Supplementary Material

for

Multiethnic Prediction of Nicotine Biomarkers and Association with Nicotine Dependence

Andrew W. Bergen PhD, Christopher S. McMahan PhD, Stephen McGee MS,

Carolyn M. Ervin PhD, Hilary A. Tindle MD, MPH, Löic Le Marchand MD, PhD,

Sharon E. Murphy PhD, Daniel O. Stram PhD, Yesha M. Patel MS,

Sungshim L. Park PhD, James W. Baurley PhD

CONTENTS

1	Note	e on Ethnicity Labels	4
2	Mea	sured Nicotine Biomarkers, MEC Current Smokers	4
3	Gen	omic/Clinical Data Quality Control and Analysis	5
	3.1	Genomic Data Quality Control and Imputation	5
	3.2	Variant Selection, Training, Internal Validation and Prediction	5
4	Dem	nographics, UW-TTURC Trials and Genetic Substudy	6
	4.1	Genetic Substudy (GSS) and RCTs, Differences by RCT	6
	4.2	Demographics of the GSS Sample	7
5	Nico	otine Dependence Measures, GSS and GSS <i>vs</i> two RCTs	7
	5.1	The Fagerström Test for Nicotine Dependence, FTND	8
	5.2	Tobacco Dependence Screener, TDS	8
	5.3	Wisconsin Inventory of Smoking Dependence Motives, WISDM	9
	5.4	Nicotine Dependence Syndrome Scale, NDSS	11
6	Sum	nmary - GSS Findings	13
	6.1	GSS Demographic Findings	13
	6.2	GSS Nicotine Dependence Findings	13
7	REF	ERENCES	14
8	TAB	LES	16
9	FIGU	JRE LEGENDS	40
10	FIGU	JRES	41

List of Tables

1

Measu	ured N	licotine Biomarkers, Current Smokers, by Ethnicity and Sex									
•	Α.	Primary Analysis without CPD	16								
•	В.	Secondary Analysis with CPD	17								
Top 2	00 Va	riants, Urinary Nicotine Metabolite Ratio	18								
Top 2	00 Va	riants, Total Nicotine Equivalents	24								
Measu	easured versus Predicted Biomarkers (<i>r</i>), Multiethnic Cohort 31										
Predic	Predicted Biomarker Interactions, Association with Nicotine Dependence 32										
Demo	graph	ics of UW-TTURC Sample, by RCT	34								
Demo	graph	ics of the GSS, by Sex and by Ethnicity	35								
FTND	, CPD	, and TTFC, by Sex and by Ethnicity	36								
TDS D	TDS Dependence, by Sex and by Ethnicity 37										
WISD	M Prir	mary Dependence Motives, by Sex and by Ethnicity	38								
NDSS	Scale	es in the GSS Participants, by Sex and by Ethnicity	39								
	Measu · Top 20 Top 20 Measu Predic Demo Demo FTND TDS 0 WISD NDSS	Measured N A. B. Top 200 Va Top 200 Va Top 200 Va Measured v Predicted B Demograph Demograph FTND, CPD TDS Depen WISDM Prir	 Measured Nicotine Biomarkers, Current Smokers, by Ethnicity and Sex A. Primary Analysis without CPD B. Secondary Analysis with CPD Top 200 Variants, Urinary Nicotine Metabolite Ratio Top 200 Variants, Total Nicotine Equivalents Measured versus Predicted Biomarkers (<i>r</i>), Multiethnic Cohort Predicted Biomarker Interactions, Association with Nicotine Dependence Demographics of UW-TTURC Sample, by RCT Demographics of the GSS, by Sex and by Ethnicity FTND, CPD, and TTFC, by Sex and by Ethnicity TDS Dependence, by Sex and by Ethnicity WISDM Primary Dependence Motives, by Sex and by Ethnicity NDSS Scales in the GSS Participants, by Sex and by Ethnicity 								

1. Note on Ethnicity Labels

The Multiethnic Cohort (MEC) explicitly recruited participants of multiple (five) ethnicities using a combination of civil, health care, and research records. The MEC questionnaire elicited self-identified ethnic background of the participant and parents. The University of Wisconsin Transdisciplinary Tobacco Use Research Center (UW-TTURC) research cohort is a research study of smoking cessation and long-term outcomes, comprised of nicotine dependent research volunteers of any ethnicity recruited in two Wisconsin metropolitan areas using local media. The screening questionnaires of the UW-TTURC smoking cessation trials elicited self-identified race and self-identified Hispanic or Latino ethnicity. In the main text we use the terms "Ethnicity/ethnicity" or "Multiethnic/multiethnic" for selfidentified race or ethnicity, and the labels "African American" for Black or African American, and "White" for White when referring to the race or ethnicity of MEC or UW-TTURC participants in these two ethnic groups. We use the MEC's ethnicity labels when describing the other three ethnicities in the MEC (e.g., in the main text and in **Supplementary Tables 1A** and **1B**). We used the labels "Black" and "White" when describing UW-TTURC cessation trial and genetic subsample participants of these two ethnicities in the **Supplementary Material**. When we cite work of other authors, we use the race, ethnicity or ancestry labels used by those authors. We were alerted by SRNT leadership (email 19 Mar 2021) regarding reporting of race and ethnicity by the AMA Manual of Style committee (Flanagin et al. 2021, JAMA:325:1049-1052). Ongoing consultation may result in changes to current usage of terms.

2. Measured Nicotine Biomarkers, MEC Current Smokers

A subgroup of MEC current smokers without a cancer diagnosis provided overnight or first morning urine for metabolite analysis, blood for genetic analysis, and completed epidemiologic, smoking and concomitant medication questionnaires. To analyze samples for free and total nicotine, cotinine and *trans*-3' hydroxycotinine, diluted urine samples were plated on paired 96 well plates where one plate was incubated overnight with 500 U of β -glucuronidase at 37 C. To analyze samples for free nicotine N-oxide, samples were analyzed as above without a paired plate for β -glucuronidase treatment. Deuterium-labeled standards for each nicotine metabolite were added to appropriate plates. Samples were loaded onto conditioned solid phase extraction 96 well elution plates, eluted with ammonium hydroxide:methanol, acidified with formic acid and dried. Re-suspended samples were subjected to liquid chromatography-tandem mass spectrometry (MS/MS) analysis, with separate injections and specific elution times for NIC and NNO, and for COT and 3HC. Specific mass transitions for each nicotine metabolite and each deuterium-labeled-standard were specified for MS/MS fragmentation, monitoring and quantification. See Murphy *et al* for further details on nicotine metabolite analysis methods, levels of quantification, and quality control metrics.¹

Presented in **Supplementary Tables 1A** and **1B** are the means of measured nicotine biomarkers urinary NMR (natural log transformed total 3HC / COT) and TNE (square-root transformed creatinine-standardized molar sum of total nicotine, total cotinine, total *trans*-3'hydroxycotinine and nicotine N-oxide) without adjustment and with adjustment for CPD in participants of the five ethnicities recruited in the MEC (African American, Native Hawaiian, White, Latino and Japanese American). The individual level data from these participants were used for variable selection (**Variable Selection Phase**, main text) and for model training (**Training Phase**, main text).

3. Genomic Data Analysis

3.1. Genomic Data Quality Control and Imputation

MEC Genomic Data. For MEC, blood leukocyte DNA was genotyped using the Illumina 1M array, and quality control (QC) and imputation were performed previously; for details review Patel *et al.*² Samples (and variants) with call rates < 98% (and \leq 98%), known duplicate samples, close relatives and samples with conflicting or indeterminate sex were removed. Haplotype phasing and genotype imputation of the analysis dataset of 1,131,426 variants and 2,239 samples was performed using the March 2012 1000 Genomes Project release with *r*² \geq 0.30 and minor allele frequency (MAF) > 1% by ethnic group.^{3–5}

UW-TTURC Genomic Data. For UW-TTURC, blood leukocyte DNA was genotyped using the Illumina 2.5M array, and QC and imputation were performed previously; for details, see Laurie *et al* and Bierut *et al.*^{6,7} Genotypes were called using BeadStudio, where variants with missing call rate < 2%, Hardy-Weinberg test *p-values* > .0001, and minor allele frequency (MAF) < 0.01 excluded. Self-identified European American and African American samples were imputed separately, using the 1000 Genomes EUR and EUR+AFR reference populations, respectively. Rare markers (MAF < 0.005) were excluded from the reference. Imputation was performed using BEAGLE.⁸

As needed for each variant analysis, annotation and genotype dosage of variants were loaded into a relational database and queried for markers in the Smokescreen Genotyping Array database by chromosome, position, and alleles.⁹

3.2. Variant Selection, Training, Internal Validation and Prediction

See **Supplementary Tables 2A**, **2B**, **3A** and **3B** for annotations of the top 200 variants selected in the uNMR and the TNE genome-wide studies, including variant rsID, location, marginal scan effect size

and significance, associated gene annotation, and the number of times the variant was included in penalized regression models (count). See **Supplementary Tables 2** and **3 ReadMe** for details on annotation definitions.

See Supplementary Table 4 for correlation of measured *vs* predicted biomarkers (see RESULTS section Training and Internal Validation of Nicotine Biomarker Models). See Supplementary Table 5 for interaction analyses of predicted nicotine biomarkers. See sections Predicted uNMR and Nicotine Dependence and Predicted TNE and Nicotine Dependence. See Supplementary Table 5 ReadMe for variable definitions.

4. Demographics, UW-TTURC Trials and Genetic Substudy

The UW-TTURC dataset we studied is comprised of cigarette smokers who: were recruited into three randomized clinical smoking cessation trials (RCTs),^{10–12} agreed to be in a Genetic Substudy (GSS), provided a blood sample for DNA extraction and genotyping,⁷ who self-identified as Black or White race, and with complete imputation data. Thus the GSS participants are interested in treatment and in contributing to research. Each RCT was designed to compare different sets of treatment interventions, but had similar inclusion criteria (aged \geq 18 years, smoking \geq 10 cigarettes per day, motivated to quit smoking, able to read and write English, willing to complete study assessments) and exclusion criteria (carbon monoxide < 10 ppm, medical and psychiatric comorbidities, risk of pregnancy).

4.1. Genetic Substudy (GSS) and RCTs, Differences by RCT

We summarize observations and results of tests of demographic differences between the GSS subsamples drawn from the three RCTs, and between the GSS subsamples and the RCTs from which they were recruited (**Supplementary Table 6**).

RCT Site and Participation in the GSS. The "ED SR" RCT was performed in Madison,¹⁰ the "Depend" RCT in Milwaukee,¹¹ and the "TTURC2" RCT in both cities.¹² The participants of the GSS are drawn unequally from the RCTs, i.e., TTURC2 contributes the majority of participants. The number and proportion of participants who participated in the GSS by RCT significantly increases between the RCTs (all P < .001).

Age, Gender, and Ethnicity in the GSS and RCTs. The age of GSS participants differs significantly by RCT source, i.e., the age of the RCT participants significantly increased from ED SR to Depend to TTURC2 (all P < .001), however age does not differ between the GSS sample and the source RCT. Sex proportions did not differ between RCT contributions to the GSS (all P > .056), or between each

RCT sample within the GSS and each RCT (all P > .12). Ethnicity (Black and White) proportions differ between the RCT contributions to the GSS (all P < .001) and between RCTs (all P < .005), but ethnicity proportions do not differ between RCTs and their contributions to the GSS (all P > .24).

Recruitment into the GSS. We conclude that recruitment protocols into the GSS became significantly more successful from ED SR to Depend to TTURC2, and that age, sex and ethnicity did not influence recruitment into the GSS. We observed differences in age and ethnicity between the RCTs, but sex proportions did not differ. Ethnicity differences may be related to the city of recruitment.

Comparison with ED SR and Depend RCTs. Previously, Piper *et al* observed differences in age, sex, and ethnicity between participants recruited in the ED SR and Depend RCTs.¹³ We do not observe differences in sex between the GSS participants recruited from these two RCTs because the ED SR female contribution to the GSS was higher than the female proportion in the ED SR RCT. Differences in age and ethnicity in the ED SR and Depend contributions to the GSS are similar to those previously observed in the complete RCTs.¹³

4.2. Demographics of the GSS Sample

The mean (SD) age of the GSS (N=1,864) is 43.41 (11.33) years, N=1,090 (58.5%) are female, and N=260 (14.0%) are Black (**Supplementary Table 7**). The mean duration of smoking is nearly three decades, reflecting the recruitment of treatment-seeking smokers. Male participants are older than female participants (P = .036) and Black participants are older than White participants (P = .0012). There are proportionally more (fewer) female (male) Black participants than female (male) White participants (P = .0046). Age of smoking initiation and endorsement of Hispanic ethnicity do not differ by sex or ethnicity (Black and White). Female participants have smoked about one year less than male participants (P < .022), however, women were younger than men by a similar amount at baseline interview. Years smoked does not differ by ethnicity.

5. Nicotine Dependence Measures, GSS and GSS vs two RCTs

There are four nicotine dependence measures available for analysis: the Fagerström Test of Nicotine Dependence (FTND),¹⁴ the Tobacco Dependence Screener (TDS),¹⁵ the Nicotine Dependence Syndrome Scale (NDSS),¹⁶ and the Wisconsin Inventory of Smoking Dependence Motives (WISDM).¹⁷ Below the development of each measure is briefly reviewed with notes on heritability. Then values of each measure in the GSS sample are compared by sex and ethnicity, and then to the N=1,071 sample from the complete RCTs (ED SR and Depend) analyzed by Piper *et al.*¹³

5.1. The Fagerström Test for Nicotine Dependence, FTND

Development of the FTND. The FTND was modified from the FTQ, designed to provide a self-report measure of nicotine dependence.¹⁴ The FTND consists of six questions including two (Cigarettes per day, CPD) and the time to first cigarette in the morning, TTFC) with four possible responses, and four dichotomous questions. In studies of European ancestry smokers, FTND CDP and FTND TTFC have significant heritability estimates in twin analyses,¹⁸ while single nucleotide polymorphism (SNP) heritability estimates are significant for CPD codings,^{19,20} FTND TTFC,^{21,22} and FTND total score.^{21,23} Analyses of the phenotypic factor structure of FTND in young adult female twins finds two factors with cross-loadings of CPD and TTFC on both factors;¹⁸ analyses of adult substance use disorder comorbid research subjects finds two phenotype factors with distinct loadings of CPD and TTFC on each factor.²⁴

FTND in the GSS. In the GSS dataset (**Supplementary Table 86**), FTND total scores are lower in female participants than male participants (P < .001), but do not differ by ethnicity. The CPD distribution is shifted lower in female compared to male participants, and in Black compared to White participants (both P < .001). While there are no differences in TTFC distributions by sex, the TTFC distribution is shifted higher in Black participants compared to White participants (P < .001).

FTND in the GSS and ED SR and Depend RCTs. FTND total scores overall and in each sex and ethnicity stratum in the GSS are similar to those in the N=1,071 sample and in each sex and ethnicity stratum analyzed by Piper *et al* (all P > .495, data not shown).¹³

5.2. The Tobacco Dependence Screener, TDS

Development of the TDS. The TDS was developed as a self-administered screener for nicotine dependence.¹⁵ It consists of 10 dichotomous items from the tobacco use section of the Composite International Diagnostic Interview version 1.1,²⁵ which assesses *ICD-10* and *DSM-III-R* tobacco and nicotine dependence symptoms. The developers validated the screener in three samples of Japanese smokers (University related volunteers, out-patients, and employees of a company) by assessment of internal (Cronbach's *a*) and external (CIDI diagnoses of *ICD-10*, *DSM-III-R* and *DSM-IV* nicotine dependence, and FTQ, CPD, and CO measures) correlations. Analysis of *DSM-IV* nicotine dependence criteria in young adult European ancestry female twins indicate that all criteria except "Gave up activities to smoke" are heritable.¹⁸ SNP heritability for a DSM-IV Nicotine Dependence factor extracted from a European ancestry sample of smokers was significant.²²

TDS in the GSS. In the GSS dataset, female participants endorsed a higher level of TDS dependence then male participants (P < .001), and Black participants endorsed a lower level of TDS dependence than White participants (P = .042) (**Supplementary Table 9**). In the N=1,071 sample of ED SR and Depend RCT participants analyzed by Piper *et al* (which share 562 participants (52.5% of 1,071) with the sample analyzed here), female participants endorsed higher TDS nicotine dependence than male participants, and Black participants endorsed lower TDS nicotine dependence than White participants (both P < .05, data not shown).¹³

TDS in the GSS and in the ED SR and Depend RCTs. TDS nicotine dependence scores in the GSS sample are increased overall and in each sex and ethnicity stratum over the corresponding strata in the ED SR and Depend RCT participants in Piper *et al* (all P < .05, data not shown),¹³ suggesting that those participating in the GSS from ED SR and Depend, and/or those participating in the GSS from TTURC2, have higher levels of TDS-defined nicotine dependence than the full sample of ED SR and Depend RCT participants.

5.3. Wisconsin Inventory of Smoking Dependence Motives, WISDM

Initial Development of the WISDM. The WISDM was developed as a nicotine dependence measure with the explicit assumption that dependence is based upon theoretical mechanisms that underlie multiple aspects of smoking behavior.¹⁷ Development began with the psychological community developing questions to measure 13 separate motives for drug use based on a literature review. A derivation sample (N=775) of adult daily and non-daily smokers (60% female, 84% White) recruited from cessation trial participants, university students and local residents answered 285 questions in a large group format and provided a breath sample for CO measurement. Using a portion of the adult smoker sample, items were selected by high internal consistency to generate a subset of questions for the 13 motives. Validation in the remaining smokers, and then by sex, daily versus non-daily smoking and ethnicity demonstrated excellent consistency overall. Confirmatory factor analysis identified stronger support for a multiple (13) factor model than for a single factor model. Multiple regression analyses with CPD, carbon monoxide level and *DSM-IV* dependence indicate the 13 WISDM subscales account for the majority (53% to 60%) of the variance in these concurrent validity items.

