (-, 2e-04)	<i>RNF5</i> (–, 8e-05)	<i>RNF5</i> (+, 7e-03)	_	HLA-DRB1 (-, 3e-05)	SAPCD1-AS1 (-, 5e-03)
Macrophages (naïve)	Nedelec (2016)	163	HLA-G (-, 5e-04)	HLA-C (+, 4e-07)	<i>MICA</i> (-, 4e-05)	<i>MICB</i> (+, 3e-03)	<i>AL645933.2</i> (-, 3e-05)	<i>PSORS1C3</i> (+, 3e-04)	<i>RING1</i> (+, 8e-03)	HLA-DQA2 (+, 1e-17)	HLA-DRB5 (+, 2e-10)
Macrophages (IFNγ)	Alasoo (2018)	84	<i>AL645939.5</i> (+, 2e-03)	<i>AL645933.2</i> (-, 4e-03)	<i>PRR3</i> (+, 1e-04)	<i>HLA-В</i> (-, 6е-10)	<i>CCHCR1</i> (-, 3e-03)	<i>LTA</i> (-, 2e-04)	_	HLA-DQA2 (+, 7e-11)	<i>PSMB9</i> (–, 6e-06)
Macrophages (Salmonella)	Alasoo (2018)	84	<i>RPP21</i> (+, 4e-03)	<i>PPP1R10</i> (-, 2e-03)	<i>MICA</i> (-, 2e-05)	<i>HLA-В</i> (-, 6е-07)	<i>C2</i> (+, 3e-02)	<i>IER3</i> (–, 5e-03)	_	HLA-DRB1 (-, 3e-06)	HLA-DQA1 (-, 8e-10)
Macrophages (IFNg+Salmonella)	Alasoo (2018)	84	<i>TRIM26</i> (+, 6e-04)	<i>CSNK2B</i> (+, 5e-03)	<i>HSPA1B</i> (-, 2e-03)	<i>HLA-В</i> (-, 5е-08)	HSPA1L (-, 2e-02)	<i>RNF5</i> (+, 3e-03)	_	HLA-DRB1 (-, 2e-08)	<i>PSMB9</i> (–, 6e-04)
Macrophages (Listeria)	Nedelec (2016)	163	<i>PPP1R11</i> (-, 3e-04)	HLA-C (+, 9e-06)	<i>MICA</i> (-, 6e-05)	<i>TNF</i> (-, 2e-03)	<i>AL645933.2</i> (-, 2e-06)	<i>DDX39B</i> (+, 5e-04)	<i>BAG6</i> (+, 7e-03)	HLA-DQA2 (+, 1e-15)	HLA-DRB5 (+, 3e-12)
Macrophages (Salmonella)	Nedelec (2016)	167	HLA-G (-, 2e-04)	HLA-C (+, 7e-08)	<i>MICA</i> (-, 3e-04)	<i>MICB</i> (+, 1e-03)	<i>AL645933.2</i> (−, 1e-05)	HLA-C (-, 3e-03)	<i>TAP2</i> (-, 1e-02)	HLA-DQA2 (+, 4e-12)	HLA-DRB5 (+, 1e-11)
Neutrophils (CD66b ⁺ CD16 ⁺)	BLUEPRINT	196	—	<i>AL645933.2</i> (-, 2e-08)	<i>AL645933.2</i> (-, 5e-09)	_	—	HLA-B (+, 2e-12)	—	—	—
Neutrophils (CD15 ⁺)	CEDAR	280	HLA-A (+, 2e-05)	HCG27 (+, 4e-04)	<i>HLA-C</i> (+, 2e-06)	<i>LST1</i> (-, 1e-04)	HCG27 (+, 3e-05)	HLA-C (+, 3e-08)	<i>AGPAT1</i> (+, 2e-03)	HLA-DRB1 (-, 4e-05)	HLA-DMA (-, 1e-07)
Neutrophils (CD16⁺)	Naranbhai (2015)	93	HCG9 (+, 3e-10)	PSORS1C3 (-, 7e-04)	HLA-C (+, 1e-02)	<i>GPANK1</i> (+, 8e-03)	HSPA1A (+, 4e-03)	<i>PSORS1C3</i> (+, 1e-03)	HLA-DRB1 (+, 3e-03)	HLA-DRB1 (-, 2e-03)	HLA-DRB1 (+, 1e-04)

Abbreviations: IAV, influenza A virus; IFNγ, interferon gamma; LPS, lipopolysaccharide; LPS2, 2 h LPS stimulation; LPS24, 24 h LPS stimulation; N, number of samples; NS (FDR > 0.05 for GTEx; p > 0.05 for all other studies); Pam₃CSK₄, Pam3CysSerLys4; PHA, phytohemagglutinin; PsV, psoriasis vulgaris; R848, resiquimod.

