
Supporting Information

Fast-Charging Anode Materials and Novel Nanocomposite Design of Rice Husk-Derived SiO₂ and Sn Nanoparticles Self-Assembled on TiO₂(B) Nanorods for Lithium-Ion Storage Applications

Thanapat Autthawong^{a,b}, Chawin Yodbunork^{a,c}, Waewwow Yodying^a, Ruttapol Boonprachai^{a,b}, Orapim Namsar^a, Ai-shui Yu^d, Yothin Chimupala^{b,e}, and Thapanee Sarakonsri^{a,b,c,*}

- ^a Department of Chemistry, Faculty of Science, Chiang Mai University, Muang, Chiang Mai 50200, Thailand.
- ^b Material Science Research Center, Faculty of Science, Chiang Mai University, Muang, Chiang Mai 50200, Thailand.
- ^c Center of Excellent for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Thailand.
- ^d Department of Chemistry, Fudan University, Yangpu, Shanghai 200438, China
- ^e Department of Industrial Chemistry, Faculty of Science, Chiang Mai University, Muang, Chiang Mai 50200, Thailand

Figure S1. The STEM image (dark field) and the STEM-EDS element mapping of Ti, Si, C, O, and Sn in the prepared Sn-SiO₂@TiO₂(B) nanocomposite.