Refinement of the WISDM. With participants from the derivation study and three cessation trials,^{10,11,26} further analyses discovered and characterized four WISDM motives (Automaticity, Craving, Loss of Control and Tolerance) that constitute a common dependence factor,¹³ later called Primary Dependence Motives (PDMs).²⁷ The first analysis used latent profile analyses (LPA) to identify a group

of smoking motives that collectively are highly predictive of dependence, including withdrawal and relapse. Initial LPA analysis results indicated that five class solutions were preferred, with four classes consisting of grades of nicotine dependence severity and one class more heavily weighted on the four PDMs, and with lower weighting on the remaining nine classes. The PDM weighted class was named Automatic-Atypical, and had a prevalence of 17% in the smokers from the four samples analyzed. Exploratory Factor Analysis (EFA) together with correlation and eigenplot analyses were performed to provide another analytic perspective. A two factor solution was favored with the four PDMs loading heavily on factor one, eight of the remaining nine loading on factor two, and Cue Exposure/Associative Processes loading moderately on both factors. Intercorrelations of the four heavily loaded subscales in factor one were greater than with the other nine subscales. A third analysis approach, Factor Mixture Analysis (FMA), using two factors was used to evaluate heterogeneity among the multiple classes identified in LPA analysis. These analyses again saw the four PDMs loading heavily on the first factor, and three factors on which the remaining nine subscales were loaded heavily, where the three factors were called Low, Medium and High. Fit criteria were better in the FMA than in the LPA analyses. In regression analyses, factors one and two were found to be significantly related to other measures of nicotine dependence such as the FTND, CPD and carbon monoxide where factor one associations were larger than factor two associations. Finally, factor one was associated with lower education, with alcohol problems, and relapse at 1 week and six months, while factor two was associated with gender (Females > Males).

Further characterization of the WISDM was performed in the analysis of three clinical trials of smoking cessation,^{10,11,26} where the four Primary Dependence Motives (Automaticity, Loss of Control, Craving and Tolerance, which are the four subscales of the WISDM available in the dbGaP accession) were found to be more highly correlated to the FTND, CPD, carbon monoxide, withdrawal and relapse than other WISDM subscales.¹³

WISDM Primary Dependence Motives in the GSS. In the GSS dataset, female participants endorse higher WISDM Automaticity, Loss of Control and PDM total scores than do male participants (all P < .05) (**Supplementary Table 10**). Black participants endorse lower WISDM Loss of Control and higher Tolerance scores than do White participants (both P < .05).

WISDM PDM Scores in the GSS and ED SR and Depend RCTs. In the N=1,071 sample of ED SR and Depend RCT participants analyzed by Piper *et al*, Black participants endorsed lower Loss of Control and higher Tolerance scores than White participants (both P < .05, data not shown), as seen in the

GSS dataset.¹³ There were no differences in the four PDM scores overall or by sex or ethnicity between the GSS sample of N=1,864 and the N=1,071 sample analyzed by Piper *et al* (all P > .07, data not shown).¹³

5.4. Nicotine Dependence Syndrome Scale, NDSS

Development of the NDSS. The NDSS is a multiple factor measure of nicotine dependence developed and validated using samples of treatment-seeking smokers.¹⁶ Initial item development was based on the Edwards and Gross dependence construct,²⁸ which has informed the development of diagnostic dependence criteria.²⁹ Treatment-seeking smokers enrolled in a research smoking cessation clinic with high motivation and efficacy to quit (N=317, minimum 10 CPD/day, mean(SD) 26(10) CPD, age 23(10) years, 57% female),^{30–33} were asked to discuss and comment upon the initial list of items and their nicotine addiction.

The list was further refined by addiction investigators and focus groups of smokers. A sample of treatment-seeking smokers were administered 23 provisional items along with other measures of dependence (e.g., Fagerström Tolerance Questionnaire (FTQ), withdrawal symptoms and the Horn/Russell Reasons for Smoking Scale) and smoking outcomes.^{34,35} Principal component, orthogonal factor analysis and selection of items were applied to the sample data resulting in five factors labeled Drive, Priority, Tolerance, Continuity and Stereotypy. The first principal component (accounting for 29% of total item variance) was retained as an omnibus measure (NDSS-T). NDSS-T and four of five factors exhibited substantial partial correlation coefficients (PCC) with the FTQ and smoking behaviors and outcomes, e.g., PCCs ranging from 0.24-0.54 with the FTQ, 0.16-0.48 with smoking rate, and 0.16-0.44 with the Horn-Russell pharmacological reason for smoking. Many of associations persisted after correction for the FTQ or smoking rate demonstrating incremental utility.

Refinement of the NDSS. Further development of the NDSS utilized a sample of treatment-seeking smokers (N=802, mean(SD) 24(8) CPD, age 39(11) years, 57% female, 66% White, 31% Black), recruited to test acute effects of smoking cessation medication.¹⁶ Additional items were added to improve the number and reliability of Continuity and Stereotypy factor items, and participants self-administered measures of addiction (e.g., FTQ), difficulty abstaining, and past severity of withdrawal. As before, principal components and orthogonal factor analysis extracted five factors, accounting for 57% of item variance. The factors Drive, Priority, Tolerance were similar to the initial study, the new Continuity and Stereotypy items loaded onto their respective factors, and Stereotypy reliability increased. As before, the first principal component (NDSS-T) and four of five factors exhibited significant association with the FTQ and smoking rate; in addition, the incremental utility and variance

explained increased for difficulty abstaining and past severity of withdrawal. Analysis of variance by race identified significant differences between race (Continuity and Drive > Whites, and Stereotypy > Blacks) without differences in total score (NDSS-T).

Test-Retest Reliability of the NDSS. A third sample of chronic heavy smokers selected for high dependence (*N*=91, mean(SD) 36(9) CPD, age 35(9) years, 41% female, 81% White) was utilized to assess test-retest reliability after NDSS self-administration at baseline and on day 14 of a randomized clinical trial of bupropion treatment and acute abstinence.³⁶ No significant differences in scores overall or by factor were observed with test-retest correlations of 0.71-0.83 (NDSS-T correlation of 0.81).

The NDSS in the GSS. In the GSS sample, female participants endorsed higher NDSS Drive (P < .001), lower Continuity (P = .03) and lower Stereotypy (P < .001) scales than male participants (**Supplementary Table 11**). Black participants endorsed higher NDSS Priority and Stereotypy scores and a lower Continuity score than White participants (all P < .001).

The NDSS in the ED SR and Depend RCTs. In the N=1,071 sample of ED SR and Depend RCT participants analyzed by Piper *et al*, female participants endorsed higher NDSS Drive and Priority (both P < .05) scores, and lower Continuity and Stereotypy (both P < .001) scores than male participants; there were no NDSS score differences observed between Black and White participants in the ED SR and Depend RCT participants.¹³

The NDSS in the GSS and in the ED SR and Depend RCTs. There were differences between GSS participants and ED SR and Depend RCT participants¹³ in multiple NDSS scores and sex and ethnicity strata. GSS dataset participants endorsed a higher NDSS Drive (P < .01) score, and lower Priority, Tolerance, and Stereotypy (all P < .001), and Total NDSS (P < .05) scores than did ED SR and Depend RCT participants. Female GSS participants endorsed a higher NDSS Drive (P < .01) and lower Priority, Tolerance, Stereotypy (all P < .001) and Total (P < .05) scores than female participants of the ED SR and Depend RCTs. Male GSS participants endorsed a higher NDSS Drive (P < .05) and lower Priority and Stereotypy (both P < .001) scores than male participants of the ED SR and Depend RCTs. There were no differences in NDSS scores between Black GSS and Black ED SR and Dependence RCT participants. White GSS participants endorsed higher Drive (P < .01), and lower Priority, Tolerance, Stereotypy (all P < .001) and Total (P < .01) scores than Black ED SR and Dependence RCT participants. White GSS participants endorsed higher Drive (P < .01), and lower Priority, Tolerance, Stereotypy (all P < .001) and Total (P < .01) scores than White ED SR and Dependence RCT participants. White GSS participants endorsed higher Drive (P < .01), and lower Priority, Tolerance, Stereotypy (all P < .001) and Total (P < .01) scores than White ED SR and Dependence RCT participants.

6. Summary - GSS Findings

6.1. Demographic Findings

Age varies by sex (female participants younger, P < .05) and ethnicity (Black participants older, P < .01). Sex and ethnicity are associated (proportionally more female Black participants than female White participants, P < .005).

6.2. Nicotine Dependence Findings

FTND. In analysis of FTND scores as continuous scores and subscores as ordinal categories, FTND scores and subscores vary by sex and ethnicity. Female participants endorse lower total FTND scores and CPD distributions than male participants, and Black participants endorse lower CPD and higher TTFC distributions than White participants (all P < .001).

TDS. In analysis of TDS scores, female participants endorse higher TDS scores than male participants (P < .001), and Black participants endorse lower TDS scores than White participants (P = .042).

WISDM. In analysis of WISDM subscale and PDM scores, female participants endorse higher Automaticity, Loss of Control and PDM scores than do male participants (all P < .05), and Black participants endorse lower Loss of Control and higher Tolerance scores than do White participants (both P < .05).

NDSS. In analysis of NDSS scales, female participants endorsed higher Drive and lower Continuity and Stereotypy scales than do male participants (all P < .05), and Black participants endorse higher Priority and Stereotypy scores and lower Continuity scores than White participants (all P < .001).

REFERENCES

- 1. Murphy SE, Park S-SL, Thompson EF, et al. Nicotine N-glucuronidation relative to N-oxidation and C-oxidation and UGT2B10 genotype in five ethnic/racial groups. *Carcinogenesis*. 2014;35(11):2526-2533.
- 2. Patel YM, Park SL, Han Y, et al. Novel Association of Genetic Markers Affecting CYP2A6 Activity and Lung Cancer Risk. *Cancer Res.* 2016;76(19):5768-5776.
- 3. Delaneau O, Marchini J, Zagury J-F. A linear complexity phasing method for thousands of genomes. *Nat Methods*. 2011;9(2):179-181.
- 4. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. *PLoS Genet*. 2009;5(6):e1000529.
- 5. Consortium T 1000 GP, The 1000 Genomes Project Consortium. A global reference for human genetic variation. *Nature*. 2015;526(7571):68-74. doi:10.1038/nature15393
- 6. Laurie CC, Doheny KF, Mirel DB, et al. Quality control and quality assurance in genotypic data for genome-wide association studies. *Genet Epidemiol.* 2010;34(6):591-602.
- 7. Bierut LJ, Baker T, Breslau N, et al. The Genetic Architecture of Smoking and Smoking Cessation. dbGaP Genotypes and Phenotypes. Published December 14, 2011. Accessed April 5, 2019. https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000404.v1.p1
- 8. Browning BL, Browning SR. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. *Am J Hum Genet*. 2009;84(2):210-223.
- 9. Baurley JW, Edlund CK, Pardamean CI, Conti DV, Bergen AW. Smokescreen: a targeted genotyping array for addiction research. *BMC Genomics*. 2016;17:145.
- 10. McCarthy DE, Piasecki TM, Lawrence DL, et al. A randomized controlled clinical trial of bupropion SR and individual smoking cessation counseling. *Nicotine Tob Res*. 2008;10(4):717-729.
- 11. Piper ME, Federman EB, McCarthy DE, et al. Efficacy of bupropion alone and in combination with nicotine gum. *Nicotine Tob Res*. 2007;9(9):947-954.
- 12. Piper ME, Smith SS, Schlam TR, et al. A randomized placebo-controlled clinical trial of 5 smoking cessation pharmacotherapies. *Arch Gen Psychiatry*. 2009;66(11):1253-1262.
- 13. Piper ME, McCarthy DE, Bolt DM, et al. Assessing dimensions of nicotine dependence: an evaluation of the Nicotine Dependence Syndrome Scale (NDSS) and the Wisconsin Inventory of Smoking Dependence Motives (WISDM). *Nicotine Tob Res*. 2008;10(6):1009-1020.
- 14. Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom K-O. The Fagerstrom Test for Nicotine Dependence: a revision of the Fagerstrom Tolerance Questionnaire. *Addiction*. 1991;86(9):1119-1127.
- Kawakami N, Takatsuka N, Inaba S, Shimizu H. Development of a screening questionnaire for tobacco/nicotine dependence according to ICD-10, DSM-III-R, and DSM-IV. *Addict Behav*. 1999;24(2):155-166.
- 16. Shiffman S, Waters A, Hickcox M. The nicotine dependence syndrome scale: a multidimensional measure of nicotine dependence. *Nicotine Tob Res.* 2004;6(2):327-348.
- 17. Piper ME, Piasecki TM, Federman EB, et al. A multiple motives approach to tobacco dependence: the Wisconsin Inventory of Smoking Dependence Motives (WISDM-68). *J Consult Clin Psychol.* 2004;72(2):139-154.
- 18. Lessov CN, Martin NG, Statham DJ, et al. Defining nicotine dependence for genetic research: evidence from Australian twins. *Psychol Med*. 2004;34(5):865-879.

- 19. Liu M, Jiang Y, Wedow R, et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. *Nat Genet*. 2019;51(2):237-244.
- 20. Xu K, Li B, McGinnis KA, et al. Genome-wide association study of smoking trajectory and metaanalysis of smoking status in 842,000 individuals. *Nat Commun*. 2020;11(1):5302.
- 21. Chen J, Loukola A, Gillespie NA, et al. Genome-Wide Meta-Analyses of FTND and TTFC Phenotypes. *Nicotine Tob Res.* Published online July 11, 2019. doi:10.1093/ntr/ntz099
- 22. Bidwell LC, Palmer RHC, Brick L, McGeary JE, Knopik VS. Genome-wide single nucleotide polymorphism heritability of nicotine dependence as a multidimensional phenotype. *Psychol Med*. 2016;46(10):2059-2069.
- 23. Quach BC, Bray MJ, Gaddis NC, et al. Expanding the genetic architecture of nicotine dependence and its shared genetics with multiple traits. *Nat Commun*. 2020;11(1):5562.
- 24. Radzius A, Gallo JJ, Epstein DH, et al. A factor analysis of the Fagerström Test for Nicotine Dependence (FTND). *Nicotine Tob Res.* 2003;5(2):255-240.
- 25. Robins LN, Wittchen H-U. *Composite International Diagnostic Interview Researcher's Manual: Version 1.1*. World Health Organization; 1994.
- 26. Lerman C, Tyndale R, Patterson F, et al. Nicotine metabolite ratio predicts efficacy of transdermal nicotine for smoking cessation. *Clin Pharmacol Ther*. 2006;79(6):600-608.
- 27. Piasecki TM, Piper ME, Baker TB. Tobacco Dependence: Insights from Investigations of Self-Reported Smoking Motives. *Curr Dir Psychol Sci*. 2010;19(6):395-401.
- 28. Edwards G, Gross MM. Alcohol dependence: provisional description of a clinical syndrome. *BMJ*. 1976;1(6017):1058-1061. doi:10.1136/bmj.1.6017.1058
- 29. American Psychiatric Association. *Diagnostic and Statistical Manual of Mental Disorders*. Association; 1987.
- 30. Shiffman S, Gnys M, Richards TJ, Paty JA, Hickcox M, Kassel JD. Temptations to smoke after quitting: A comparison of lapsers and maintainers. *Health Psychology*. 1996;15(6):455-461. doi:10.1037/0278-6133.15.6.455
- 31. Shiffman S, Hickcox M, Paty JA, Gnys M, Kassel JD, Richards TJ. Progression from a smoking lapse to relapse: Prediction from abstinence violation effects, nicotine dependence, and lapse characteristics. *Journal of Consulting and Clinical Psychology*. 1996;64(5):993-1002. doi:10.1037/0022-006x.64.5.993
- 32. Shiffman S, Paty JA, Gnys M, Kassel JA, Hickcox M. First lapses to smoking: Within-subjects analysis of real-time reports. *Journal of Consulting and Clinical Psychology*. 1996;64(2):366-379. doi:10.1037/0022-006x.64.2.366
- 33. Shiffman S, Hickcox M, Paty JA, Gnys M, Kassel JD, Richards TJ. The abstinence violation effect following smoking lapses and temptations. *Cognit Ther Res*. 1997;21(5):497-523.
- 34. Fagerström K-O. Measuring degree of physical dependence to tobacco smoking with reference to individualization of treatment. *Addictive Behaviors*. 1978;3(3-4):235-241. doi:10.1016/0306-4603(78)90024-2
- 35. Russell MAH, Peto J, Patel UA. The Classification of Smoking by Factorial Structure of Motives. *J R Stat Soc Ser A*. 1974;137(3):313.
- 36. Shiffman S, Johnston JA, Khayrallah M, et al. The effect of bupropion on nicotine craving and withdrawal. *Psychopharmacology* . 2000;148(1):33-40.

TABLES

Ethnicit	у	African	American	Native	Hawaiian	W	hite	Lat	ino	Japanes	e American
		N	Mean (SE)	N	Mean (SE)	Ν	Mean (SE)	N	Mean (SE)	Ν	Mean (SE)
NMR*	All	364	1.45	311	1.00	437	1.40	453	1.52	674	0.51
			(0.04)		(0.05)		(0.04)		(0.04)		(0.03)
	Female	253	1.48	197	1.03	247	1.44	216	1.55	286	0.55
			(0.04)		(0.05)		(0.04)		(0.04)		(0.04)
	Male	111	1.42	114	0.97	190	1.37	237	1.48	388	0.48
			(0.05)		(0.05)		(0.04)		(0.04)		(0.03)
TNE**	All	364	7.27	311	7.36	437	8.32	453	6.83	674	7.16
			(0.12)		(0.14)		(0.11)		(0.11)		(0.09)
	Female	253	7.59	197	7.68	247	8.62	216	7.16	286	7.48
			(0.13)		(0.14)		(0.12)		(0.13)		(0.11)
	Male	111	6.95	114	7.03	190	7.97	237	6.51	388	6.83
			(0.14)		(0.15)		(0.13)		(0.12)		(0.10)

Supplementary Table 1A: Measured Nicotine Biomarkers (1° Analysis), Current Smokers, by Ethnicity and Sex

*Natural log transformed, no units. **Square root transformed, nmol/mg creatinine. "All" ethnicity values are adjusted by age and sex, and ethnicity-sex strata values are adjusted by age.