^aTissues with relevance to psoriasis (skin, fibroblasts, whole blood, B cells, LCLs, NK cells, T cells, monocytes, macrophages, neutrophils) were selected. ^bResults compiled from 16 different RNA expression studies, including PsV RNAseq,¹⁷ GTEx,¹⁸ the eQTLGen consortium,¹⁹ as well as public datasets whose eQTLs were recomputed by the eQTL Catalogue,²⁰ including Alasoo *et al.*,²¹ BLUEPRINT,²² CEDAR,²³ GENCORD,²⁴ Fairfax *et al.*,^{25,26} GEUVADIS,²⁷ Kasela *et al.*,²⁸ Lepik *et al.*,²⁹ Naranbhai *et al.*,³⁰ Nedelec *et al.*,³¹ Quach *et al.*,³² and TwinsUK.³³

				Conservation ^a				Т	F ^b	Cł	nroma [:] state ^c	tin			
Variant	Ancestry	РР	Nearest Gene (position)	PhastCons	PhyloP	Gerp++	SiPhy-π lod	No. bound TF proteins	No. altered TFBS motifs	Promoter histone marks	Enhancer histone marks	DNase HS sites	RegulomeDB rank ^d	RegulomeDB score ^e	CADD Phred ^f
rs1655901	EUR	1.000	HLA-A (3.1 kb downstream)	0.03	0.38	0.36	0	1	2	0	2	2	3a	0.55	12.3
rs2844626	SAS+EUR	0.541	HLA-C (7.0 kb downstream)	0.00	-0.66	0.20	0	0	6	0	0	0	1f	0.84	7.3
rs72866766	EUR	1.000	HLA-B (468 bp downstream)	0.00	-0.61	1.37	0	2	0	1	6	4	4	0.61	9.7
rs137854633	EUR	0.543	HLA-B (intron 1)	0.00	-0.03	0.62	6.6	10	0	24	1	16	3a	0.79	11.2
rs2853998	SAS+EUR	0.942	HLA-B (2.2 kb upstream)	0.00	-0.82	0.12	0	0	0	0	3	0	4	0.61	5.5
rs2442752	SAS	0.583	AL671883.3 (7.9 kb downstream)	0.01	0.15	0.00	0	0	0	0	1	0	1f	0.22	8.5
rs6935999	EUR	0.752	HLA-DRA (15 kb upstream)	0.02	0.52	0.37	0	0	4	0	2	2	7	0.18	1.6
rs4947340	EUR	0.965	HLA-DRA (23 kb upstream)	0.54	0.12	0.00	0	0	1	0	0	0	5	0.59	11.0
rs9271539	SAS+EUR	0.562	HLA-DQA1 (15.1 kb upstream)	0.00	-3.17	-5.27	0	0	2	1	5	3	2b	0.69	6.2

Table S38. Functional annotation of noncoding psoriasis-associated MHC variants with a Bayesian posterior probability exceeding 0.50.

Abbreviations: HS, hypersensitivity; PP, posterior probability (Bayesian); TF, transcription factor; TFBS, transcription factor binding site ^aPhastCons, PhyloP and Gerp++ evolutionary conservation scores based on tracks phastCons100way, phyloP100wayAll and allHg19RS_BW, respectively, from the UCSC table browser.³⁴ SiPhy- π lod scores were downloaded from supplemental information for Lindblad-Toh *et al.*³⁵ SiPhy- π lod scores with an FDR > 10% were considered non-significant and are represented with a 0 score.

^bNumber of bound transcription factors and number of altered transcription factor binding site motifs; based on v 4.1 of HaploReg.³⁶ ^cNumber of cell types with promoter histone marks, enhancer histone marks, or DNase hypersensitivity sites; based on v 4.1 of HaploReg.³⁶ ^dRank from v2.0 of RegulomeDB.³⁷ 1f = likely to affect binding and linked to expression of a gene target (eQTL + TF binding/DNase peak), 2b = likely to affect binding (TF binding + any motif + DNase footprint + DNase peak), 3a = less likely to affect binding (TF binding + any motif + DNase peak), 4 = minimal binding evidence (TF binding + Dnase peak), 5 = minimal binding evidence (TF binding or DNase peak), 6 = minimal binding evidence (Motif hit), 7 = uncurated region.

^eProbability score from v 2.0 of Regulome DB,³⁷ ranging from 0–1, of the likelihood of being a regulatory variant.

^fWeighted mean Phred score from v 1.6 of CADD,³⁸ an indicator of variant deleteriousness.

