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1 IMABC Algorithm

We refer the reader to Rutter et al. (2019) (Section 4) for a detailed description of the algorithm,

but here provide a description of the algorithm and its most important features. The IMABC

algorithm begins by generating model parameter vectors θ from the prior distribution, π(θ), like

in the basic rejection-based ABC algorithm (Tavare et al., 1997; Pritchard et al., 1999). Sampled

parameter vectors are accepted or rejected according to whether they result in simulated targets

that are close to the observed calibration targets. An intersection criterion is used for acceptance

(Conlan et al., 2012; Ratmann et al., 2014), such that a simulated parameter vector is only accepted

if all simulated targets lie within the tolerance bounds, which define the level of discrepancy between

simulated and observed targets that is deemed acceptable.

The tolerance bounds around the observed targets are governed by a parameter vector α, such

that the tolerance bound around target j is based on a (1−αj)×100% confidence interval, which can

be calculated since observed calibration targets are derived from published studies, and typically

take the form of summary statistics with known distributions. The tolerance bounds are updated

as the algorithm progresses. In the first iteration, very wide tolerance bounds can be used, with

the more expensive to compute targets having αj = 0 so that fit to those targets does not need to

be evaluated. The goal of these early iterations is simply to identify regions of the parameter space

that produce acceptable fits to the easy to compute targets. This strategy is similar to the idea

of History Matching (Craig et al., 1997; Andrianakis et al., 2017; Holden et al., 2018), which aims

to identify parameter values that are implausible and thus to find viable regions of the parameter

space for which the model outputs are consistent with the targets. Updating the tolerance bounds

is important to allow the algorithm to find acceptable draws early on while ensuring that the

final set of draws used for posterior inference is suitably close to the target distribution. Final α

values used to calculate tolerance intervals are able to vary across targets, so that more precisely

estimated targets can have narrower bounds than less precisely estimated targets. The algorithm

then updates the initial sample by adding points near the set of “best” points. These are the points

that result in simulated targets that are closest to corresponding observed targets. New draws are

simulated at each iteration by sampling from a mixture of normal distributions, centered at the
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current set of best points, with covariance matrices that reflect the correlation structure of the

nearest, surrounding points. This strategy of drawing from multiple normal distributions at each

iteration allows for parallel processing to be used while efficiently exploring the viable regions of

the parameter space.

The process of accepting or rejecting sampled parameter vectors and updating the sample with

new points is repeated, and at each step, it is checked to see if the tolerance intervals can be reduced

in width by increasing the alpha-levels. The algorithm is repeated until the effective sample size

(ESS) exceeds some minimum desired number (e.g., 5,000), and the alpha-levels reach the final

user-specified alpha-levels. The ESS depends on how the information from the calibration will

be used, where interval estimates of model outputs require fewer points than estimating functions

of parameters, as we do here. Once the IMABC algorithm is complete, independent draws from

the posterior distribution are simulated by taking a weighted sample from accepted points with

replacement, using weights that account for simulation of draws from the posterior. ESS is the

expected number of unique points obtained from the weighted samples. Refer to Rutter et al. (2019)

(Section 4) for a detailed description of the algorithm and guidance on setting tuning parameters.
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