Ethnicity	у	African A	American	Native I	Hawaiian	W	hite	Lat	ino	Japanes	e American
		N	Mean (SE)	Ν	Mean (SE)	N	Mean (SE)	N	Mean (SE)	Ν	Mean (SE)
NMR*	All	364	1.44	311	0.95	437	1.32	453	1.53	674	0.48
			(0.07)		(0.07)		(0.07)		(0.07)		(0.06)
	Female	253	1.49	197	1.00	247	1.38	216	1.58	286	0.54
			(0.07)		(0.07)		(0.07)		(0.08)		(0.07)
	Male	111	1.38	114	0.89	190	1.27	237	1.47	388	0.43
			(0.07)		(0.08)		(0.07)		(0.07)		(0.07)
TNE**	All	364	6.99	311	6.72	437	7.42	453	6.81	674	6.70
			(0.20)		(0.20)		(0.20)		(0.19)		(0.18)
	Female	253	7.49	197	7.23	247	7.02	216	7.32	286	7.21
			(0.20)		(0.21)		(0.20)		(0.20)		(0.19)
	Male	111	6.48	114	6.21	190	6.91	237	6.30	388	6.19
			(0.21)		(0.21)		(0.20)		(0.20)		(0.19)

Supplementary Table 1B: Measured Nicotine Biomarkers (2° Analysis), Current Smokers, by Ethnicity and Sex

*Natural log transformed, no units. **Square root transformed, nmol/mg creatinine. "All" ethnicity values are adjusted by age, sex and CPD, and ethnicity-sex strata values are adjusted by age and CPD.

Supple	mentary Table	e 2A. T	op 200 Varia	ants, Urii	nary Nico	tine N	letabolit	e Ratio, Without	CPD			
Index	SNP	CHR	POS	beta	-log10p	Allele	Functi	Symbol	Biotyp	Exon	Intron	Count
1	rs68051884	1	58324761	-0.1668	4.7110	G	intron	DAB1	PC	-	2/16	1
2	rs10489669	1	58345238	-0.1864	5.6863	С	intron	DAB1	PC	-	2/16	36
3	rs4912174	1	58350767	-0.1830	5.3534	G	intron	DAB1	PC	-	1/16	2
4	rs188711835	1	229122962	-0.1392	4.6167	Т	regulat	-	PFR	-	-	NA
5	rs4953085	2	44554724	0.1106	4.5806	G	intron	PREPL	PC	-	9/13	0
6	rs9309116	2	44557919	0.1065	4.7919	Т	intron	PREPL	PC	-	8/13	26
7	rs1085487	2	44617633	0.1173	4.8128	G	intron	CAMKMT	PC	-	3/10	11
8	rs1085489	2	44618589	0.1172	4.7649	Т	intron	CAMKMT	PC	-	3/10	36
9	rs9824170	3	29498007	-0.1126	5.1041	Т	intron	RBMS3	PC	-	2/12	36
10	rs12635474	3	131490919	-0.2036	4.5065	A	intron	CPNE4	PC	-	2/15	NA
11	rs73222317	3	131516788	-0.1452	5.0819	A	intron	CPNE4	PC	-	2/15	34
12	rs17295561	3	131527785	-0.1492	4.4597	A	intron	CPNE4	PC	-	2/15	6
13	rs73222340	3	131534405	-0.1434	4.9853	С	intron	CPNE4	PC	-	2/15	6
14	rs246842	5	131401801	-0.1138	4.6226	Т	downst	IL3	PC	-	-	36
15	rs3896275	5	159381526	-0.1299	5.0948	т	intron	ADRA1B	PC	-	1/1	36
16	rs2909728	5	173777372	0.1126	5.5163	С	intronN	RP11-267A15.1	lincRN	-	1/3	36
17	rs146821805	7	107813617	-0.1697	4.4503	A	intron	NRCAM	PC	-	25/27	36
18	rs28573305	8	59074226	-0.1141	4.7699	т	intronN	FAM110B	PT	-	3/4	26
19	rs2512413	8	98583425	0.2298	5.4646	Т	interge	-	-	-	-	NA
20	rs2512415	8	98589253	0.2306	5.4840	G	interge	-	-	-	-	NA
21	rs73622422	10	7031340	0.1336	4.8664	A	interge	-	-	-	-	36
22	rs6483899	11	23125029	-0.1014	4.5938	Т	interge	-	-	-	-	26
23	rs67605123	13	71486708	-0.1145	4.4980	Α	interge	-	-	-	-	23
24	rs971313	15	55027398	-0.1574	5.1102	С	interge	-	-	-	-	36
25	rs4889411	16	81883434	0.1274	5.2591	A	intron	PLCG2	PC	-	2/32	36
26	rs10411347	19	41166954	-0.1194	5.8017	Т	interge	-	-	-	-	12
27	rs2604860	19	41167721	-0.1206	5.8764	G	downst	NUMBL	PC	-	-	9
28	rs2561554	19	41168196	-0.1266	5.3759	Т	downst	NUMBL	PC	-	-	0
29	rs2561553	19	41169518	-0.1242	5.3746	A	downst	NUMBL	PC	-	-	0
30	rs2250994	19	41176403	-0.1067	4.5321	G	intron	NUMBL	PC	-	8/9	0
31	rs2561547	19	41180687	-0.1207	5.6449	A	intron	NUMBL	PC	-	7/9	2
32	rs2604879	19	41195279	-0.1400	0.0278	A	downst	ADCK4		-	-	NA C
34	rs20493229	19	41224204	0.1040	5 0207	T	intron			-	-	0
35	re37/5213	10	41227900	-0.1207	6 3/67	Ť	downet				1/0	3
36	rs1869710	19	41256375	-0.1653	4 8998	Ť	unstrea	SNRPA	PC	_	-	0
37	rs1455434	19	41257046	-0.1832	5.3374	Å	5'UTR	SNRPA	PC	1/6	-	36
38	rs2607416	19	41260831	-0.1691	5.5767	Т	intron	SNRPA	PC	-	1/5	5
39	rs2305797	19	41269076	0.1372	6.8856	С	intron	SNRPA	PC	-	4/5	0
40	rs2279011	19	41269288	0.1569	9.6306	Т	intron	SNRPA	PC	-	4/5	0
41	rs17713068	19	41270055	-0.2014	7.6350	G	intron	SNRPA	PC	-	5/5	5
42	rs2233152	19	41281016	-0.2004	7.5355	А	upstrea	MIA	PC	-	-	0
43	rs2287691	19	41286163	-0.1591	6.3406	G	downst	MIA	PC	-	-	15
44	rs17726258	19	41287605	-0.1700	4.4637	С	downst	MIA	PC	-	-	0
45	rs12973666	19	41289397	0.1582	9.8918	С	intron	RAB4B	PC	-	3/7	0
46	rs2287692	19	41289756	-0.2072	7.7858	A	intron	RAB4B	PC	-	4/7	10
47	rs2604894	19	41292404	0.1093	4.7057	G	intron	RAB4B	PC	-	5/7	22
48	rs7245595	19	41295859	0.1284	6.1925	C	intron	RAB4B	PC	-	7/7	0
49	rs10403040	19	41296046	-0.1384	5.1490	A	intron	RAB4B	PC	-	7/7	0
50	rs28660501	19	41300277	-0.1307	4.6997	I	upstrea	EGLN2	PC	-	-	0
51	rs/93/	19	41302706	0.1037	4.7306	A	upstrea	EGLN2	PC	-	-	5
52	153733829	19	41310371	0.1330	0.0000	Å	intron			-	2/3 4/5	0
55	rc 1902001	19	41313202	0.1300	6 7220	A C	downet			-	4/5	0
55	rc/902091	10	41315510	0.1301	6 6452	^	downet			-	-	0
56	rs4003309	19	41315960	0.1349	5 0/06	Ĉ	downet	EGLN2		-	-	0
57	re35061187	10	41316808	0.1230	8 5616	т	downet	EGLN2 EGLN2			_	0
58	rs12052092	19	41318899	0.1330	6 3636	Δ	downst	EGLN2	PC	_	_	0
59	rs73048928	10	41323703	0.1000	7 2049	Δ	downet	CVP2E2P	l Initary	_	_	0
60	rs10412779	19	41324131	0.1520	5,1181	G	downst	CYP2F2P	Unitary	-	_	õ
61	rs2545769	19	41324179	-0.2065	9.0385	Ă	downst	CYP2F2P	Unitary	-	_	NA
62	rs4803373	19	41326426	0.1222	5.1629	G	intronN	CYP2F2P	Unitary	-	5/5	0
63	rs34842714	19	41328196	0.1609	7.6718	T	NCTex	CYP2F2P	Unitarv	4/6	-	0
64	rs112673025	19	41328823	-0.2276	9.2411	À	intronN	CYP2F2P	Unitary	-	3/5	1
65	rs7507400	19	41330179	-0.1582	5.5579	Т	intronN	CYP2F2P	Unitary	-	3/5	NA
66	rs145256949	19	41332357	0.2661	13.5538	G	intronN	CYP2F2P	Unitary	-	1/5	NA
67	rs11878604	19	41333284	-0.3176	25.0528	С	upstrea	CYP2F2P	Unitary	-	-	NA

68	rs11881918	19	41334199	-0.1744	6.1270	Α	upstrea	CYP2F2P	Unitary	-	-	0
69	rs7255471	19	41335066	0.2391	11.7166	Т	upstrea	CYP2F2P	Unitary	-	-	0
70	rs55978439	19	41336556	0.2018	6.7319	А	upstrea	CYP2F2P	Unitary	-	-	NA
71	rs11879413	19	41337923	-0.1781	6.5467	Т	intronN	-	lincRN	-	1/1	0
72	rs3865453	19	41338556	-0.1783	6.5115	Т	intronN	-	lincRN	-	1/1	0
73	rs66889044	19	41338712	0.2043	10.0222	Т	intronN	-	lincRN	-	1/1	36
74	rs2258314	19	41338835	-0.1697	5.2735	Т	intronN	-	lincRN	-	1/1	0
75	rs2258380	19	41338988	0.2039	6.8244	G	intronN	-	lincRN	-	1/1	0
76	rs7247231	19	41339837	-0.1643	5.1901	А	intronN	-	lincRN	-	1/1	0
77	rs7246188	19	41339842	-0.1696	5.4518	G	intronN	-	lincRN	-	1/1	6
78	rs12459249	19	41339896	0.2104	15.9008	С	intronN	-	lincRN	-	1/1	0
79	rs11083569	19	41340321	0.1918	12.0113	G	intronN	-	lincRN	-	1/1	NA
80	rs10853742	19	41340573	0.2140	16.3835	A	intronN	-	lincRN	-	1/1	0
81	rs12327581	19	41340579	0.2324	4.9592	С	intronN	-	lincRN	-	1/1	11
82	rs28450491	19	41340937	0.2290	4.8071	С	intronN	-	lincRN	-	1/1	1
83	rs11667314	19	41340983	0.2107	15.8840	С	intronN	-	lincRN	-	1/1	0
84	rs12461964	19	41341229	0.1784	11.3959	G	intronN	-	lincRN	-	1/1	0
85	rs12986371	19	41343698	0.1379	6.2184	A	upstrea	CTC-490E21.10	lincRN	-	-	0
86	rs76112798	19	41343700	-0.1999	7.1993	A	upstrea	CIC-490E21.10	lincRN	-	-	3
87	rs35755165	19	41345989	0.2012	13.4934	C	downst	CYP2A6	PC	-	-	0
88	rs2316205	19	41346768	0.1911	12.3878	C	downst	CYP2A6	PC	-	-	5
89	rs60446182	19	41347998	0.2009	13.3932	G	downst	CYP2A6	PC	-	-	0
90	rs8192733	19	41349550	0.1481	7.2303	C	3'UTR	CYP2A6	PC	9/9	-	32
91	rs7248240	19	41349640	-0.1267	5.0313	C	JUIR	CYP2A6	PC	9/9	-	33
92	rs56113850	19	41353107	0.3979	47.2641	C	intron	CYP2A6	PC	-	4/8	36
93	rs56267346	19	41353338	-0.2860	20.8119	G	Intron	CYP2A6	PC	-	4/8	NA
94	IS2388868	19	41353849	0.1630	7.6254		Intron			-	4/8	0
95	rs7250713	19	41355195	0.1257	5.2837		Intron			-	2/8	9
96	rs28399433	19	41356379	-0.3158	10.2820		upstrea			-	-	NA 0
97	[S61663607	19	41357076	-0.2105	1.8568		upstrea			-	-	0
90	ISIDU290007	19	41357344	0.2117	12.0330	C	upstrea			-	-	0
99 100	1537037020	19	41357910	0.3409	0 4766	G	upstrea	CYP2AG		-	-	1
100	15137939449	19	41359307	-0.2300	9.1700	G	upstrea			-	-	0
101	rc112299602	19	41359990	0.2029	0 9911	ъ	intronM	CTC 400E21 12		-	-	22
102	rs1/06/02	10	41302293	0.2392	9.0044 7.01/7	Δ	intronN	CTC-490E21.12		-	1/3	32
103	re8102000	10	41366028	0.1003	11 6188	Δ	intronN	CTC-490E21.12			1/3	0
104	rs11302900	10	41370176	0.1344	37 7760	ĉ	intronN	-		-	1/3	36
105	rs12461383	19	41370338	0.3486	31 9991	G	intronN	_		_	1/3	0
107	rs6508949	19	41371110	-0 3074	21 8877	Δ	intronN	_	NMD	-	1/3	21
108	rs7247903	19	41372475	-0 3679	22 2197	G	intronN	-		-	1/3	ΝA
109	rs59586387	19	41375030	-0.3473	18 4526	G	intronN	CTC-490E21 12	NMD	-	1/3	NA
110	rs2892624	19	41375147	-0 1422	5 5023	т	intronN	CTC-490E21.12	NMD	-	1/3	NA
111	rs11666974	19	41376000	-0.1929	7.3668	Å	intronN	CTC-490E21.12	NMD	-	1/3	NA
112	rs12151196	19	41376777	0 2668	15 1147	G	downst	CYP2A7	PC	-	-	0
113	rs7255037	19	41377338	-0.2062	10.0813	Ă	downst	CYP2A7	PC	-	-	NA
114	rs56097499	19	41381334	0.2909	17.4870	A	downst	CYP2A7	PC	-	-	0
115	rs11083575	19	41381840	0.1382	5.9225	C	intron	CYP2A7	PC	-	7/7	Õ
116	rs11083576	19	41381868	0.1727	9.1312	T	intron	CYP2A7	PC	-	7/7	0
117	rs11083577	19	41382180	0.1710	10.0842	С	intron	CYP2A7	PC	-	7/7	0
118	rs3852869	19	41382665	0.1641	8.7002	A	intron	CYP2A7	PC	-	6/7	0
119	rs2261144	19	41383153	0.2857	22.0014	G	missen	CYP2A7	PC	6/8	-	0
120	rs2302988	19	41383344	0.2022	12.9597	С	intron	CYP2A7	PC	-	5/7	0
121	rs16958956	19	41383378	0.1891	10.7277	А	intron	CYP2A7	PC	-	5/7	4
122	rs3869579	19	41383799	0.2117	15.9110	А	missen	CYP2A7	PC	5/8	-	0
123	rs3822479	19	41383989	0.2601	16.5732	Т	intron	CYP2A7	PC	-	4/7	0
124	rs2909906	19	41384084	0.2026	13.0855	С	intron	CYP2A7	PC	-	4/7	0
125	rs10404300	19	41384385	0.1954	12.2561	С	intron	CYP2A7	PC	-	4/7	0
126	rs4079367	19	41384637	0.2028	13.6247	G	intron	CYP2A7	PC	-	4/7	0
127	rs4079366	19	41384675	0.1863	10.3591	Α	missen	CYP2A7	PC	4/8	-	11
128	rs4803391	19	41385434	0.1972	13.7022	G	intron	CYP2A7	PC	-	3/7	0
129	rs2545781	19	41385768	0.1932	11.6286	А	intron	CYP2A7	PC	-	3/7	0
130	rs12982314	19	41385774	0.1894	11.0994	G	intron	CYP2A7	PC	-	3/7	0
131	rs4142867	19	41386136	0.2036	14.4818	С	missen	CYP2A7	PC	3/8	-	0
132	rs3815704	19	41386209	0.1879	11.2289	G	intron	CYP2A7	PC	-	2/7	0
133	rs3815705	19	41386282	0.2606	19.9469	Α	intron	CYP2A7	PC	-	2/7	0
134	rs56081734	19	41386420	0.2023	14.2691	С	missen	CYP2A7	PC	2/8	-	0
135	rs3815709	19	41386487	0.1806	10.0442	С	missen	CYP2A7	PC	2/8	-	NA
136	rs3815710	19	41386494	0.1808	9.9813	С	missen	CYP2A7	PC	2/8	-	NA