Supplemental methods

Additional methods for construction of SNP2HLA reference panels

We constructed an additional 18 SNP2HLA reference panels for imputing our South Asian GWAS samples by rebuilding existing HLA reference panels and by forming various combinations of the UM, IKMB-SAS and BKT components of the 397-person SAS panel with four other datasets—the non-SAS subset of the multiethnic IKMB reference panel, the European ancestry Type 1 Diabetes Genetics Consortium (T1DGC) SNP2HLA panel,⁸⁻¹⁰ the pan-Asian SNP2HLA panel,^{11,12} and data from phase 3 of the 1000 Genomes Project (1KGP).^{13,14} HLA genotypes for 1KGP were combined separately with both microarray-based (v1) and sequencebased (v2) MHC genotypes for both the full 1KGP dataset (1KGP-ALL) and its SAS subset (1KGP-SAS), resulting in four versions of 1KGP data used for construction of South Asian panels: 1KGP-ALL-v1, 1KGP-SAS-v1, 1KGP-ALL-v2, 1KGP-SAS-v2 with 2666, 541, 2504 and 489 individuals, respectively. After removal of the 141 Indian samples used for our original South Asian panel, the IKMB panel dataset consisted of genotypes for 8,803 MHC SNPs and two-field genotypes of eight HLA genes for 1,217 people of European, East Asian, African-American and Iranian ancestry along with two additional Indian individuals. For the T1DGC panel we procured the datasets of genotypes for eight HLA genes and 5,868 MHC SNPs for 5,225 people that were used to construct the original panel;⁹ for the pan-Asian panel we extracted genotypes for eight HLA genes and 6,173 MHC SNPs for 530 individuals of Chinese, Japanese, Tamil Indian or Malaysian ancestry from the published panel;^{11,12} see Web Resources. Recently-published 2field genotypes of five HLA genes (HLA-A, -B, -C, -DQB1, -DRB1) for 2,693 samples of phase 3 of the 1000 Genomes Project;¹⁴ see Web Resources) were processed by downcoding ambiguous 2field allele designations to their 1-field equivalent and setting genotypes with ambiguous 1-field and 2-field designations to missing. Genotypes of SNPs in the MHC region were drawn from two sources—the reduced set of sequence-based integrated variant calls for version 5 of the phase 3 release and genotype data typed on the Affymetrix 6.0 microarray (Web Resources). Genotypes for all 2,124 variants in the chr6:29-34 Mb interval were extracted from the Affymetrix 6.0 microarray data, as were genotypes for all 63,106 SNPs with MAF \geq 0.01 in this same interval that were present in the sequence-based integrated variant call set. We decided to use the much sparser microarray data in addition to the sequence-based calls because of high error rates for sequence-based SNP genotype calls in HLA genes that has been reported for phase 1 1000 Genomes data, which was caused by a strong mapping bias that overestimates reference allele frequencies.³⁹

Three published HLA panels (IKMB, T1DGC, pan-Asian) were rebuilt from their component HLA and MHC genotypes with our updated MakeReference script and updated HLA SNP and amino acid sequence dictionaries. SNP2HLA panels for the four phase 3 1000 Genome datasets we created (1KGP-ALL-v1, 1KGP-SAS-v1, 1KGP-ALL-v2, 1KGP-SAS-v2) were also constructed with our updated method. Finally, we merged MHC genotypes for eleven combinations of the seven datasets previously described by identifying for each pair of datasets in a combination the set of shared MHC SNPs where we could confidently match strand orientation and where allele frequencies differed by no more than 0.15 or 0.30 between datasets of similar or dissimilar ancestries, respectively. 2-field HLA genotypes from datasets were combined by simple concatenation, with missing values for genes not typed in a particular dataset. SNP2HLA panels were then built for each combination by processing the merged MHC and HLA genotypes with the updated MakeReference method. By default, the MakeReference script removes SNPs that violate Hardy-Weinberg equilibrium ($p < 1 \times 10^{-6}$); this quality control filter was imposed only for panels where all individuals have the same continental ancestry.

We also built 20 SNP2HLA reference panels for imputation of HLA variants in people of European ancestry by the same methods just described for South Asians. Datasets used for these panels consisted of many of those used for South Asians (T1DGC, UM, BKT, IKMB, 1KGP-ALL-v1, 1KGP-ALL-v2) as well as the EUR subset of phase 3 1KGP with HLA and either microarray or sequence-based MHC data (1KGP-EUR-v1 and 1KGP-EUR-v2 with 526 and 503 people, respectively).

For all SNP2HLA reference panels created for this study, we requested 10 burn-in iterations of the Beagle 4.0 phasing algorithm followed by 25 iterations of the more accurate phasing algorithm of Beagle 4.1.

Additional methods for validation of SNP2HLA reference panels

The relative performance of SNP2HLA reference panels for imputing into datasets of South Asian and European ancestry was assessed as follows. For each ancestry, panels were compared as two different groups—the full set of 19 South Asian or 20 European panels with genotypes for five HLA genes (*HLA-A*, *-B*, *-C*, *-DQB1*, *-DRB1*), and the subset of 11 South Asian or 7 European panels with genotypes for eight HLA genes (including *HLA-DQA1*, *HLA-DPA1* and *HLA-DQB1*). The 11 South Asian panels with genotyping for all eight HLA genes were assessed separately for their accuracy of *HLA-DQA1* imputation vs. their accuracy of HLA-DPA1 and HLA-DPB1 imputation because the method of *HLA-DQA1* genotyping for two of the component datasets of many of these panels (T1DGC and pan-Asian) could not discriminate several commonly occurring 2-field alleles from each other. Similar separate assessment of *HLA-DQA1* imputation accuracy was carried out for the 7 European panels with genotyping for all eight genes, but because we had no independent *HLA-DPA1/DPB1* genotypes for Europeans we instead used the mean imputation performance for *HLA-A*, *-B*, *-C*, *-DQB1* and *-DRB1* as a proxy.