137	rs58798281	19	41386527	0.1950	11.8543	А	missen	CYP2A7	PC	2/8	-	0
138	rs74219554	19	41386547	0.1945	12.3040	С	intron	CYP2A7	PC	-	1/7	0
139	rs61482096	19	41386622	0.1742	10.7435	G	intron	CYP2A7	PC	-	1/7	0
140	rs11669113	19	41386891	0.1850	11.5494	G	intron	CYP2A7	PC	-	1/7	0
141	rs10424834	19	41387241	0.1864	11.8486	Α	intron	CYP2A7	PC	-	1/7	0
142	rs10425037	19	41387300	0.1831	11.1081	Α	intron	CYP2A7	PC	-	1/7	0
143	rs10425169	19	41387647	0.1876	10.5336	G	intron	CYP2A7	PC	-	1/7	NA
144	rs10425185	19	41387669	0.1568	7.6664	G	intron	CYP2A7	PC	-	1/7	0
145	rs4803393	19	41388575	0.1794	10.8752	G	5'UTR	CYP2A7	PC	1/8	-	0
146	rs3797218	19	41388707	0.2056	14.4535	С	upstrea	CYP2A7	PC	-	-	0
147	rs28602288	19	41388740	0.2129	15.6018	Т	upstrea	CYP2A7	PC	-	-	0
148	rs28427254	19	41388777	0.1998	13.1773	G	upstrea	CYP2A7	PC	-	-	0
149	rs11083581	19	41388949	0.2164	14.9079	т	upstrea	CYP2A7	PC	-	-	36
150	rs4802094	19	41389509	0.1438	6.5862	G	upstrea	CYP2A7	PC	-	-	0
151	rs7253657	19	41389514	0.1550	7.7281	С	upstrea	CYP2A7	PC	-	-	0
152	rs4802095	19	41389625	0.1699	9.9865	Т	upstrea	CYP2A7	PC	-	-	0
153	rs144070863	19	41390051	0.1963	11.1282	G	upstrea	CYP2A7	PC	-	-	NA
154	rs148634519	19	41390153	0.1546	6.9424	G	upstrea	CYP2A7	PC	-	-	NA
155	rs10423695	19	41392141	0.2070	13.5747	С	upstrea	CYP2G1P	PT	-	-	5
156	rs3875159	19	41392154	0.2008	12.9903	С	upstrea	CYP2G1P	PT	-	-	0
157	rs10423165	19	41392466	0.1910	12.6841	С	upstrea	CYP2G1P	PT	-	-	0
158	rs3909341	19	41393326	0.1995	13.7970	A	upstrea	CYP2G1P	PT	-	-	0
159	rs5007415	19	41393760	0.2090	15.2886	A	upstrea	CYP2G1P	PT	-	-	0
160	rs67421541	19	41394420	0.1988	13.7022	1	upstrea	CYP2G1P	PI	-	-	0
161	rs10418318	19	41395036	0.2026	14.2116	A	upstrea	CYP2G1P	PT	-	-	0
162	rs28472879	19	41395755	0.2087	15.1610	A	upstrea	CYP2G1P	PI	-	-	0
163	rs4803397	19	41396865	0.1752	9.5647	A	NCTex	CYP2G1P	PI	1/5	-	0
164	rs8103444	19	41397661	0.1910	11.6803	A	NCTex	CYP2G1P	PI	1/5	-	0
165	rs78374326	19	41398651	0.2550	18.6542	0	Intronin	CYP2G1P	PI	-	1/4	NA
100	[S0508953	19	41402579	0.1572	8.6179		Intronin	CYP2G1P		-	2/4	0
107	[S/252852	19	41403325	0.2095	15.4066		Intronin	CYP2G1P		- 2/F	2/4	0
100	1510419393	19	41404196	0.2112	10.0391	Č	NCTex	CYP2C1P		3/3 E/E	-	0
109	154603400	19	41403962	0.2048	14.7004	~	downet			5/5	-	0
170	IS/204100	19	41407343	0.1999	14.1040	A T	downst			-	-	0
172	157230390 rc/903403	19	41400001	0.2109	12 5525	1	downst	CTC 400E21 12		-	-	7
172	rc724907492	10	41412103	0.2191	22 0701	^	NCTox	CTC 400E21.13		- 5/5	-	0
173	rc38////2	10	41414401	0.2001	15 5520	A A	intronN	CTC-490E21.13		5/5	- 1/1	2
174	rc3852872	10	41415112	0.2092	12 65/18	T	intronN	CTC-490E21.13		-	4/4 2//	2
176	rs3852873	10	41416260	0.2100	12.0040	Δ	intronN	CTC-490E21.13		_	2/4	0
177	rs10419589	10	41416750	0.2104	15 5135	Ĉ	NCTov	CTC-490E21.10	LIPPG	1/5		2
178	rs10425738	19	41417727	0.2000	19 0880	Δ	unstrea	CTC-490E21.13	LIPPG	-	-	ΝA
179	rs73034462	19	41418134	0.2399	18 8658	A	unstrea	CTC-490E21.13	UPPG	-	-	0
180	rs76935404	19	41419294	0.2635	22,2004	т	upstrea	CTC-490E21.13	UPPG	-	-	34
181	rs10420231	19	41420030	0.2015	11.8502	A	upstrea	CTC-490E21.13	UPPG	-	-	NA
182	rs8108939	19	41425149	0.2128	16.0890	G	upstrea	CYP2B7P	RI	-	-	36
183	rs4001943	19	41425900	0.2306	16.3938	Č	upstrea	CYP2B7P	TUPG	-	-	2
184	rs10424844	19	41425959	0.1740	11.4110	Т	upstrea	CYP2B7P	TUPG	-	-	0
185	rs12459565	19	41427539	0.2192	13.4447	А	upstrea	CYP2B7P	TUPG	-	-	0
186	rs28417358	19	41428105	0.2308	17.6375	А	upstrea	CYP2B7P	TUPG	-	-	0
187	rs11083589	19	41428416	0.2099	14.2376	G	upstrea	CYP2B7P	TUPG	-	-	NA
188	rs57274441	19	41431422	0.2360	17.6373	G	intronN	CYP2B7P	TUPG	-	1/8	NA
189	rs3844443	19	41431935	0.2131	13.0003	С	intronN	CYP2B7P	TUPG	-	1/8	0
190	rs12151139	19	41433543	0.2567	21.3516	Т	intronN	CYP2B7P	TUPG	-	1/8	1
191	rs4609955	19	41433613	0.2409	19.0239	С	intronN	CYP2B7P	TUPG	-	1/8	0
192	rs3843043	19	41433931	0.2131	13.0003	Т	intronN	CYP2B7P	TUPG	-	1/8	NA
193	rs3844445	19	41434106	0.2188	14.5714	G	intronN	CYP2B7P	TUPG	-	1/8	2
194	rs7248187	19	41437426	0.1764	10.0203	С	intronN	CYP2B7P	TUPG	-	1/8	0
195	rs7247910	19	41437440	0.1789	10.3045	G	intronN	CYP2B7P	TUPG	-	1/8	5
196	rs6508960	19	41437717	0.1639	8.6159	А	intronN	CYP2B7P	TUPG	-	1/8	0
197	rs73038469	19	41442597	0.2579	16.9787	А	intronN	CYP2B7P	TUPG	-	3/8	0
198	rs112819506	19	41444725	-0.2467	4.5650	G	intronN	CYP2B7P	TUPG	-	3/8	0
199	rs56401945	19	41463690	-0.2662	5.2738	С	interge	-	-	-	-	6
200	rs16974790	19	41498946	-0.2291	4.4749	Α	intron	CYP2B6	PC	-	1/8	4

Suppl	ementary Table	e 2B.	Top 200 Vari	iants, Ur	inary Nico	otine	Metabolite Rati	o, With CPD	Distance	F	Interior	0
	5NP		PUS	beta	-log1up /	Allele	Consequence		BIOTYPE	Exon	Intron	Count
1	1506031664	1	50324701	-0.1702	4.9417	G	intron		PC	-	2/10	1
2	rc4012174	1	58250767	-0.1943	0.1907 5 7472	G	intron		PC PC	-	2/10	30
1	rc188711835	1	220122062	-0.1366	1 5250	т	regulatory			-	1/10	ΝΔ
5	rs4953085	2	44554724	0.1115	4 7075	Ġ	intron	PREPI	PC	_	9/13	0
6	rs9309116	2	44557919	0.1113	4 9957	т	intron	PREPI	PC	_	8/13	28
7	rs1085487	2	44617633	0.1001	5 0745	Ġ	intron	CAMKMT	PC	_	3/10	6
8	rs1085489	2	44618589	0.1200	5 0817	т	intron	CAMKMT	PC	-	3/10	36
9	rs1067368	2	44654889	0.1200	4 8832	Ā	intron	CAMKMT	PC	-	3/10	0
10	rs9824170	3	29498007	-0 1146	5 3359	т	intron	RBMS3	PC	-	2/12	36
11	rs73222317	3	131516788	-0 1429	5 0132	Ā	intron	CPNE4	PC	-	2/15	34
12	rs17295561	3	131527785	-0.1473	4.4231	A	intron	CPNF4	PC	-	2/15	6
13	rs73222340	3	131534405	-0.1416	4.9462	C	intron	CPNF4	PC	-	2/15	6
14	rs246842	5	131401801	-0.1148	4.7560	Ť	downstream	IL3	PC	-	-	28
15	rs168681	5	131402450	-0.1021	4.5029	G	downstream	IL3	PC	-	-	12
16	rs3896275	5	159381526	-0.1214	4.5725	Т	intron	ADRA1B	PC	-	1/1	36
17	rs2909728	5	173777372	0.1115	5.4999	С	intronNCT	RP11-267A15.1	lincRNA	-	1/3	36
18	rs146821805	7	107813617	-0.1669	4.3838	А	intron	NRCAM	PC	-	25/27	36
19	rs28573305	8	59074226	-0.1203	5.3060	Т	intronNCT	FAM110B	PT	-	3/4	29
20	rs2512413	8	98583425	0.2281	5.4694	Т	intergenic	-	-	-	-	NA
21	rs2512415	8	98589253	0.2283	5.4644	G	intergenic	-	-	-	-	NA
22	rs73622422	10	7031340	0.1343	4.9834	А	intergenic	-	-	-	-	36
23	rs67605123	13	71486708	-0.1139	4.5186	А	intergenic	-	-	-	-	26
24	rs4243579	14	52161021	-0.1028	4.5326	С	intron	FRMD6	PC	-	2/13	30
25	rs971313	15	55027398	-0.1504	4.7693	С	intergenic	-	-	-	-	36
26	rs4889411	16	81883434	0.1234	5.0362	А	intron	PLCG2	PC	-	2/1	36
27	rs10411347	19	41166954	-0.1139	5.3968	Т	intergenic	-	-	-	-	9
28	rs2604860	19	41167721	-0.1147	5.4444	G	downstream	NUMBL	PC	-	-	10
29	rs2561554	19	41168196	-0.1251	5.3369	Т	downstream	NUMBL	PC	-	-	0
30	rs2561553	19	41169518	-0.1224	5.3095	А	downstream	NUMBL	PC	-	-	0
31	rs2561547	19	41180687	-0.1147	5.2173	А	intron	NUMBL	PC	-	7/9	1
32	rs2604879	19	41195279	-0.1348	6.2629	Α	downstream	ADCK4	PC	-	-	NA
33	rs28493229	19	41224204	-0.1778	6.0771	Α	upstream	ADCK4	PC	-	-	4
34	rs890934	19	41227968	0.1138	5.3871	Т	intron	ITPKC	PC	-	1/6	0
35	rs3745213	19	41248009	-0.1741	6.0267	Т	downstream	ITPKC	PC	-	-	0
36	rs1869710	19	41256375	-0.1619	4.7866	Т	upstream	SNRPA	PC	-	-	0
37	rs1455434	19	41257046	-0.1796	5.2224	А	5'UTR	SNRPA	PC	1/6	-	36
38	rs2607416	19	41260831	-0.1622	5.2428	Т	intron	SNRPA	PC	-	1/5	4
39	rs2305797	19	41269076	0.1297	6.2793	С	intron	SNRPA	PC	-	4/5	0
40	rs2279011	19	41269288	0.1506	9.0138	Т	intron	SNRPA	PC	-	4/5	0
41	rs17713068	19	41270055	-0.1936	7.1892	G	intron	SNRPA	PC	-	5/5	4
42	rs2233152	19	41281016	-0.1927	7.1015	A	upstream	MIA	PC	-	-	0
43	rs2287691	19	41286163	-0.1526	5.9555	G	downstream	MIA	PC	-	-	7
44	rs12973666	19	41289397	0.1526	9.3421	С	intron	RAB4B	PC	-	3/7	0
45	rs2287692	19	41289756	-0.1991	7.3267	A	intron	RAB4B	PC	-	4/7	14
46	rs2604894	19	41292404	0.1046	4.3962	G	intron	RAB4B	PC	-	5/7	21
47	rs/245595	19	41295859	0.1211	5.6246	Ċ	Intron	RAB4B	PC	-	1/1	1
48	rs10403040	19	41296046	-0.1318	4.7825	A	Intron			-	///	0
49	rs28660501	19	41300277	-0.1248	4.3908	1	upstream	EGLN2		-	-	0
50	IS/93/	19	41302706	0.0985	4.3583	A	upstream	EGLN2	PC	-	-	4
51	183733829	19	41310571	0.1293	0.2300	Ğ	intron		PC	-	2/5 4/F	0
52	183730329	19	41313202	0.1310	0.3303	A	dournatroom		PC	-	4/5	0
53	rs4802091	19	41315318	0.1315	6.3895	ر م	downstream	EGLN2	PC	-	-	0
54 55	184603369	19	41315960	0.1303	0.3003 E 6294	A	downstream		PC PC	-	-	0
55 56	1541530251	19	41310300	0.1249	0.0204	Ť	downstream		PC PC	-	-	0
50	ro12052002	19	41310090	0.1019	0.1407 6.0067	1	downstream		FC DC	-	-	0
57 50	IS12052092	19	41310099	0.1200	0.0007	A	downstream		PC Unitory DC	-	-	0
50	1313040920 re10/19770	19	41323/93	0.1407	0.0003 5 1620	А С	downstream	01F2F2F CVD2F2D		-	-	0
59	1310412119	19	41324131	0.1000	0.4029	^	downstream	01F2F2F CVD2E2D	UnitoryPC	-	-	
61	152040109	19	41324179	-0.2090	5.4490 5.0500	A C				-	- 5/5	
62	134003313 re3/2/2714	19	41320420	0.1200	0.0090	ъ		01F2F2F CVD2E2D		- //E	5/5	0
62	1304042114	19	41320190	-0.2224	0 0202	1		01F2F2F CVD2F2D		4/0	- 3/5	1
61	rs7507400	10	41320023	-0.2231	8.0090 8.0090	л т		CYP2F2P		-	3/5	ΝΔ
65	rs145256040	10	41330179	0.1047	13 3/3/	ċ		CYP2E2P	UnitervDC	-	1/5	NΔ
66	re1187860/	10	41332301	-0.2020	24 05/2	c		CYP2F2P	UnitervDC	-	1/3	NΔ
67	rs11881018	10	41334100	-0 1722	6 0611	Δ	upstream	CYP2F2P	Unitary PC	_	-	0
			1100-100	0	0.0011	<i>,</i> ,	aponoum					5

68	rs7255471	19	41335066	0.2354	11.5386	Т	upstream	CYP2F2P	UnitaryPG	-	-	0
69	rs55978439	19	41336556	0.1976	6.5704	А	upstream	CYP2F2P	UnitaryPG	-	-	NA
70	rs11879413	19	41337923	-0.1762	6.4987	Т	intronNCT	-	lincRNA	-	1/1	0
71	rs3865453	19	41338556	-0.1763	6.4609	Т	intronNCT	-	lincRNA	-	1/1	0
72	rs66889044	19	41338712	0.2000	9.7668	Т	intronNCT	-	lincRNA	-	1/1	36
73	rs2258314	19	41338835	-0.1693	5.3175	Т	intronNCT	-	lincRNA	-	1/1	0
74	rs2258380	19	41338988	0.1993	6.6381	G	intronNCT	-	lincRNA	-	1/1	0
75	rs7247231	19	41339837	-0.1640	5.2441	А	intronNCT	-	lincRNA	-	1/1	0
76	rs7246188	19	41339842	-0.1684	5.4539	G	intronNCT	-	lincRNA	-	1/1	5
77	rs12459249	19	41339896	0.2044	15.2171	С	intronNCT	-	lincRNA	-	1/1	0
78	rs11083569	19	41340321	0.1870	11.5882	G	intronNCT	-	lincRNA	-	1/1	NA
79	rs10853742	19	41340573	0.2081	15.7112	А	intronNCT	-	lincRNA	-	1/1	0
80	rs12327581	19	41340579	0.2323	5.0297	С	intronNCT	-	lincRNA	-	1/1	15
81	rs28450491	19	41340937	0.2289	4.8750	С	intronNCT	-	lincRNA	-	1/1	1
82	rs11667314	19	41340983	0.2046	15.2022	С	intronNCT	-	lincRNA	-	1/1	0
83	rs12461964	19	41341229	0.1733	10.9315	G	intronNCT	-	lincRNA	-	1/1	0
84	rs12986371	19	41343698	0.1318	5.8068	А	upstream	CTC-490E21.10	lincRNA	-	-	0
85	rs76112798	19	41343700	-0.1998	7.2862	А	upstream	CTC-490E21.10	lincRNA	-	-	3
86	rs35755165	19	41345989	0.1956	12.9562	С	downstream	CYP2A6	PC	-	-	0
87	rs2316205	19	41346768	0.1860	11.9134	Ċ	downstream	CYP2A6	PC	-	-	5
88	rs60446182	19	41347998	0.1962	12.9788	G	downstream	CYP2A6	PC	-	-	0
89	rs8192733	19	41349550	0.1468	7.2193	Č	3'UTR	CYP2A6	PC	9/9	-	30
90	rs7248240	19	41349640	-0.1218	4,7501	Ċ	3'UTR	CYP2A6	PC	9/9	-	34
91	rs56113850	19	41353107	0.3897	45 8266	č	intron	CYP2A6	PC	-	4/8	36
92	rs56267346	19	41353338	-0 2828	20 6607	Ğ	intron	CYP2A6	PC	-	4/8	NA
93	rs2388868	19	41353849	0.2020	6 8501	т	intron	CYP2A6	PC	-	4/8	0
94 94	rs7250713	10	41355195	0.1020	4 9186	ċ	intron	CYP246	PC	_	2/8	14
95	rs28300/13	10	41356370	-0 3114	16 0832	č	unstream		PC	_	2/0	ΝΔ
90	rs61663607	10	41357076	-0.3114	7 2552	ĉ	upstream		PC	_	_	0
90 07	rs150208687	10	41357344	0.2002	12 1600	ĉ	upstream		PC	_	_	0
00	rc57927629	10	41357010	0.2000	22 00/2	G	upstream	CVP246	PC			0
90	rc127020440	10	41357910	0.3300	9 5050	G	upstream	CVP2A6	PC	-	-	1
99 100	15137939449	19	41359307	-0.2250	0.0900	G	upstream	CYP2AG	FC DC	-	-	0
100	153073149 ro112209602	19	41309990	0.1909	0.2214	ч		CTC 400E21 12		-	-	25
101	15113200003	19	41302293	-0.2209	9.2214	1		CTC-490E21.12		-	1/3	30
102	IS1496402	19	41300134	0.1000	11.0000	A		CTC-490E21.12		-	1/3	33
103	rs8102900	19	41366928	0.1882	11.0833	A		CTC-490E21.12		-	1/3	0
104	rs113029345	19	41370176	0.3786	30.7468	C		-		-	1/3	36
105	IS12461383	19	41370338	0.3419	31.1728	G		-	NMD	-	1/3	0
106	rs6508949	19	41371110	-0.2999	21.1319	A		-	NMD	-	1/3	14
107	rs7247903	19	41372475	-0.3555	21.0294	G				-	1/3	NA NA
108	1859586387	19	41375030	-0.3369	17.6249	G		CTC-490E21.12	NMD	-	1/3	NA NA
109	rs2892624	19	41375147	-0.1406	5.4701	1	Intronivid	CTC-490E21.12	NMD	-	1/3	NA
110	rs11666974	19	41376000	-0.1834	6.7975	A	Intronivid	CTC-490E21.12	NMD	-	1/3	NA
111	rs12151196	19	413/6///	0.2567	14.2025	G	downstream	CYP2A7	PC	-	-	1
112	rs/255037	19	41377338	-0.1980	9.4600	A	downstream	CYP2A7	PC	-	-	NA
113	rs56097499	19	41381334	0.2793	16.3356	A	downstream	CYP2A7	PC	-	-	0
114	rs11083575	19	41381840	0.1327	5.5764	C _	intron	CYP2A7	PC	-	7/7	0
115	rs11083576	19	41381868	0.1675	8.7454	I	intron	CYP2A7	PC	-	7/7	0
116	rs11083577	19	41382180	0.1650	9.5534	C	intron	CYP2A7	PC	-	///	0
117	rs3852869	19	41382665	0.1629	8.7069	A	intron	CYP2A7	PC	-	6/7	0
118	rs2261144	19	41383153	0.2739	20.4644	G	missense	CYP2A7	PC	6/8	-	0
119	rs2302988	19	41383344	0.1999	12.8685	С	intron	CYP2A7	PC	-	5/7	0
120	rs16958956	19	41383378	0.1871	10.6827	A	intron	CYP2A7	PC	-	5/7	4
121	rs3869579	19	41383799	0.2048	15.1278	A	missense	CYP2A7	PC	5/8	-	0
122	rs3822479	19	41383989	0.2465	15.0783	Т	intron	CYP2A7	PC	-	4/7	0
123	rs2909906	19	41384084	0.1983	12.7381	С	intron	CYP2A7	PC	-	4/7	0
124	rs10404300	19	41384385	0.1913	11.9497	С	intron	CYP2A7	PC	-	4/7	0
125	rs4079367	19	41384637	0.1965	12.9994	G	intron	CYP2A7	PC	-	4/7	0
126	rs4079366	19	41384675	0.1834	10.2069	А	missense	CYP2A7	PC	4/8	-	7
127	rs4803391	19	41385434	0.1904	12.9846	G	intron	CYP2A7	PC	-	3/7	0
128	rs2545781	19	41385768	0.1881	11.2076	А	intron	CYP2A7	PC	-	3/7	0
129	rs12982314	19	41385774	0.1854	10.8252	G	intron	CYP2A7	PC	-	3/7	0
130	rs4142867	19	41386136	0.1967	13.7409	С	missense	CYP2A7	PC	3/8	-	0
131	rs3815704	19	41386209	0.1789	10.3648	G	intron	CYP2A7	PC	-	2/7	0
132	rs3815705	19	41386282	0.2513	18.8198	А	intron	CYP2A7	PC	-	2/7	0
133	rs56081734	19	41386420	0.1954	13.5343	С	missense	CYP2A7	PC	2/8	-	0
134	rs3815709	19	41386487	0.1736	9.4545	С	missense	CYP2A7	PC	2/8	-	NA
135	rs3815710	19	41386494	0.1732	9.3286	С	missense	CYP2A7	PC	2/8	-	NA
136	rs58798281	19	41386527	0.1874	11.1454	А	missense	CYP2A7	PC	2/8	-	0

137	rs74219554	19	41386547	0.1868	11.5448	С	intron	CYP2A7	PC	-	1/7	0
138	rs61482096	19	41386622	0.1679	10.1650	G	intron	CYP2A7	PC	-	1/7	0
139	rs11669113	19	41386891	0.1776	10.8346	G	intron	CYP2A7	PC	-	1/7	0
140	rs10424834	19	41387241	0.1784	11.0390	А	intron	CYP2A7	PC	-	1/7	0
141	rs10425037	19	41387300	0.1748	10.3056	А	intron	CYP2A7	PC	-	1/7	0
142	rs10425169	19	41387647	0.1785	9.7160	G	intron	CYP2A7	PC	-	1/7	NA
143	rs10425185	19	41387669	0.1557	7.6810	G	intron	CYP2A7	PC	-	1/7	0
144	rs4803393	19	41388575	0 1732	10 3229	G	5'UTR	CYP2A7	PC	1/8	-	0
145	rs3797218	19	41388707	0.1987	13 7188	č	unstream	CYP2A7	PC	-	-	Õ
146	rs28602288	10	41388740	0.1007	15 4845	т	upstream	CYP247	PC	_	_	Ő
1/7	re28/2725/	10	41388777	0.2104	12 61/2	ċ	upstream			_	_	0
140	ro11002501	10	41300777	0.1353	14 0015	T	upstream					26
140	ro 4902004	19	41300949	0.2140	6 1 1 0 0	Ċ	upstream			-	-	30
149	154002094	19	41309509	0.15/1	0.1199	G	upstream			-	-	0
150	157253057	19	41389514	0.1510	1.5156	÷	upstream		PC DO	-	-	0
151	rs4802095	19	41389625	0.1647	9.5546	1	upstream	CYP2A7	PC	-	-	0
152	rs144070863	19	41390051	0.1923	10.8596	G	upstream	CYP2A7	PC	-	-	NA
153	rs148634519	19	41390153	0.1489	6.5661	G	upstream	CYP2A7	PC	-	-	NA
154	rs10423695	19	41392141	0.2004	12.9250	С	upstream	CYP2G1P	PT	-	-	5
155	rs3875159	19	41392154	0.1958	12.5641	С	upstream	CYP2G1P	PT	-	-	0
156	rs10423165	19	41392466	0.1853	12.1298	С	upstream	CYP2G1P	PT	-	-	0
157	rs3909341	19	41393326	0.1936	13.2133	А	upstream	CYP2G1P	PT	-	-	0
158	rs5007415	19	41393760	0.2031	14.6586	Α	upstream	CYP2G1P	PT	-	-	0
159	rs67421541	19	41394420	0.1931	13.1344	Т	upstream	CYP2G1P	PT	-	-	0
160	rs10418318	19	41395036	0.1969	13.6408	А	upstream	CYP2G1P	PT	-	-	0
161	rs28472879	19	41395755	0.2029	14.5483	А	upstream	CYP2G1P	PT	-	-	0
162	rs4803397	19	41396865	0.1742	9.6108	А	NCTexon	CYP2G1P	PT	1/5	-	0
163	rs8103444	19	41397661	0.1895	11.6836	А	NCTexon	CYP2G1P	PT	1/5	-	0
164	rs78374326	19	41398651	0 2457	17 5471	C	intronNCT	CYP2G1P	PT	-	1/4	NA
165	rs6508953	19	41402579	0 1529	8 3068	č	intronNCT	CYP2G1P	PT	-	2/4	0
166	rs7252852	10	41403325	0.1020	14 7570	č	intronNCT	CYP2G1P	PT	_	2/4	Ő
167	re10/10303	10	41400020	0.2004	1/ 0701	ĉ	NCTevon		DT	3/5		Ő
160	rc4902400	10	41404190	0.2001	14.3731	č	NCToyon	CVP2G1P		5/5	-	0
160	rc7254199	19	41403902	0.1909	12 529/	~	downstroom			5/5	-	0
109	157234100	19	41407343	0.1943	15.0304	Ť	downstream			-	-	0
170	157236390	19	41400001	0.2093	10.0410	1	downstream			-	-	0
1/1	rs4803402	19	41412185	0.2121	12.9114	A	downstream	CTC-490E21.13	UPPG	-	-	6
172	rs72480748	19	41414481	0.2779	22.5549	A	INC Lexon	CTC-490E21.13	UPPG	5/5	-	0
173	rs3844442	19	41415112	0.2083	15.6682	A		CTC-490E21.13	UPPG	-	4/4	3
174	rs3852872	19	41416143	0.2085	12.6794	1	IntronINCT	CTC-490E21.13	UPPG	-	2/4	0
175	rs3852873	19	41416260	0.2182	13.5158	A	IntronNC I	CTC-490E21.13	UPPG	-	2/4	0
176	rs10419589	19	41416750	0.2073	15.3887	С	NCIexon	CTC-490E21.13	UPPG	1/5	-	2
177	rs10425738	19	41417727	0.2465	19.2204	A	upstream	CTC-490E21.13	UPPG	-	-	NA
178	rs73034462	19	41418134	0.2327	18.0183	А	upstream	CTC-490E21.13	UPPG	-	-	0
179	rs76935404	19	41419294	0.2556	21.1760	Т	upstream	CTC-490E21.13	UPPG	-	-	35
180	rs10420231	19	41420030	0.1963	11.4360	А	upstream	CTC-490E21.13	UPPG	-	-	NA
181	rs8108939	19	41425149	0.2107	16.0161	G	upstream	CYP2B7P	RI	-	-	36
182	rs4001943	19	41425900	0.2297	16.5281	С	upstream	CYP2B7P	TUPG	-	-	0
183	rs10424844	19	41425959	0.1743	11.6110	Т	upstream	CYP2B7P	TUPG	-	-	0
184	rs12459565	19	41427539	0.2181	13.5166	Α	upstream	CYP2B7P	TUPG	-	-	0
185	rs28417358	19	41428105	0.2236	16.8030	А	upstream	CYP2B7P	TUPG	-	-	0
186	rs11083589	19	41428416	0.2082	14.2242	G	upstream	CYP2B7P	TUPG	-	-	NA
187	rs57274441	19	41431422	0.2286	16.7867	G	intronNCT	CYP2B7P	TUPG	-	1/8	NA
188	rs3844443	19	41431935	0.2117	13.0324	C	intronNCT	CYP2B7P	TUPG	-	1/8	0
189	rs12151139	19	41433543	0.2492	20.4082	Т	intronNCT	CYP2B7P	TUPG	-	1/8	0
190	rs4609955	19	41433613	0.2335	18,1488	Ċ	intronNCT	CYP2B7P	TUPG	-	1/8	0
191	rs3843043	19	41433931	0 2117	13 0324	т	intronNCT	CYP2B7P	TUPG	-	1/8	NΑ
102	rs3844445	10	41434106	0.2170	14 6730	Ġ	intronNCT	CYP2B7P	TUPG	_	1/8	1
102	re72/8187	10	41437426	0.2175	10 2153	ĉ	intronNCT	CVD2B7D	TUPC	_	1/8	0
104	ro7240107	19	41437420	0.1700	10.2100	č	intronNCT			-	1/0	4
105	1312+131U	10	41407747	0.1790	0 0400	٠ ۲	intronNCT			-	1/0	4
195	150500900	19	4143//11	0.1646	0.0190	A			TUPG	-	1/ð	0
196	15/3038469	19	41442597	0.2493	10.1147	A		UTP2B/P	TUPG	-	3/8	0
197	rs112819506	19	41444725	-0.2502	4.7483	G			TUPG	-	3/8	4
198	rs10407500	19	41446076	-0.2832	4.3147	C	INTRONINCI	CYP2B/P	TUPG	-	4/8	NA
199	rs56401945	19	41463690	-0.2697	5.4766	С	intergenic	-	-	-	-	13
200	rs16974790	19	41498946	-0.2268	4.4593	Α	intron	CYP2B6	PC	-	1/8	1

Suppler	nemtary Table 3A.	Top 2	00 Variants,	Genome	e-wide A	nalysis	s of Total Nic	otine Equivalents	s, Without O	CPD		
Index	SNP	CHR	POS	beta	-log10p	Allele	Function	Symbol	Biotype	Exon	Intron	Count
1	rs7531583	1	1706160	-0.3050	3.9311	G	intron	NADK	PC	-	1/11	36
2	rs12045736	1	12654035	-0.2560	3.4207	Т	intron	DHRS3	PC	-	1/5	23
3	rs6686971	1	85152809	-0.3933	4.1323	Т	intron	SSX2IP	PC	-	1/13	36
4	rs12037175	1	85170927	-0.3782	3.8525	Α	regulatory	-	PFR	-	-	0
5	rs17631306	1	111072322	-0.4280	3.4608	Α	intergenic	-	-	-	-	36
6	rs11118921	1	222160609	0.3359	3.8737	Α	downstream	RP11-400N13.2	lincRNA	-	-	36
7	rs7552453	1	239856834	-0.3168	4.7730	Т	intron	CHRM3	PC	-	3/4	NA
8	rs2278644	1	239867792	-0.3075	4.5491	С	intron	CHRM3	PC	-	3/4	0
9	rs10802794	1	239870621	-0.3122	4.6986	Т	intron	CHRM3	PC	-	3/4	0
10	rs10802795	1	239870775	-0.3038	4.5210	С	intron	CHRM3	PC	-	3/4	18
11	rs6684622	1	239877537	-0.3099	4.7385	С	intron	CHRM3	PC	-	3/4	2
12	rs6663632	1	239877721	-0.3037	4.5529	Α	intron	CHRM3	PC	-	3/4	6
13	rs1431719	1	239881203	-0.3072	4.5480	G	intron	CHRM3	PC	-	3/4	0
14	rs11583349	1	239901107	-0.3174	4.8238	Т	intron	CHRM3	PC	-	3/4	0
15	rs7513757	1	239901317	-0.3089	4.6397	Α	intron	CHRM3	PC	-	3/4	NA
16	rs1416789	1	239901645	-0.3268	5.1701	G	intron	CHRM3	PC	-	3/4	1
17	rs10925964	1	239902514	-0.2795	3.7828	Α	intron	CHRM3	PC	-	3/4	0
18	rs10802801	1	239902841	-0.2756	3.6606	Α	intron	CHRM3	PC	-	3/4	0
19	chr1:239904987:I	1	239904987	-0.2614	3.5144	-	not defined	-	-	-	-	NA
20	rs12060884	1	239905830	-0.2760	3.8894	G	intron	CHRM3	PC	-	3/4	0
21	rs1544170	1	239908236	-0.3405	5.5369	Α	intron	CHRM3	PC	-	3/4	0
22	rs11585281	1	239909651	-0.2663	3.5321	Т	intron	CHRM3	PC	-	3/4	0
23	rs7537514	1	239910572	-0.2630	3.4525	G	intron	CHRM3	PC	-	3/4	0
24	rs934344	1	239910999	-0.2587	3.4410	Α	intron	CHRM3	PC	-	3/4	0
25	rs12126146	1	239917787	0.5383	4.5355	G	intron	CHRM3	PC	-	3/4	36
26	rs10167265	2	42087252	0.2843	3.4518	Α	upstream	Y_RNA	miscRNA	-	-	36
27	rs4672114	2	56614299	0.2989	3.7392	С	downstream	CCDC85A	PC	-	-	36
28	rs11680204	2	168574906	0.4079	3.6089	Т	upstream	CTAGE14P	PPG	-	-	36
29	rs72973408	2	236047364	-0.4122	3.7914	Α	regulatory	-	CTCF	-	-	36
30	rs1472476	3	7052542	0.3185	3.4308	Α	intron	GRM7	PC	-	1/9	36
31	rs1391950	3	7058417	0.2594	3.4230	Α	intron	GRM7	PC	-	1/9	36
32	rs2620558	3	22111050	-0.4592	4.8685	G	intronNCT	ZNF385D	PT	-	1/1	36
33	rs16899	3	87811945	-0.3147	3.4685	Α	intronNCT	RP11-451B8.1	lincRNA	-	1/1	36
34	rs2125109	3	182277971	-0.3147	3.9775	т	intergenic	-	-	-	-	36
35	rs17442778	4	41064147	0.4478	4.9059	А	intron	APBB2	PC	-	4/17	36
36	rs13131251	4	62942299	-0.3436	5.0877	С	downstream	LPHN3	PC	-	-	28
37	rs10026213	4	62942911	-0.3405	4.8719	С	downstream	LPHN3	PC	-	-	6
38	rs12715707	4	62948759	-0.3044	3.6229	Т	intronNCT	RP11-84A1.3	antisense	-	6/7	6
39	rs9999827	4	62954273	-0.3021	4.2789	G	IntronNCI	RP11-84A1.3	antisense	-	6/7	24
40	rs34240473	4	128635022	0.3004	3.8749	+	Intron	INTU	PC	-	14/15	36
41	151210300	4	129309808	-0.2903	4.0722	1	regulatory	-	ennancer	-	-	30
42	159065999 ro10520270	4	120903413	0.2014	3.3641	A	intergenic		- lineDNIA	-	-	30
43	rc10020270	4	175040903	-0.4675	4.2092	A 	downetroom	RF11-140L24.1		-	1/4	26
44	rc/25620	- 1 5	0/12262	0.3110	4.4304	~	introp	SEM454		-	- ว/วว	36
45	re2081020	5	24457943	-0.3700	3 8001	G	intergenic	-	-	-	-	36
40	rs62345637	5	26216260	0.3076	4 3693	Δ	intergenic	_	_	-	-	36
48	rs6450194	5	53702552	-0.2976	4.1551	A	intronNCT	LINC01033	lincRNA	-	4/5	36
49	rs6887887	5	142535913	0.5209	4.0966	A	intron	ARHGAP26	PC	-	20/22	36
50	rs78817974	5	160881054	-0.3555	4.0436	Т	intron	GABRB2	PC	-	5/10	NA
51	rs6869521	5	160889272	-0.3501	3.6628	Ċ	intron	GABRB2	PC	-	4/10	0
52	rs62381570	5	160892153	-0.3328	3.5751	С	intron	GABRB2	PC	-	4/10	36
53	rs4713925	6	11798414	0.3118	4.7262	т	intron	ADTRP	PC	-	2/5	36
54	rs196701	6	80147187	-0.3887	3.6808	А	upstream	DBIP1	PPG	-	-	36
55	rs9400512	6	112211802	0.2743	3.4607	Т	intergenic	-	-	-	-	36
56	rs728017	6	124292594	0.3170	3.6985	G	intron	NKAIN2	PC	-	1/3	36
57	rs1057793	6	148835416	0.3115	3.5635	Т	intron	SASH1	PC	-	8/19	36
58	rs17729786	6	149304906	-0.4915	3.4155	Т	intron	UST	PC	-	5/7	36
59	rs7798735	7	10146577	0.3279	3.5347	Α	intergenic	-	-	-	-	36
60	rs17763518	7	14230968	-0.4417	3.6978	С	intron	DGKB	PC	-	22/24	36
61	rs17171441	7	38722499	0.3496	3.5588	С	downstream	FAM183B	PC	-	-	36
62	rs968908	7	89341720	0.2779	3.7748	С	intergenic	-	-	-	-	36
63	rs74782537	7	151531336	0.4084	3.6391	С	intron	PRKAG2	PC	-	1/15	36
64	rs6558708	8	2926193	0.4177	3.5653	А	intron	CSMD1	PC	-	36/55	36
65	rs68112061	8	2931097	0.4824	3.4320	С	intron	CSMD1	PC	-	36/55	0
66	rs11774005	8	2966358	0.4847	3.8118	А	intron	CSMD1	PC	-	31/55	36
67	rs17390567	8	2968364	0.4987	3.5075	С	intron	CSMD1	PC	-	30/55	0