The relative performance of each panel within a set of panels being compared was assessed as its mean rank across 12 metrics consisting of three paired-sample comparison measures based on the Wilcoxon signed rank test (mean rank-biserial correlation, no. paired comparisons where rank sum of panel i > rank sum of panel j, no. paired comparisons where rank sum of panel *i* is significantly > rank sum of panel *j*) and three paired-sample comparison measures based on the paired t-test (mean paired difference, no. pairs where the mean difference of panel i minus panel j is > 0, no. pairs where mean difference of panel i – panel j is significantly > 0 based on bootstrapping); each of these six paired-sample measures was applied to both per-individual and per-allele imputation accuracies. For the SAS panels, which were evaluated with a single validation set, mean ranks for the 12 metrics were determined for 2field imputed alleles of each of the eight HLA genes and then separately averaged across all genes within each of the three gene sets for which panels were tested (HLA-A,B,C,DQB1,DRB1; HLA-DPA1, DPB1; HLA-DQA1). For the EUR panels, mean ranks for the 12 metrics were first determined for each combination of the eight HLA genes and four validation sets, a validation set size weighted mean was then determined for each gene across the validation sets, and then unweighted mean ranks were computed across all genes in each of the three gene sets.

Additional methods for association analysis of MHC variants

Association testing was restricted to variants with a predicted r^2 imputation quality of at least 0.7 for all *K* case-control studies in an analysis. We identified candidate variants for the multiple independent psoriasis association signals in the MHC region using a stepwise regression approach that combines iterative forward selection of the best variant meeting a significance threshold with backward elimination at each step of the worst included variant if it is no longer significant. We used the same cutoff probability for adding and removing variables, with the proviso that for inclusion the p-value of the variant must be \leq cutoff probability and for elimination the p-value must be > cutoff probability. The specific cutoff probability for each stepwise analysis was based on the number of effectively independent variants tested, which was in turn estimated using the LD-pruning function of Plink 1.9 with an r^2 threshold of 0.3, as recommended by Sobota *et al.*⁴⁰ We estimated the number of effectively independent tested variants as 3499, 2305, and 1609 for the South Asian, European, and transethnic analyses, respectively, resulting in Bonferroni-adjusted cutoff probabilities of 1.4×10^{-5} , 2.2×10^{-5} , and 3.1×10^{-5} .

Most downstream analyses of the regression models fitted by this procedure made use of full model association statistics. For candidate variants in the final regression model these are simply the magnitude and variance of their β coefficients. Full model association statistics for all other variants constituting the broader association peak surrounding a candidate variant were derived by refitting the regression model after dropping that candidate variant but leaving all other candidate variants and covariates intact.

Selection and processing of imputed multiallelic variants

Before selecting multiallelic MHC variants, which are represented in the 1KGP and HRC panels by sets of biallelic splits for each of the alternate alleles, we first augmented them by computing and adding for each variant dosages of a biallelic split that treats the reference allele as the alternate allele. This augmentation served several purposes—all *m* biallelic splits of a variant with *m* alleles were needed to compute LD between it and other variants, testing all *m* biallelic splits of the multiallelic G1K and HRC panel variants individually in addition to jointly

testing their m-1 set provided a more comprehensive assessment of their association, and representing 1KGP and HRC multiallelic variants by sets of m rather than m - 1 biallelic splits harmonized their treatment with that of multiallelic HLA variants in the SNP2HLA reference panels. The imputed dosage of the biallelic split for the reference allele was computed as $\max(0, 2 - \sum_{a=1}^{m-1} x_{ia})$, where x_{ia} is the imputed dosage for biallelic split a of individual i and m-1 is the number of alternate alleles for the variant. Study-specific imputation quality (r^2) for each augmented biallelic split was estimated as the ratio of the observed sample variance of the computed dosages for that study to their expected variance based on observed allele frequencies and an assumption of Hardy-Weinberg equilibrium. For 1KGP multiallelic variants, the summation term for the dosage computation rarely (0.0065% of the time) produced negative dosages, and the mean and minimum of these negative dosages (-0.0018 and -0.081, respectively) were small enough to be explained by roundoff error. For HRC multiallelic variants, however, the summation for the computed dosages was frequently (5.92%) negative, with a very large mean and minimum for negative dosages (-0.594 and -3.963, respectively), indicating a serious issue with many of these variants in the HRC panel. In fact, we identified 249 problematic HRC multiallelic SNPs in the extended MHC region based on the criterion of its augmented biallelic split having at least one computed dosage < -0.10; these SNPs were removed from further consideration. After augmentation, from the extracted HRC-imputed datasets we selected only those multiallelic variants unique to the HRC panel; dosages for all other multiallelic variants (those unique to 1KGP and those shared by both panels) were selected from the 1KGP-imputed datasets.

Principal components analysis of South Asians

We performed principal components analysis (PCA) for 6,420 individuals of various South Asian ancestries drawn from four different sources: (i) 1,807 people of Indian ancestry collected in New Delhi with 902,747 genotyped autosomal variants from batch 1 of our psoriasis GWAS, (ii) 2,503 people of Pakistani and Indian ancestry with 501,166 genotyped autosomal variants from the combined batches 2 and 3 of the psoriasis GWAS, (iii) 1,621 Immunochip-typed North Indians with 187,115 genotyped autosomal variants that were part of a large meta-analysis of inflammatory bowel disease,⁶ and (iv) 489 South Asians with 47,109,439 sequence-based autosomal variants from a reduced set (no monomorphic or singleton sites) of version 5 of the phase 3 release of the 1000 Genomes Project¹³ (see Web Resources). Individuals and variants in the psoriasis GWAS and IBD Immunochip datasets had first passed all standard sample and variant quality control filters, including removal of population outliers. Datasets were merged successively, in the order given (i.e., the first two sets were merged, then this combined set with the third, etc.). At each step, genotypes for variants common to both datasets were combined provided they were biallelic autosomal SNPs with a difference in MAF of \leq 0.15 (after strand flipping if necessary), with an additional stipulation that the mean MAF of A/T and C/G SNPs was no more than 0.40. 14,499 genotyped SNPs common to all 6,420 individuals remained after merging, which were further processed by removing variants in regions of known psoriasis susceptibility, with a MAF < 0.005, or within large chromosomal inversions, and then LD pruning to quasi-independence with the *-indeppairwise* command of Plink 1.9 (parameters set to window size = 1500, step size = 150, and r^2 threshold = 0.20). PCA was then performed with Plink 1.9.

Phenotypic variance explained

For biallelic MHC variants detected by this study, we used a liability threshold model to compute separately for each variant the percent variance of liability for disease explained.¹⁶ Relative risk was approximated by the log-additive OR from the final full regression model, frequency of the risk allele in the underlying population was estimated as a weighted average of its frequency in psoriasis cases and unaffected controls (weights = 0.015 and 0.985 for Europeans and 0.003 and 0.997 for South Asians, respectively), and the population prevalence of psoriasis in Europeans and South Asians was assumed to be 0.015 and 0.003 based on estimates from the Global Psoriasis Atlas;⁴¹ see Web Resources. For multiallelic variants we applied a multiallelic extension of this biallelic method.⁴²

MHC variant annotation

Basic functional annotation of variants in the MHC region was performed using the UCSC Variant Annotation Integrator tool⁴³ with the basic gene annotation set from GENCODE Version 31^{44} that has been lifted over to hg19 reference assembly coordinates. The UCSC Table Browser³⁴ was used to extract PhastCons, PhyloP, and Gerp++ conservation scores, from hg19 reference assembly tracks phastCons100way, phyloP100wayAll, allHg19RS_BW, and cpgIslandExt, respectively. SiPhy- π lod scores, a measure of evolutionary constraint, were downloaded from the supplemental data of Linblad-Toh *et al.*³⁵ Version 4.1 of HaploReg³⁶ was used to determine how many cell types among the ENCODE and Roadmap reference epigenomes have promoter histone marks, enhancer histone marks, or DNase I hypersensitive sites overlapping a variant, as well as ChIP-seq evidence of transcription factors that bind to the interval containing the variant, and which transcription factor binding site motifs are changed by a variant. Version 2.0 of RegulomeDB³⁷ was used to obtain scores of how likely it is that a variant has regulatory function, and version 1.6 of CADD³⁸ provided scores of variant
deleteriousness. The overlap of associated variants with chromatin states of 33 cell types relevant to psoriasis, which were derived from a 15-state segmentation model based on five chromatin marks, was based on results of analyses generated by the Roadmap Epigenomics Project.⁴⁵ Results for cis-eQTLs were compiled from 16 RNA expression studies for 58 tissues and cells types with relevance to psoriasis, including our RNA-seq study of psoriatic and normal skin,¹⁷ GTEx,¹⁸ the eQTLGen Consortium,¹⁹ as well as multiple public datasets whose eQTLs were recomputed by the eQTL Catalogue,²⁰ including BLUEPRINT,²² CEDAR,²³ GENCORD,²⁴ TwinsUK³³ and several others.^{21,25-32}

Enrichment analysis

Two MHC variant enrichment analyses were performed. The first compared counts of different types of MHC variants in the final full regression model for each ethnic dataset with the corresponding variant counts for the full set of MHC variants tested for association. The second compared counts of variant types within the MHC region to their counts in the whole genome based on all autosomal variants in release 5 of phase 3 of the 1000 Genomes Project;¹³ this was done separately for all 2504 individuals in 1000 Genomes, the 489 South Asian ancestry individuals, and the 503 European ancestry individuals. For association-tested MHC variants, variant types were determined based on the nature of their alleles, and functional annotations were determined with the UCSC Variant Annotation Integrator. For phase 3 1000 Genomes variants, variant types were extracted from the VCF files for the full integrated variant call set, and functional annotations were determined from filtered annotation files produced using the Ensembl Variant Effect Predictor (see Web Resources).

Fold-enrichment for each variant type was computed as the ratio of the proportion of that type in the target set (final regression model or MHC region) to the proportion of that type in the background set (association-tested variants or whole genome). The significance of

enrichment was determined using an upper-tailed hypergeometric test.