68	rs9650503	8	3066067	0.2574	3.5014	G	intron	CSMD1	PC	-	18/55	27
69	rs7835399	8	3115052	0.3740	4.8336	А	intron	CSMD1	PC	-	14/55	36
70	rs13248596	8	3120483	0 3633	4 3345	G	intron	CSMD1	PC	_	14/55	0
71	ro2007414	0	2122400	0.0000	2 6200	č	intron				14/66	17
71	15209/414	0	3122111	0.2000	3.0300	G			FC DO	-	14/55	17
72	rs13254027	8	3125924	0.3325	3.7247	A	Intron	CSMD1	PC	-	14/55	0
73	rs12541801	8	39611992	-0.2807	3.9202	A	intron	ADAM2	PC	-	16/20	36
74	rs12548821	8	39615296	-0.2707	3.6538	Α	intron	ADAM2	PC	-	15/20	0
75	rs4873713	8	54001049	0.2780	3.7236	С	intergenic	-	-	-	-	0
76	rs2376432	8	54003760	0.2792	3.7340	А	intergenic	-	-	-	-	0
77	rs4873722	8	54007044	0.2779	3.7210	А	intergenic	-	-	-	-	0
78	rs4873729	8	54029036	0 2723	3 5399	Α	intergenic	-	-	-	-	0
70	rc2552016	0	54029972	0.2720	2 6292	Ĉ	intergenie					27
19	152000910	0	54030072	0.2702	0.0002	ç	intergenic	-	-	-	-	21
80	rs2/1/63/	8	54039378	0.2842	3.8374	A 	Intergenic	-	-	-	-	
81	rs34439026	8	74328861	0.4096	3.6058	I	upstream	STAU2-AS1	lincRNA	-	-	NA
82	rs34643738	8	112466724	0.5892	3.8403	С	intronNCT	RP11-1101K5.1	lincRNA	-	2/4	36
83	rs2125553	8	113900367	-0.4389	4.5069	С	intron	CSMD3	PC	-	10/70	36
84	rs17715679	8	116565162	0.4204	3.6188	Т	intron	TRPS1	PC	-	4/5	36
85	rs56282194	8	133574214	-0.2882	3,4208	А	upstream	HPYR1	lincRNA	-	-	36
86	re13/30/03	8	135108404	0 3005	3 4595	т	intergenic	-	-	_	_	36
00	ro2060100	0	120444604	0.0000	2 4252	Ċ	intergenie					17
87	152960109	0	138444604	-0.2779	3.4353	Ċ	intergenic	-	-	-	-	17
88	rs28406373	9	7618765	-0.3041	3.4636	A	intergenic	-	-	-	-	36
89	rs2417654	9	108643176	-0.3493	3.4297	Т	intergenic	-	-	-	-	36
90	rs10982256	9	117260834	0.2743	3.4679	Т	intron	DFNB31	PC	-	1/11	36
91	rs10985450	9	124685381	0.3129	3.6075	С	intron	TTLL11	PC	-	6/8	36
92	rs11013700	10	18626566	0.3460	4.4230	т	intron	CACNB2	PC	-	2/13	36
93	rs977754	10	44817419	-0 4296	4 3083	Ť	intron	CXCI 12	PC	_	3/3	NΑ
04	rc1720267	10	50009644	0.7200	2 7026	^	intron	C10orf52			2/2	NIA
94	151720307	10	30900044	-0.5254	3.7030	~		CTUUII33	FC DO	-	2/2	
95	rs34016608	10	78911244	0.3407	3.6102	C	Intron	KCNMA1	PC	-	5/26	36
96	rs12241006	10	79030744	-0.4174	4.5664	A	intron	KCNMA1	PC	-	2/26	6
97	rs181836	10	79124420	-0.3055	3.4586	G	intron	KCNMA1	PC	-	2/26	17
98	rs7919945	10	87724145	-0.4792	4.0105	Α	intron	GRID1	PC	-	4/15	36
99	rs12773375	10	108134101	-0.5928	3.8468	А	intergenic	-	-	-	-	18
100	rs58634906	10	118986090	-0.4506	4 8131	Δ	intergenic	-	_	_	_	0
100	rc7202602	10	110000000	0.4000	4.6525	Ĉ	intergenie					6
101	157 393002	10	110907701	0.4301	4.0525	ç	intergenic	-	-	-	-	0
102	rs12414919	10	118991768	-0.5127	4.4915	A	Intergenic	-	-	-	-	36
103	rs2283135	10	118999932	-0.4134	3.7184	G	upstream	SLC18A2	PC	-	-	0
104	rs12412905	10	119000560	-0.4156	3.7509	Т	upstream	SLC18A2	PC	-	-	NA
105	rs363387	10	119003564	-0.4077	3.5896	Α	synonymous	SLC18A2	PC	3/16	-	0
106	rs2283136	10	119006945	-0.3996	3.5839	G	intron	SLC18A2	PC	-	3/15	0
107	rs2532805	10	119009966	0 3744	3 4547	Α	intron	SI C18A2	PC	-	3/15	0
108	rc1306860	11	6283452	0.0711	3 6011	Ĉ	intron	CCKBP	PC	_	1//	õ
100	ro2702002	11	6205452	0.4023	2 5 2 7 1	č	intron	CCKPP			1/4	0
109	153793993	11	0200003	0.3903	3.5271	Ç	intron	CURBR	PC DO	-	1/4	0
110	rs1112/16	11	6286156	0.4037	3.4293	A	intron	CCKBR	PC	-	1/4	6
111	rs2929184	11	6289118	0.3823	3.5190	G	intron	CCKBR	PC	-	1/4	36
112	rs11026012	11	21330530	-0.3144	3.4540	G	intron	NELL1	PC	-	15/20	6
113	rs1535717	11	34501166	-0.3702	3.4805	А	3'UTR	ELF5	PC	7/7	-	36
114	rs11036034	11	40735958	-0.2674	3,6580	А	intron	IRRC4C	PC	-	2/6	36
115	rs28568946	11	70419429	-0 3350	3 6677	C	intron	SHANK2	PC	_	7/14	36
110	ro10765505	11	00060640	0.3555	1 1652	č	intron				7/7	26
110	1510700090	11	00203049	-0.4001	4.1000	G	intron	GRIND	FC DC	-	1/1	30
117	rs972938	11	88594590	-0.3477	3.4228	C	intron	GRM5	PC	-	1/7	0
118	rs10831536	11	88597438	-0.3665	3.7570	A	intron	GRM5	PC	-	1/7	6
119	rs10831537	11	88597440	-0.3916	4.1225	С	intron	GRM5	PC	-	1/7	6
120	rs10765745	11	95252080	0.3093	4.0350	Α	intergenic	-	-	-	-	36
121	rs12805779	11	116523063	0.5126	3.7440	Т	intronNCT	AP000770.1	lincRNA	-	1/2	36
122	rs1275582	12	76255406	-0 3140	3 8429	т	intronNCT	RP11-114H23 1	lincRNA	_	1/4	36
122	rc/760295	12	02665526	0.0140	2 5602	Ġ	intorgonio	10111111120.1			1/ 4	26
123	154700303	12	92000020	-0.2757	0.0002	Ğ	intergenic		-	-	-	30
124	rs4767528	12	117719054	-0.3462	3.9129	A	Intron	NUSI	PC	-	1/28	36
125	rs9603543	13	40036131	0.2662	3.5945	С	intron	LHFP	PC	-	2/3	36
126	rs61035869	13	101979673	-0.3950	3.9964	Α	intron	NALCN	PC	-	7/43	36
127	rs7155706	14	58447752	-0.2917	3.6096	А	intronNCT	SLC35F4	PT	-	1/1	36
128	rs937051	15	29405523	-0.3392	3.5672	G	intron	APBA2	PC	-	11/12	17
129	rs586642	15	71432007	-0.5550	3.5514	Ā	upstream	THSD4	PC	-	-	36
130	re051085	15	7870000	0.5046	3 6510	G	regulatory	-			_	NIA
100	abr15.700040004	15	70004000	0.5040	4 4007	9	not defined		1 1 1	-	-	
131	CHF15:78801393:1	15	78801393	0.5561	4.1937	-	not defined	-	-	-	-	NA
132	rs11852372	15	78801394	0.5393	4.0683	C	Intron	HYKK	PC	-	1/3	NA
133	rs8034191	15	78806023	0.5435	4.3326	С	intron	HYKK	PC	-	2/3	17
134	rs8031948	15	78816057	0.5078	3.8824	Т	intron	HYKK	PC	-	3/4	0
135	rs58365910	15	78849034	0.5416	4.5894	С	intergenic	-	-	-	-	0
400	rs72740055	15	78840770	0 5718	4 2388	т	intergenic	-	-	-	-	0
136	1312140000	10	10040110	0.07 10	1.2000							•

137	rs2036527	15	78851615 0	.5686	4.8710	Α	intergenic	-	-	-	-	7
138	rs55781567	15	78857986 0	1100	3 4403	G	5'LITR	CHRNA5	PC	1/6	-	0
100	1500701007	15	70007900 0	.4499	0.7000	Ğ	JUIK		FC	1/0	-	0
139	rs11633958	15	78862064 0	.5692	3.7233	А	Intron	CHRNA5	PC	-	1/5	0
140	rs7172118	15	78862453 0	.5595	3.9349	Α	intron	CHRNA5	PC	-	1/5	0
141	rs17486195	15	78865197 0	.5323	3.6832	G	intron	CHRNA5	PC	-	1/5	0
142	rs140330585	15	78866445 0	.5166	3.5079	А	intron	CHRNA5	PC	-	1/5	0
143	rs17486278	15	78867482 0	3950	4.3513	С	intron	CHRNA5	PC	-	1/5	6
144	rc72740064	15	79969626 0	5665	2 7651	^	intron				1/5	0
445	1372740304	15	70000000 0	.5005	0.7001	÷	intron			-	1/5	0
145	rs7180002	15	78873993 0	.5571	3.9229	1	Intron	CHRINAS	PC	-	2/5	0
146	rs56390833	15	78877381 0	.5596	3.9495	A	intron	CHRNA5	PC	-	2/5	0
147	rs951266	15	78878541 0	.5630	3.9847	Α	intron	CHRNA5	PC	-	2/5	0
148	rs16969968	15	78882925 0	.5791	3.8265	А	missense	CHRNA5	PC	5/6	-	0
149	rs8192482	15	78886198 0	5840	3 9057	т	3'UTR	CHRNA5	PC	6/6	-	0
150	rc/887067	15	78886047 0	5840	3 0061	Δ		CHRNAS	PC	6/6	_	Ô
150	134007007	15	70000347 0	.5040	4.0004	$\hat{}$	3011			0/0	-	0
151	151051730	15	78894339 0	.5724	4.2294	A	synonymous	CHRINAS	PC	0/6	-	0
152	rs12914385	15	78898723 0	.3960	4.1171	A	intron	CHRNA3	PC	-	4/5	17
153	rs55676755	15	78898932 0	.5862	4.7666	G	intron	CHRNA3	PC	-	4/5	36
154	rs56077333	15	78899003 0	.3944	4.0496	А	intron	CHRNA3	PC	-	4/5	0
155	rs147144681	15	78900908 0	5475	4.0104	т	intron	CHRNA3	PC	-	4/5	NA
156	rc11/205601	15	78001113 0	3052	1 1871	Δ	intron	CHRNAS	PC	_	1/5	0
150	ro146000840	15	70006177 0	5502	2 00 47	Ŧ	intron				4/5	0
157	15146009840	15	78906177 0	.5567	3.0047	1	intron		PC	-	4/5	0
158	rs4243084	15	78911672 0	.3486	3.4520	C	downstream	CHRNB4	PC	-	-	6
159	rs55958997	15	78915872 0	.3806	3.5458	Α	downstream	CHRNB4	PC	-	-	NA
160	rs17487223	15	78923987 0	.5216	3.5639	Т	intron	CHRNB4	PC	-	2/5	6
161	rs2679090	15	87954255 0	.2798	3.4428	Т	intergenic	-	-	-	-	36
162	rs12447354	16	2946055 -0	2830	3 8454	Δ	intron	FLYWCH2	PC.	-	2/3	27
162	rc0909229	17	40022256 0	4522	5 0642	~	intron				2/0	26
105	159090320	17	40032350 0	.4522	5.0042	~		ACLI	FC	-	22/20	50
164	rs891765	17	65474156 0	.3175	4.1030	G	Intron	PITPINC1	PC	-	1/9	36
165	rs2949923	17	65475228 0	.2955	4.2622	G	intron	PITPNC1	PC	-	1/9	19
166	rs1004413	18	3042297 -0).2684	3.4788	G	regulatory	-	PFR	-	-	23
167	rs12185370	18	4582373 0	.3313	3.4158	А	intergenic	-	-	-	-	36
168	rs11081290	18	6979570 -0	3818	4 0789	Α	intron	LAMA1	PC	-	42/62	36
160	rc55787463	18	76383007 0	3202	3 /830	Ĉ	intergenic	-	-	_	-	36
109	1500707400	10	10303097 0	0.0292	3.4039	č				-	-	50
170	rs11878604	19	41333284 -0).3824	4.5339	C	upstream	CTP2F2P	UnitaryPG	-	-	INA
171	rs12459249	19	41339896 0	.3109	4.3157	С	IntronNC I	-	lincRNA	-	1/1	6
172	rs10853742	19	41340573 0	.3025	4.1026	Α	intronNCT	-	lincRNA	-	1/1	0
173	rs11667314	19	41340983 0	.3049	4.1584	С	intronNCT	-	lincRNA	-	1/1	0
174	rs12461964	19	41341229 0	.2976	3.9333	G	intronNCT	-	lincRNA	-	1/1	0
175	rs35755165	19	41345989 0	2940	3 6471	Ċ	downstream	CYP2A6	PC	-	_	0
176	ro2216205	10	11216769 0	2015	2 1020	č	downotroom	CVD2AG				õ
170	152310203	19	41340700 0	.2045	0.4009	0	uownstream		FC	-	-	0
177	rs60446182	19	41347998 0	.3067	3.9081	G	downstream	CYP2A6	PC	-	-	0
178	rs56113850	19	41353107 0	.4305	6.5938	С	intron	CYP2A6	PC	-	4/8	36
179	rs150298687	19	41357344 0	.3086	3.4200	С	upstream	CYP2A6	PC	-	-	6
180	rs57837628	19	41357910 0	.3880	5.1070	G	upstream	CYP2A6	PC	-	-	0
181	rs113029345	19	41370176 0	.3870	4.7138	С	intronNMD	-	NMD	-	1/3	0
182	rs12461383	19	41370338 0	3953	5 0713	G	intronNMD	-		-	1/3	0
102	rc7247002	10	41272475 0	10000	2 /959	G	intronNMD				1/2	NIA
103	157247903	19	41372473 -0	1.4049	3.4000	Ğ				-	1/5	
184	1856097499	19	41381334 0	.4184	4.4893	A	downstream	CYPZA7	PC	-	-	9
185	rs2261144	19	41383153 0	.3485	4.1328	G	missense	CYP2A7	PC	6/8	-	0
186	rs3822479	19	41383989 0	.3617	4.0304	Т	intron	CYP2A7	PC	-	4/7	0
187	rs3815705	19	41386282 0	.3290	4.0203	А	intron	CYP2A7	PC	-	2/7	18
188	rs72480748	19	41414481 0	.3306	4.0085	А	NCTexon	CTC-490E21.13	UPPG	5/5	-	0
189	rs73038469	19	41442597 0	3253	3 4780	Δ	intronNCT	CYP2B7P	TUPG	-	3/8	36
100	rc1002020	20	5200217 0	2105	4 6074	~	intorgonia	0112071	1010		0/0	26
190	151002929	20	3209217 0	0.0100	4.0974	Â.	intergenic		-	-	-	30
191	rs6074121	20	10290703 -0).2743	3.5040	A	downstream	SNAP25	PC	-	-	1
192	rs7268664	20	10295257 -0).2890	3.8876	Т	intronNCT	SNAP25-AS1	antisense	-	1/3	36
193	rs13433103	20	11251165 0	.2980	3.6307	G	upstream	RP4-734C18.1	lincRNA	-	-	36
194	rs871913	20	16144345 0	.4365	3.4784	А	intergenic	-	-	-	-	36
195	rs6068022	20	50565828 0	.2590	3.5183	G	regulatory	-	enhancer	-	-	36
196	rs12481177	20	57835389 0	3912	4 2816	Ā	downstream	ZNE831	PC	-	-	36
107	re2833270	21	32/8725/ 0	1/125	3 6820	ĉ	downetroom	TIAM1	PC		_	20
100	132033210	21	02401004 -0	1.4130	0.0020	- т	downstream			-	-	30
198	15/30098	22	22/11/86 0	.33/3	3.0245	1	uownstream		1070	-	-	30
199	rs132952	22	38549373 -0).3181	3.8154	С	intron	PLA2G6	PC	-	2/16	36
200	rs4822253	22	43427776 0	.4068	3.5485	Α	intergenic	-	-	-	-	36