Supplemental web resources

1000 Genomes, phase 3, Affymetrix 6.0 microarray data,

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/hd_genotype_chi p/

1000 Genomes, phase 3, functional annotations,

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/functional_annot ation/filtered/

- 1000 Genomes, phase 3, HLA genotypes, <u>http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HLA_types/</u>
- 1000 Genomes, v5 phase3, reduced integrated variant call set (no monomorphic or singleton sites), <u>http://csg.sph.umich.edu/abecasis/MACH/download/1000G.Phase3.v5.html</u>
- Beagle 4.1, https://faculty.washington.edu/browning/beagle/b4 1.html
- CADD v1.6, https://cadd.gs.washington.edu/
- eQTL Catalogue, <u>https://www.ebi.ac.uk/eqtl/</u>
- eQTLGen Consortium, https://www.eqtlgen.org/
- Global Psoriasis Atlas, https://globalpsoriasisatlas.org/statistics/prevalence?

GTEx Portal, https://www.gtexportal.org/home/

- HaploReg v4.1, https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php
- ImmPort list of immune-related genes, https://www.immport.org/home
- Pan-Asian SNP2HLA reference panel, <u>http://software.broadinstitute.org/mpg/snp2hla/</u>
- Plink 1.9, https://www.cog-genomics.org/plink/
- RegulomeDB 2.0, https://regulomedb.org/regulome-search/
- Roadmap Epigenomics Project, core 15-state model, <u>https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#core_15state</u>
- SiPhy-π scores, <u>https://www.broadinstitute.org/mammals-models/29-mammals-project-</u> <u>supplementary-info</u>
- T1DGC SNP2HLA reference panel, <u>https://repository.niddk.nih.gov/studies/t1dgc-special/</u>

UCSC Table Browser, <u>https://genome.ucsc.edu/cgi-bin/hgTables</u>

Supplemental References

- 1. Luo, M., Kanai, M., Chow, W., Li, X., Yamamoto, K., Ogawa, K., Gutierrez-Arcelus, M., Gregersen, P.K., Stuart, P.E., Elder, J.T., et al. (2021). A high-resolution HLA reference panel capturing global population diversity enables multi-ethnic fine-mapping in HIV host response. Nature Genetics in press.
- Das, S., Forer, L., Schonherr, S., Sidore, C., Locke, A.E., Kwong, A., Vrieze, S.I., Chew, E.Y., Levy, S., McGue, M., et al. (2016). Next-generation genotype imputation service and methods. Nat Genet 48, 1284-1287.
- 3. Gragert, L., Madbouly, A., Freeman, J., and Maiers, M. (2013). Six-locus high resolution HLA haplotype frequencies derived from mixed-resolution DNA typing for the entire US donor registry. Hum Immunol 74, 1313-1320.
- 4. Devlin, B., Roeder, K., and Wasserman, L. (2001). Genomic control, a new approach to genetic-based association studies. Theor Popul Biol 60, 155-166.
- Marsh, S.G., Albert, E.D., Bodmer, W.F., Bontrop, R.E., Dupont, B., Erlich, H.A., Fernandez-Vina, M., Geraghty, D.E., Holdsworth, R., Hurley, C.K., et al. (2010). An update to HLA nomenclature, 2010. Bone Marrow Transplant 45, 846-848.
- 6. Liu, J.Z., van Sommeren, S., Huang, H., Ng, S.C., Alberts, R., Takahashi, A., Ripke, S., Lee, J.C., Jostins, L., Shah, T., et al. (2015). Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet 47, 979-986.
- 7. Degenhardt, F., Wendorff, M., Wittig, M., Ellinghaus, E., Datta, L.W., Schembri, J., Ng, S.C., Rosati, E., Hubenthal, M., Ellinghaus, D., et al. (2019). Construction and benchmarking of a multi-ethnic reference panel for the imputation of HLA class I and II alleles. Hum Mol Genet 28, 2078-2092.
- Mychaleckyj, J.C., Noble, J.A., Moonsamy, P.V., Carlson, J.A., Varney, M.D., Post, J., Helmberg, W., Pierce, J.J., Bonella, P., Fear, A.L., et al. (2010). HLA genotyping in the international Type 1 Diabetes Genetics Consortium. Clin Trials 7, S75-87.
- 9. Jia, X., Han, B., Onengut-Gumuscu, S., Chen, W.M., Concannon, P.J., Rich, S.S., Raychaudhuri, S., and de Bakker, P.I. (2013). Imputing amino acid polymorphisms in human leukocyte antigens. PLoS One 8, e64683.
- Onengut-Gumuscu, S., Chen, W.M., Burren, O., Cooper, N.J., Quinlan, A.R., Mychaleckyj, J.C., Farber, E., Bonnie, J.K., Szpak, M., Schofield, E., et al. (2015). Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat Genet 47, 381-386.
- 11. Pillai, N.E., Okada, Y., Saw, W.Y., Ong, R.T., Wang, X., Tantoso, E., Xu, W., Peterson, T.A., Bielawny, T., Ali, M., et al. (2014). Predicting HLA alleles from high-resolution SNP data in three Southeast Asian populations. Hum Mol Genet 23, 4443-4451.
- Okada, Y., Kim, K., Han, B., Pillai, N.E., Ong, R.T., Saw, W.Y., Luo, M., Jiang, L., Yin, J., Bang, S.Y., et al. (2014). Risk for ACPA-positive rheumatoid arthritis is driven by shared HLA amino acid polymorphisms in Asian and European populations. Hum Mol Genet 23, 6916-6926.
- 13. Genomes Project, C., Auton, A., Brooks, L.D., Durbin, R.M., Garrison, E.P., Kang, H.M., Korbel, J.O., Marchini, J.L., McCarthy, S., McVean, G.A., et al. (2015). A global reference for human genetic variation. Nature 526, 68-74.
- Abi-Rached, L., Gouret, P., Yeh, J.H., Di Cristofaro, J., Pontarotti, P., Picard, C., and Paganini, J. (2018). Immune diversity sheds light on missing variation in worldwide genetic diversity panels. PLoS One 13, e0206512.
- 15. Horton, R., Wilming, L., Rand, V., Lovering, R.C., Bruford, E.A., Khodiyar, V.K., Lush, M.J., Povey, S., Talbot, C.C., Jr., Wright, M.W., et al. (2004). Gene map of the extended human MHC. Nat Rev Genet 5, 889-899.
- 16. So, H.C., Gui, A.H., Cherny, S.S., and Sham, P.C. (2011). Evaluating the heritability explained by known susceptibility variants: a survey of ten complex diseases. Genet Epidemiol 35, 310-317.

- 17. Tsoi, L.C., Iyer, M.K., Stuart, P.E., Swindell, W.R., Gudjonsson, J.E., Tejasvi, T., Sarkar, M.K., Li, B., Ding, J., Voorhees, J.J., et al. (2015). Analysis of long non-coding RNAs highlights tissue-specific expression patterns and epigenetic profiles in normal and psoriatic skin. Genome Biol 16, 24.
- Consortium, G.T., Laboratory, D.A., Coordinating Center -Analysis Working, G., Statistical Methods groups-Analysis Working, G., Enhancing, G.g., Fund, N.I.H.C., Nih/Nci, Nih/Nhgri, Nih/Nimh, Nih/Nida, et al. (2017). Genetic effects on gene expression across human tissues. Nature 550, 204-213.
- 19. Vosa, U., Claringbould, A., Westra, H.-J., Bonder, M.J., Deelen, P., Zeng, B., Kirsten, H., others], Visscher, P.M., Scholz, M., et al. (2018). Unraveling the polygenic architecture of complex traits using blood eQTL meta-analysis. bioRxiv, 1-57.
- Kerimov, N., Hayhurst, j.D., Manning, J.R., Walter, P., Kolber, L., Peikova, K., Samovica, M., Burdett, T., Jupp, S., Parkinson, H., et al. (2020). eQTL Catalogue: a compendium of uniformly processed human gene expression and splicing eQTLs. bioRxiv <u>https://doi.org/10.1101/2020.01.29.924266</u>.
- 21. Alasoo, K., Rodrigues, J., Mukhopadhyay, S., Knights, A.J., Mann, A.L., Kundu, K., Consortium, H., Hale, C., Dougan, G., and Gaffney, D.J. (2018). Shared genetic effects on chromatin and gene expression indicate a role for enhancer priming in immune response. Nat Genet 50, 424-431.
- 22. Chen, L., Ge, B., Casale, F.P., Vasquez, L., Kwan, T., Garrido-Martin, D., Watt, S., Yan, Y., Kundu, K., Ecker, S., et al. (2016). Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells. Cell 167, 1398-1414 e1324.
- 23. Momozawa, Y., Dmitrieva, J., Theatre, E., Deffontaine, V., Rahmouni, S., Charloteaux, B., Crins, F., Docampo, E., Elansary, M., Gori, A.S., et al. (2018). IBD risk loci are enriched in multigenic regulatory modules encompassing putative causative genes. Nat Commun 9, 2427.
- 24. Gutierrez-Arcelus, M., Lappalainen, T., Montgomery, S.B., Buil, A., Ongen, H., Yurovsky, A., Bryois, J., Giger, T., Romano, L., Planchon, A., et al. (2013). Passive and active DNA methylation and the interplay with genetic variation in gene regulation. Elife 2, e00523.
- 25. Fairfax, B.P., Makino, S., Radhakrishnan, J., Plant, K., Leslie, S., Dilthey, A., Ellis, P., Langford, C., Vannberg, F.O., and Knight, J.C. (2012). Genetics of gene expression in primary immune cells identifies cell type-specific master regulators and roles of HLA alleles. Nat Genet 44, 502-510.
- Fairfax, B.P., Humburg, P., Makino, S., Naranbhai, V., Wong, D., Lau, E., Jostins, L., Plant, K., Andrews, R., McGee, C., et al. (2014). Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science 343, 1246949.
- 27. Lappalainen, T., Sammeth, M., Friedlander, M.R., t Hoen, P.A., Monlong, J., Rivas, M.A., Gonzalez-Porta, M., Kurbatova, N., Griebel, T., Ferreira, P.G., et al. (2013). Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501, 506-511.
- 28. Kasela, S., Kisand, K., Tserel, L., Kaleviste, E., Remm, A., Fischer, K., Esko, T., Westra, H.J., Fairfax, B.P., Makino, S., et al. (2017). Pathogenic implications for autoimmune mechanisms derived by comparative eQTL analysis of CD4+ versus CD8+ T cells. PLoS Genet 13, e1006643.
- Lepik, K., Annilo, T., Kukuskina, V., e, Q.C., Kisand, K., Kutalik, Z., Peterson, P., and Peterson, H. (2017). C-reactive protein upregulates the whole blood expression of CD59 - an integrative analysis. PLoS Comput Biol 13, e1005766.
- Naranbhai, V., Fairfax, B.P., Makino, S., Humburg, P., Wong, D., Ng, E., Hill, A.V., and Knight, J.C. (2015). Genomic modulators of gene expression in human neutrophils. Nat Commun 6, 7545.
- 31. Nedelec, Y., Sanz, J., Baharian, G., Szpiech, Z.A., Pacis, A., Dumaine, A., Grenier, J.C., Freiman, A., Sams, A.J., Hebert, S., et al. (2016). Genetic Ancestry and Natural Selection Drive Population Differences in Immune Responses to Pathogens. Cell 167, 657-669 e621.
- 32. Quach, H., Rotival, M., Pothlichet, J., Loh, Y.E., Dannemann, M., Zidane, N., Laval, G., Patin, E., Harmant, C., Lopez, M., et al. (2016). Genetic Adaptation and Neandertal Admixture Shaped the Immune System of Human Populations. Cell 167, 643-656 e617.