Suppl	upplememtary Table 3B. Top 200 Variants, Genome-wide Analysis of Total Nicotine Equivalents, With CPD											
Index	SNP	CHR	POS	beta	-log10p	Allele	Function	Symbol	Biotype	Exon	Intron	Count
1	rs1023252	1	11899033 -	-0.1164	3.3180	А	intron	CLCN6	PC	-	21/21	19
2	rs4652959	1	38015372	0.2850	3.5262	G	intron	SNIP1	PC	-	2/3	27
3	rs857093	1	57232805	0.1774	3.8749	С	intron	FYB2	PC	-	5/19	25
4	rs2811883	1	59230228	0.1249	3.6097	А	intronNCT	AL136985.3	IncRNA	-	1/3	30
5	rs11208512	1	65170405	0.0126	3.3698	А	intergenic	-	-	-	-	20
6	rs10493405	1	66920877	0.1450	3.6926	А	intergenic	-	-	-	-	30
7	rs17631306	1	111072322	0.1840	3.6323	А	intergenic	-	-	-	-	24
8	rs6674761	1	146942884 -	-0.0666	3.3182	Т	intronNCT	LINC00624	IncRNA	-	3/5	24
9	rs3811454	1	154164139	0.1508	3.6389	С	intron	TPM3	PC	-	1/8	30
10	rs79609663	1	201753696	0.1208	3.8019	А	intron	NAV1	PC	-	5/26	24
11	rs11118921	1	222160609 -	-0.2912	4.5726	А	downstream	RP11-400N13.2	lincRNA	-	-	24
12	rs7552453	1	239856834	0.2494	3.7409	Т	intron	CHRM3	PC	-	3/4	NA
13	rs2278644	1	239867792	0.1480	3.7442	С	intron	CHRM3	PC	-	3/4	0
14	rs10802794	1	239870621	0.1945	4.1389	Т	intron	CHRM3	PC	-	3/4	0
15	rs10802795	1	239870775 -	0.2676	4.3075	С	intron	CHRM3	PC	-	3/4	24
16	rs6684622	1	239877537	0.1934	4.1744	С	intron	CHRM3	PC	-	3/4	0
17	rs6663632	1	239877721	0.1777	4.0098	A	intron	CHRM3	PC	-	3/4	0
18	rs1431719	1	239881203	0.1622	3.6848	G	intron	CHRM3	PC	-	3/4	1
19	rs11583349	1	239901107	0.1339	3.8206	T	intron	CHRM3	PC	-	3/4	0
20	rs7513757	1	239901317 -	0 2194	3 4 4 9 4	Ā	intron	CHRM3	PC	-	3/4	NA
21	rs1416789	1	239901645	0 2292	4 4998	G	intron	CHRM3	PC	-	3/4	0
22	rs1544170	1	239908236	0.1672	4 6227	Δ	intron	CHRM3	PC	_	3/4	0
22	rc101588/	1	2/1383781	0.1072	3 5571	Δ	intron	PGS7	PC		1/1/1	24
20	re7/783/57	1	241505701	0.1140	3 1/03	ĉ	intronNCT	AL 350764 2			3/3	24
24	rc6709742	2	1799251	0.1023	2 4925	ĉ	downetroom	AL333704.2		-	5/5	30
20	rc11002594	2	75672592	0.0000	5.4025	G	intorgonic		FC	-	-	30
20	ro7570000	2	10012000	0.3239	0.2090	ч	intergenic		-	-	-	30
21	ro1604690	2	90403003	0.1113	3.0400 2 /FE/	Ċ	intron		FC DC	-	0/15	30
20	151004009	2	214303323 -	0.2343	3.4004	Ğ	intron	CNITNE	FC DC	-	9/10	19
29	150600144	3	1323078	0.1149	3.7410	A	Intron		PC	-	5/22 4/4	24
30	152020000	3	22111050	0.1787	3.9345	G	intronine i	ZINF 365D	PI	-	1/1	24
31	rs73824112	3	31383686	0.2633	4.1181	A	Intergenic		-	-	-	30
32	rs1/442/78	4	41064147	0.2743	3.8339	A	Intron	APBBZ	PC	-	4/17	31
33	rs1522095	4	59222703	0.1416	3.6655	G	Intergenic	-	-	-	-	24
34	rs13131251	4	62942299	0.2623	4.2147	C	downstream	LPHN3	PC	-	-	12
35	rs10026213	4	62942911	0.2708	4.1275	C	downstream	LPHN3	PC	-	-	3
36	rs9999827	4	62954273	0.1752	3.8782	G	IntronNCT	RP11-84A1.3	antisense	-	6/7	24
37	rs1/62/4/1	4	112906965	0.1044	3.6554	<u> </u>	IntronNCI	AC004704.1	INCRNA	-	1/2	24
38	rs1216365	4	129569808 -	-0.0484	3.3536		regulatory	-	enhancer	-	-	24
39	rs6852267	4	140692082 -	0.0680	3.4049	G	intron	MAML3	PC	-	1/3	24
40	rs9685999	4	156963413	0.1532	3.6126	A	intergenic	-	-	-	-	24
41	rs72683600	4	156966121 -	-0.0805	3.4357	G	intergenic	-	-	-	-	0
42	rs4691129	4	165609979	0.1457	3.6375	Т	intergenic	-	-	-	-	24
43	rs1992019	4	175051486	0.0130	3.3267	A	downstream	RP11-248N22.1	lincRNA	-	-	26
44	rs28892343	4	180311659 -	-0.1195	3.6112	Т	intronNCT	AC020551.1	IncRNA	-	1/2	24
45	rs6347	5	1411412 -	-0.1060	3.3446	С	synonymous	SLC6A3	PC	9/15	-	24
46	rs6555217	5	3685242	0.1547	3.7193	A	intergenic	-	-	-	-	31
47	rs60178658	5	11694217	0.1044	3.6362	С	intron	CTNND2	PC	-	2/21	NA
48	rs73746522	5	24448102	0.1007	3.3519	Т	downstream	Metazoa_SRP	miscRNA	-	-	24
49	rs2081922	5	24457943 -	-0.1194	3.3563	G	intergenic	-	-	-	-	6
50	rs6450194	5	53702552 -	-0.3214	4.9504	А	intronNCT	LINC01033	lincRNA	-	4/5	24
51	rs10939908	5	60879560	0.1403	3.4367	С	intergenic	-	-	-	-	24
52	rs10070074	5	90022407	0.0884	3.5732	С	intron	ADGRV1	PC	-	48/89	22
53	rs2460162	5	90047491	0.1006	3.4314	Т	intron	ADGRV1	PC	-	53/89	0
54	chr5:90049162:I	5	90049162	0.1916	4.0799	NA	NA	NA	NA	NA	NA	NA
55	rs10062026	5	90052289	0.2025	4.2589	А	missense	ADGRV1	PC	56/90	-	0
56	rs73781039	5	101065708	0.0896	3.4666	G	intergenic	-	-	-	-	NA
57	rs35715303	5	114730406	0.2110	3.7063	Т	upstream	CTNNA1P1	PPG	-	-	30
58	rs78817974	5	160881054	0.1483	4.3502	Т	intron	GABRB2	PC	-	5/10	NA
59	rs6869521	5	160889272	0.1323	3.5378	С	intron	GABRB2	PC	-	4/10	7
60	rs62381570	5	160892153	0.1774	3.8779	С	intron	GABRB2	PC	-	4/10	21
61	rs62381571	5	160893196 -	-0.3103	3.5405	С	intron	GABRB2	PC	-	4/10	0
62	rs61406751	6	467581	0.1099	3.5375	С	intronNCT	AL512308.1	IncRNA	-	1/1	25
63	rs4713925	6	11798414	0.2192	4.6587	т	intron	ADTRP	PC	-	2/5	24
64	rs1330632	6	57148574 -	0.1539	3.3651	С	intergenic	-	-	-	-	30
65	rs196701	6	80147187 -	0.1622	3.3404	А	upstream	DBIP1	PPG	-	-	25
66	rs12524558	6	105070290	0.0884	3.4932	C	interaenic	-	-	-	-	24
67	rs728017	6	124292594	0.1453	3.6175	G	intron	NKAIN2	PC	-	1/3	28

68	rs1028378	6	148834018 0.	.1421	3.7118	G	intron	SASH1	PC	-	8/19	9
69	rs1057793	6	148835416 0.	.0941	3.8267	Т	intron	SASH1	PC	-	8/19	24
70	rs12526105	6	169463997 0.	.1717	3.8428	А	upstream	AL109924.2	IncRNA	-	-	24
71	rs12672025	7	7157756 -0.	.2302	3.4939	А	regulatory	-	enhancer	-	-	24
72	rs11540586	7	29962427 -0.	.0522	3.3685	С	3'UTR	SCRN1	PC	8/8	-	18
73	rs17171441	7	38722499 -0.	0202	3.3371	Č	downstream	FAM183B	PC	-	_	24
74	rs334529	7	47557221 -0	2477	3 4173	т	intron	TNS3	PC	-	2/30	21
75	re12705836	7	78547202 0	1631	4 0567	Δ	intron	MAGI2	PC	_	2/00	10
76	ro0602405	7	79657000 0	1551	2 7257	~	intron	MACI2		-	2/21	10
70	159092405	7	76057099 0.	.1001	3.7237	A	intron	WAGIZ	FC	-	1/21	10
77	15968908	7	89341720 0.	.1910	3.9967	Ç	Intergenic	-	-	-	-	21
78	rs4730501	1	111432940 0.	.1801	4.0129	A	upstream	DOCK4	PC	-	-	6
79	rs74782537	7	151531336 -0.	.1060	3.4229	С	intron	PRKAG2	PC	-	=L41/15	25
80	rs4260917	8	1605294 0.	.0140	3.3629	G	intron	DLGAP2	PC	-	8/14	18
81	rs68112061	8	2931097 0.	.1412	3.5926	С	intron	CSMD1	PC	-	36/55	13
82	rs4875742	8	2964206 0.	.1060	3.3596	С	intron	CSMD1	PC	-	33/55	6
83	rs11774005	8	2966358 0.	.1797	3.8609	А	intron	CSMD1	PC	-	31/55	27
84	rs11786969	8	2966388 0.	.2596	3.6682	Т	intron	CSMD1	PC	-	31/55	0
85	rs67705201	8	2966633 -0.	.1046	3.5393	т	intron	CSMD1	PC	-	31/55	0
86	rs898509	8	2967576 0	1404	3 3184	Δ	intron	CSMD1	PC	-	31/55	0
87	rs808510	8	2967609 0	2048	3 7157	Δ	intron	CSMD1	PC	_	31/55	24
00	rc72192522	0	2067005 0.	1/96	2 /200	~	intron				20/55	
00	1573103333	0	2907900 0.	.1400	2.4300	~	intron	CSIVID 1	FC DC	-	30/55	
69	1517390507	0	2908304 0.	.2024	3.0000		Intron		PC DO	-	30/00	4
90	rs9650503	8	3066067 0.	.1588	3.5550	G	Intron	CSMD1	PC	-	18/55	18
91	rs7835399	8	3115052 0.	.1025	3.5558	A	intron	CSMD1	PC	-	14/55	24
92	rs13254027	8	3125924 0.	.0918	3.4061	Α	intron	CSMD1	PC	-	14/55	0
93	rs12114514	8	17357731 0.	.2544	3.7605	Т	intron	SLC7A2	PC	-	1/13	25
94	rs111473411	8	26590976 0.	.1754	3.7784	Т	intergenic	-	-	-	-	31
95	rs2132449	8	26592353 0.	.1166	3.7631	А	intergenic	-	-	-	-	0
96	rs7821479	8	26601657 0.	.1283	3.8086	А	downstream	ADRA1A	PC	-	-	0
97	rs2553916	8	54038872 -0.	.0470	3.3729	С	interaenic	-	-	-	-	1
98	rs2717637	8	54039378 -0	1441	3 5520	A	intergenic	-	-	-	-	24
qq	rs13258651	8	74317959 -0	1147	3 3973	Δ	intergenic	_	-	-	-	24
100	re34430026	ß	7/328861 -0	0526	3 6070	т	unstream	STALI2-AS1	lincPNA	_	_	NΔ
100	rc2/6/2729	0	112466724 0	1702	2 5521	Ċ	intronNCT	DD11 1101K5 1			2/4	21
101	1534043730	0	112400724 0.	. 1702	4.0000	Č	introning I			-	2/4	20
102	IS2125553	8	113900367 0.	.1485	4.0838	Ç	Intron		PC	-	10/70	30
103	rs56282194	8	133574214 -0.	.2497	3.3955	A	upstream	HPYR1	IINCRNA	-	-	24
104	rs13439493	8	135108404 0.	.1289	4.3009	<u> </u>	intergenic	-	-	-	-	30
105	rs12348020	9	9069548 0.	.1122	3.6063	Т	intron	PTPRD	PC	-	7/42	NA
106	rs4745687	9	80619811 0.	.0280	3.4579	G	intron	GNAQ	PC	-	1/6	24
107	rs10122296	9	102334338 0.	.1221	3.3552	С	intronNCT	AL359710.1	IncRNA	-	2/5	30
108	rs2771036	9	108205262 0.	.1851	4.0498	Т	downstream	SLC44A1	PC	-	-	30
109	rs4390017	9	124633711 0.	.2441	4.4056	Т	intron	TTLL11	PC	-	6/8	30
110	rs977754	10	44817419 0.	.1338	4.2885	Т	intron	CXCL12	PC	-	3/3	NA
111	rs1720367	10	50908644 0.	.0383	3.3385	А	intron	C10orf53	PC	-	2/2	NA
112	rs12241006	10	79030744 0.	.1680	4.0976	А	intron	KCNMA1	PC	-	2/26	24
113	rs7899222	10	87701735 0.	.1323	3.3948	А	intron	GRID1	PC	-	4/15	24
114	rs58634906	10	118986090 0	1862	4 4124	Α	intergenic	-	-	-	-	7
115	rs7393602	10	118987781 0	1926	4 0864	C	intergenic	_	_	-	-	6
116	rs12414010	10	118001768 0	1042	4 2218	Δ	intergenic	_	-	_	_	24
117	re2072362	10	11001/023 0	1077	3 6101	т	intronNCT	SI C1842	PI	_	5/1/	6
110	132072302	10	110014025 0.	1050	2.6502		intronNCT	SLC10A2		-	5/14	0
110	152072303	10	119014406 0.	.1050	3.0092	G	introning T	SLUTOAZ		-	5/14	0
119	rs2072364	10	119014408 -0.	.2527	3.4115	÷	IntronINC I	SLC18AZ	RI	-	5/14	0
120	rs363420	10	119014931 -0.	.1674	3.5839	I	IntronNCT	SLC18A2	RI	-	6/14/	0
121	rs363245	10	119016331 -0.	.3010	4.2371	G	IntronNC I	SLC18A2	RI	-	8/14	NA
122	rs363220	10	119016690 0.	.1812	4.1104	Т	intronNCT	SLC18A2	RI	-	8/14	9
123	rs2283138	10	119018679 0.	.0976	3.6346	А	intronNCT	SLC18A2	RI	-	9/14	20
124	rs929493	10	119019126 0.	.1542	3.7680	Т	intronNCT	SLC18A2	RI	-	9/14	17
125	rs1860404	10	119019177 0.	.0982	3.5750	С	intronNCT	SLC18A2	RI	-	9/14	6
126	rs12575355	11	2566118 0.	.0538	3.4322	G	intron	KCNQ1	PC	-	2/15	18
127	rs7949361	11	34238019 -0.	.2089	3.5399	Т	intron	ABTB2	PC	-	1/16	20
128	rs208679	11	34454061 -0.	0828	3,3996	Ġ	downstream	CIR1P3	PPG	-	_	0
120	rs551929	11	34487102 -0	1587	3 4545	т	intron	CAT	PC	-	10/27	ñ
120	rc1525720	11	24500424 0	1004	1 0100	ċ	211TD			7/7	10/21	0
100	131000720	11	34504400 0	.1504 2274	4.0190	~				7/7	-	0
131	151000/17	11	34501100 0.	.2214	4.1010	A ^	JUIK			() (-	0
132	1512288820	11	34505926 0.	.0523	4.0323	A	intron			-	4/0	0
133	rs10836249	11	34506338 0.	.1791	4.0125	A _	intron			-	4/6	24
134	rs263101	11	35962249 0.	.1586	4.4489	Г	upstream	LDLRAD3	PC	-	-	30
135	rs2510868	11	58247718 -0.	.1352	3.5263	G	Intergenic	-	-	-	-	24
136	rs2317091	11	62960760 -0.	.1191	3.3447	А	intron	SLC22A25	PC	-	4/8	24