- 33. Buil, A., Brown, A.A., Lappalainen, T., Vinuela, A., Davies, M.N., Zheng, H.F., Richards, J.B., Glass, D., Small, K.S., Durbin, R., et al. (2015). Gene-gene and gene-environment interactions detected by transcriptome sequence analysis in twins. Nat Genet 47, 88-91.
- 34. Karolchik, D., Hinrichs, A.S., Furey, T.S., Roskin, K.M., Sugnet, C.W., Haussler, D., and Kent, W.J. (2004). The UCSC Table Browser data retrieval tool. Nucleic Acids Res 32, D493-496.
- 35. Lindblad-Toh, K., Garber, M., Zuk, O., Lin, M.F., Parker, B.J., Washietl, S., Kheradpour, P., Ernst, J., Jordan, G., Mauceli, E., et al. (2011). A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478, 476-482.
- 36. Ward, L.D., and Kellis, M. (2012). HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 40, D930-934.
- Boyle, A.P., Hong, E.L., Hariharan, M., Cheng, Y., Schaub, M.A., Kasowski, M., Karczewski, K.J., Park, J., Hitz, B.C., Weng, S., et al. (2012). Annotation of functional variation in personal genomes using RegulomeDB. Genome Res 22, 1790-1797.
- 38. Rentzsch, P., Witten, D., Cooper, G.M., Shendure, J., and Kircher, M. (2019). CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res 47, D886-D894.
- 39. Brandt, D.Y., Aguiar, V.R., Bitarello, B.D., Nunes, K., Goudet, J., and Meyer, D. (2015). Mapping Bias Overestimates Reference Allele Frequencies at the HLA Genes in the 1000 Genomes Project Phase I Data. G3 (Bethesda) 5, 931-941.
- 40. Sobota, R.S., Shriner, D., Kodaman, N., Goodloe, R., Zheng, W., Gao, Y.T., Edwards, T.L., Amos, C.I., and Williams, S.M. (2015). Addressing population-specific multiple testing burdens in genetic association studies. Ann Hum Genet 79, 136-147.
- Griffiths, C.E.M., van der Walt, J.M., Ashcroft, D.M., Flohr, C., Naldi, L., Nijsten, T., and Augustin, M. (2017). The global state of psoriasis disease epidemiology: a workshop report. Br J Dermatol 177, e4-e7.
- Okada, Y., Han, B., Tsoi, L.C., Stuart, P.E., Ellinghaus, E., Tejasvi, T., Chandran, V., Pellett, F., Pollock, R., Bowcock, A.M., et al. (2014). Fine mapping major histocompatibility complex associations in psoriasis and its clinical subtypes. Am J Hum Genet 95, 162-172.
- 43. Hinrichs, A.S., Raney, B.J., Speir, M.L., Rhead, B., Casper, J., Karolchik, D., Kuhn, R.M., Rosenbloom, K.R., Zweig, A.S., Haussler, D., et al. (2016). UCSC Data Integrator and Variant Annotation Integrator. Bioinformatics 32, 1430-1432.
- 44. Frankish, A., Diekhans, M., Ferreira, A.M., Johnson, R., Jungreis, I., Loveland, J., Mudge, J.M., Sisu, C., Wright, J., Armstrong, J., et al. (2019). GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res 47, D766-D773.
- 45. Roadmap Epigenomics, C., Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi, A., Kheradpour, P., Zhang, Z., Wang, J., et al. (2015). Integrative analysis of 111 reference human epigenomes. Nature 518, 317-330.