137	rs10765595	11	88263649 0.1056	3.3656	G	intron	GRM5	PC	-	7/7	20
138	rs4753765	11	88593289 0.1775	3.5589	Т	intron	GRM5	PC	-	1/7	0
139	rs972938	11	88594590 0.1674	3.5398	С	intron	GRM5	PC	-	1/7	0
140	rs982709	11	88595236 0.1178	3.7174	А	intron	GRM5	PC	-	1/7	0
141	rs10831536	11	88597438 0.1539	4.3517	Α	intron	GRM5	PC	-	1/7	6
142	rs10831537	11	88597440 0.2411	4.2383	С	intron	GRM5	PC	-	1/7	13
143	rs2221118	11	88598040 -0.0233	3.4726	А	intron	GRM5	PC	-	1/7	0
144	rs16919379	11	93525376 0.0883	3.5611	Т	intron	MED17	PC	-	3/11	NA
145	rs73593157	11	132525442 -0.3405	3.3117	G	intron	OPCML	PC	-	2/6	24
146	rs11180602	12	76016713 -0.0140	3.3268	Т	intronNCT	AC078923.1	IncRNA	-	4/4	21
147	rs1275582	12	76255406 -0.1761	3.5606	Т	intronNCT	RP11-114H23.1	lincRNA	-	1/4	24
148	rs4767528	12	117719054 0.1586	3.6370	А	intron	NOS1	PC	-	7/28	21
149	rs9315675	13	39905865 -0.1705	3.3432	С	intronNMD	LHFPL6	NMD	-	4/13	18
150	rs9300660	13	101960273 -0.1363	3.3559	Ğ	intron	NALCN	PC	-	7/43	18
151	rs61035869	13	101979673 -0.2466	4,5430	Ā	intron	NALCN	PC	-	7/43	24
152	rs9558839	13	107391098 -0 1346	3 4232	G	regulatory	-	enhancer	-	-	24
153	rs1924349	13	109107293 0 1787	3 9751	G	intergenic	-	-	-	-	30
154	rs527264	13	113736543 0.0824	3 4030	т	intron	MCF2I	PC	_	16/26	24
155	re7155706	14	58447752 0 3455	1 9518	Δ	intronNCT	SI C35E4	DT		1/1	24
155	rc027051	14	20405522 0.3433	4.9010	G	intron	ADRA2		-	1/1	24
150	ro12501014	15	29400020 0.1047	4.0309	Å	intron		FC PC	-	1/12	24
107	1512091914	15	70040024 0.4140	3.3093	A C	intergenie	RURA	FC	-	1/10	24
100	1858365910	15	78849034 0.1119	3.4200	Ç	intergenic	-	-	-	-	0
159	IS2036527	15	78851615 0.0866	3.4813	A	Intergenic		-	-	-	20
160	rs556/6/55	15	78898932 0.1099	3.3178	G	intron	CHRNA3	PC	-	4/5	30
161	rs10851907	15	78915864 -0.0866	3.3253	A	downstream	CHRNB4	PC	-	-	NA
162	rs58122900	15	95246036 0.1151	4.2837	A	regulatory	-	enhancer	-	-	NA
163	rs2531972	16	4051189 -0.0033	3.3693	A	intron	ADCY9	PC	-	3/10	24
164	rs9933823	16	85155843 -0.0761	3.3476	Α	intergenic	-	-	-	-	24
165	rs11641814	16	85161211 -0.2128	3.5874	С	intergenic	-	-	-	-	12
166	rs7214224	17	4320544 0.2413	3.4149	G	regulatory	-	PFR	-	-	24
167	rs9889251	17	37148373 -0.1186	3.3187	А	downstream	AC006441.2	PPG	-	-	24
168	rs9898328	17	40032356 0.3593	5.5974	А	intron	ACLY	PC	-	22/28	30
169	rs80225105	17	40032683 0.3048	3.5012	А	intron	ACLY	PC	-	22/28	0
170	rs1004413	18	3042297 0.1677	3.3753	G	regulatory	-	PFR	-	-	18
171	rs7231904	18	4596846 -0.1126	3.5383	Α	intergenic	-	-	-	-	30
172	rs8085681	18	9498749 0.1778	3.8930	G	intron	RALBP1	PC	-	1/9	31
173	rs57214198	18	22082857 -0.2254	3.4948	Т	intronNCT	AC007922.4	IncRNA	-	2/2	30
174	rs749450	19	4033027 -0.2404	3.4214	Α	intron	PIAS4	PC	-	7/10	NA
175	rs73029362	19	34125298 -0.1702	3.3363	А	intron	CHST8	PC	-	1/4	30
176	rs10409200	19	39459174 0.1667	3.5670	G	intron	FBXO17	PC	-	1/5	24
177	rs11878604	19	41333284 0.2550	3.8278	С	upstream	CYP2F2P	UnitaryPG	-	-	NA
178	rs12459249	19	41339896 0.1761	3.8822	С	intronNCT	-	lincRNA	-	1/1	6
179	rs10853742	19	41340573 0.1641	3.6628	А	intronNCT	-	lincRNA	-	1/1	0
180	rs11667314	19	41340983 0.1761	3.6877	С	intronNCT	-	lincRNA	-	1/1	0
181	rs12461964	19	41341229 0.0630	3.5555	G	intronNCT	-	lincRNA	-	1/1	0
182	rs60446182	19	41347998 0.1049	3.6879	G	downstream	CYP2A6	PC	-	-	5
183	rs56113850	19	41353107 0.3276	5.4667	С	intron	CYP2A6	PC	-	4/8	30
184	rs57837628	19	41357910 0.2971	4.2531	G	upstream	CYP2A6	PC	-	-	0
185	rs113029345	19	41370176 0.2254	4.0284	Ċ	intronNMD	-	NMD	-	1/3	5
186	rs12461383	19	41370338 -0.2301	4.5836	Ğ	intronNMD	-	NMD	-	1/3	Ō
187	rs10410975	19	41473425 -0.0538	3 4103	Ā	intergenic	-	-	-	-	NA
188	rs16986309	19	55710074 -0 2234	3 4012	A	missense	PTPRH	PC	6/18	-	30
189	rs2422843	20	3081680 -0.0877	3 4452	G	regulatory	-	PFR	-	-	21
100	re1002920	20	5209217 0 1348	3 6180	Δ	intergenic		-	_	_	25
101	re 805726	20	560517/ 0.0200	3 /058	ĉ	intergenic	_	_			20
102	rc12/22102	20	11251165 0.1569	1 1 1 0 0	G	unctroom	- DD/ 72/019 1		-	-	21
102	rc/220715	20	16129240 0.1300	2 2270	G	intorgonic	KF4-734010.1	IIICKINA	-	-	20
193	134233/13	20	10130249 -U.1350	3.3310	C	rogulatory	-	- onhonoor	-	-	24 NIA
194	13170U1200	20	50454570 -0.0031	3.4019 2 AF 1 1	~	downatroom	-		-	-	AVI 20
190	13124011/1	20	07000000 -0.2091	3.4344 3.2500	А Т	downstream			-	-	30
190	15/30090	22	22/11/00 0.1220	3.3320	1	interger	IGLV0-48	1676	-	-	24
197	157205001	22	21090321 0.15/0	3.0164	A	intergenic		- DC	-	-	24
198	15132930	22	30340972 0.1004	3.4/89	A	intron	FLA2GO		-	2/10	24
199	15132952	22	38549373 0.1410	3.08//	U T	intron	PLAZGO		-	2/16	6
200	rs79334853	22	46/14/48 -0.0659	3.4641	1	intron	GISET	PC	-	7/11	19

Supplementary Tables 2 and 3 ReadMe

Label	Definition
Index	Index by chromosome coordinate
SNP	Variant ID
CHR	Chromosome number
POS	Base pair (hg19)
beta	Coefficient, marginal analysis
-log10p	Significance, marginal analysis
Allele	Risk Allele
Function	Sequence function
Symbol	Gene Acronym
Biotype	Gene class, if any
Exon	Exonic location, if any
Intron	Intronic location, if any
Count	Number of penalized regression models variant trained in with range 0-36.
	NA indicates the variant was not available in the UW-TTURC dataset,
	and excluded from model training in the MEC as not available in UW-TTURC dataset.
3'UTR	3_prime_UTR_variant
5'UTR	5_prime_UTR_variant
antisense	antisense
CTCF	CTCF_binding_site
downstream	downstream_gene_variant
enhancer	enhancer
IGVG	IG_V_gene
intergenic	intergenic_variant
intron	intron_variant
intronNCT	intron,non_coding_transcript_variant
intronNMD	intron,NMD_transcript_variant
lincRNA	lincRNA
miscRNA	misc_RNA
missense	missense_variant
NCTexon	non_coding_transcript_exon_variant
NMD	nonsense_mediated_decay
not defined	-
PC	protein_coding
PFR	promoter_flanking_region
PPG	processed_pseudogene
PT	processed_transcript
regulatory	regulatory_region_variant
RI	retained_intron
synonymous	synonymous_variant
TUPG	transcribed_unprocessed_pseudogene
UnitaryPG	unitary_pseudogene
UPPG	unprocessed_pseudogene
upstream	upstream_gene_variant

Model, add penalty labels	uNMR	uNMR_CPD	TNE	TNE_CPD
lasso	0.6623	0.6689	0.6490	0.7328
ENET	0.6599	0.6677	0.6488	0.7321
ENET	0.6612	0.6678	0.6489	0.7298
ENET	0.6617	0.6683	0.6490	0.7321
ENET	0.6620	0.6634	0.6490	0.7329
ENET	0.6553	0.6600	0.6490	0.7332
adaptive-lasso	0.6596	0.6660	0.6463	0.7290
adaptive-lasso	0.6605	0.6660	0.6412	0.7297
adaptive-lasso	0.6487	0.6639	0.6393	0.7060
adaptive-lasso	0.6495	0.6576	0.6384	0.5467
adaptive-lasso	0.6429	0.6466	0.6346	0.4293
adaptive-ENET	0.6596	0.6650	0.6461	0.7293
adaptive-ENET	0.6610	0.6594	0.6460	0.7292
adaptive-ENET	0.6595	0.6627	0.6327	0.7178
adaptive-ENET	0.6556	0.6613	0.6295	0.5574
adaptive-ENET	0.6370	0.6480	0.6314	0.4288
adaptive-ENET	0.6604	0.6615	0.6458	0.7274
adaptive-ENET	0.6581	0.6614	0.6476	0.7272
adaptive-ENET	0.6554	0.6644	0.6377	0.7196
adaptive-ENET	0.6552	0.6617	0.6296	0.5733
adaptive-ENET	0.6467	0.6481	0.6313	0.4463
adaptive-ENET	0.6609	0.6637	0.6463	0.7299
adaptive-ENET	0.6564	0.6642	0.6477	0.7292
adaptive-ENET	0.6595	0.6633	0.6400	0.7055
adaptive-ENET	0.6560	0.6581	0.6295	0.5544
adaptive-ENET	0.6448	0.6469	0.6331	0.4292
adaptive-ENET	0.6588	0.6620	0.6459	0.7289
adaptive-ENET	0.6601	0.6623	0.6477	0.7286
adaptive-ENET	0.6588	0.6647	0.6392	0.7065
adaptive-ENET	0.6490	0.6587	0.6372	0.5498
adaptive-ENET	0.6431	0.6436	0.6311	0.4293
adaptive-ENET	0.6573	0.6624	0.6463	0.7289
adaptive-ENET	0.6549	0.6631	0.6477	0.7299
adaptive-ENET	0.6530	0.6612	0.6393	0.7128
adaptive-ENET	0.6406	0.6496	0.6375	0.5473
adaptive-ENET	0.6303	0.6284	0.6342	0.4293
Regression tree	0.6009	0.6009	0.2513	0.4219
Bagging	0.6446	0.6436	0.5475	0.5426
Gradient-boosting	0.8781	0.9110	0.8806	0.9126
Ensemble	0.6695	0.6760	0.6540	0.7162

N / ם ו .14: 41 \sim . .

Measure	biomarker	interaction	Ν	coef	se	р	p<.05	
ftnd_1	NMR_pred	ethnicity	1861	0.1120	0.2506	0.6549		
ftnd 1	NMR pred	sex	1861	-0.0342	0.1553	0.8259		
ftnd 4	NMR pred	ethnicity	1862	0.0830	0.2202	0.7064		
ftnd 4	NMR pred	sex	1862	0.0684	0.1364	0.6165		
ftnd total	NMR pred	ethnicity	1843	0.2192	0.6346	0.7298		
ftnd total	NMR pred	sex	1843	0.3025	0.3888	0.4366		
tds score	NMR pred	ethnicity	1856	-0.0523	0.5605	0.9256		
tds_score	NMR pred	sex	1856	-0.0745	0.3477	0.8305		
wisdm auto	NMR pred	ethnicity	1860	-0.0562	0.4861	0.9079		
wisdm_auto	NMR pred	sex	1860	-0.1746	0.3012	0.5621		
wisdm_control	NMR pred	ethnicity	1860	-0.1805	0.4102	0.6600		
wisdm_control	NMR pred	sex	1860	0 2146	0 2541	0.3985		
wisdm_craving	NMR pred	ethnicity	1860	-0.3107	0.3864	0.4215		
wisdm_craving	NMR pred	sex	1860	-0 1586	0 2395	0.5080		
wisdm_tolerance	NMR pred	ethnicity	1860	0.0636	0 4104	0.8769		
wisdm_tolerance	NMR pred	sex	1860	0 2283	0 2543	0.3694		
wisdm_score	NMR pred	ethnicity	1860	-4 2928	3 8115	0 2602		
wisdm_score	NMR pred	sex	1860	-2 2567	2 3623	0.3396		
ndss continuity	NMR pred	ethnicity	1815	0.6245	0 3054	0.0000	*	
ndss_continuity	NMR pred	Sey	1815	0.0240	0.0004	0.0410	*	
ndss_drive	NMR pred	ethnicity	1809	0.1634	0.3149	0.6038		
ndss_drive	NMR pred	Sey	1809	0.1004	0.0140	0.0000		
ndss_arriority	NMR pred	ethnicity	1820	0.0120	0.1010	0.3259		
ndss_priority	NMR pred	SOV	1820	-0.012-	0.0173	0.0200		
ndes storeotypy	NMR pred	othnicity	1813	-0.0331	0.1904	0.0303	*	
ndes stereotypy	NMR pred	enimony	1813	0.0220	0.01011	0.0440		
ndes tolerance	NMR pred	othnicity	1814	0.07.04	0.1311	0.0302		
ndss_tolerance	NMR pred	SOV	1814	-0.1221	0.0449	0.5009		
ndes score	NMR pred	othnicity	1800	-0.1221	0.2070	0.0009		
ndes score	NMR pred	enimony	1800	-0.2040	0.2014	0.4072		
ftnd 1	TNE pred	othnicity	1861	0.0268	0.1703	0.7020		
ftnd 1	TNE_pred	cov	1961	0.0200	0.0343	0.0200		
ftnd 4	TNE_pred	othnicity	1862	0.0214	0.0331	0.0452		
ftnd 4	TNE_pred	cov	1962	0.0013	0.0404	0.9755		
ftnd_total	TNE_pred	othnicity	1843	-0.0440	0.0303	0.7264		
ftnd_total	TNE_pred	ennicity	18/3	-0.0409	0.1337	0.7204		
tds score	TNE_pred	othnicity	1856	-0.1010	0.0079	0.2474		
tds_score	TNE_pred	SOV	1856	-0.1373	0.1223	0.1004		
wiedm auto	TNE_pred	othnicity	1860	0.0580	0.0700	0.5800		
wisdm_auto	TNE_pred	cov	1860	0.0000	0.1000	0.0003		
wisdm_control	TNE pred	othnicity	1860	-0.0201	0.0002	0.7466		
wisdm_control	TNE pred	SOV	1860	0.0201	0.0576	0.7400		
wisdm_craving	TNE pred	ethnicity	1860	-0.0400	0.0070	0.4720		
wisdm_craving	TNE_pred	Sex	1860	-0.0400	0.0040	0.0071		
wisdm_olerance	TNE_pred	ethnicity	1860	0.0000	0.0042	0.8441		
wisdm_tolerance	TNE pred	sex	1860	-0.0253	0.0575	0.6600		
wisdm_score	TNE pred	ethnicity	1860	-0 7279	0.8364	0.3842		
wisdm_score	TNE pred	sex	1860	0.6810	0.5348	0 2030		
ndss continuity	TNE pred	ethnicity	1815	0.0010	0.0682	0 1418		
ndss_continuity	TNE_pred	Sex	1815	0.1002	0.0002	0.1206		
ndss_continuity	TNE_pred	ethnicity	1809	-0.0000	0.0427	0.1200		
ndss_drive	TNE_pred	Sex	1809	-0.0177	0.0000	0.6859		
ndss_nriority	TNF pred	ethnicity	1820	0.0137	0.0690	0.8429		
ndss priority	TNF pred	Sex	1820	-0.0589	0.0438	0 1784		
ndss sterentvnv	TNF pred	ethnicity	1813	-0 1994	0.0400	0.0036	*	
ndss sterentvnv	TNF pred	Sex	1813	0.0533	0.0435	0 2207		
ndss tolerance	TNF pred	ethnicity	181/	0.0000	0.0765	0.2207		
ndss tolerance	TNF pred	Sex	1814	-0.0408	0.0474	0.3895		
ndss score	TNF pred	ethnicity	1800	-0 1194	0.0621	0.0547		
ndss score	TNE pred	sex	1800	-0.0172	0.0388	0.6565		
····	··							

Supplementary Table 5: Predicted Biomarker Interactions, Association with Nicotine Dependence

Supplementary Table 5: Predicted Biomarker Interactions in Association with Nicotine Dependence

Label	Definition
Measure	Nicotine Dependence item, subscale or total scale
Biomarker	Predicted nicotine biomarker
Interaction	Demographic variable tested for Interaction
Ν	N Participants with Nicotine Dependence
coef	Coefficient of interaction variable
se	Standard Error of Interaction variable
р	P value of interaction variable
p<.05	Identifies nominally significant interaction variable
ftnd_1	Time To First Cigarette item in the Fagerström Test for Nicotine Dependence (FTND)
ftnd_4	Cigarettes Per Day item in the FTND
ftnd_total	FTND total score
tds_score	Tobacco Dependence Scale (TDS) Automaticity subscale of the Wisconsin Inventory of Smoking Dependence Motives
wisdm_auto	(WISDM)
wisdm_control	Loss of Control subscale, WISDM
wisdm_craving	Cravings subscale, WISDM
wisdm_tolerance	Tolerance subscale, WISDM
wisdm_score	Total score of the four Primary Dependence Motives of the WISDM
ndss_continuity	Continuity subscale of the Nicotine Dependence Syndrome Scale (NDSS)
ndss_drive	Drive subscale, NDSS
ndss_priority	Priority subscale, NDSS
ndss_stereotypy	Stereotypy subscale, NDSS
ndss_tolerance	Tolerance subscale, NDSS
ndss_score	Total score of the NDSS
NMR_pred	Predicted uNMR
TNE_pred	Predicted TNE

RCT	ED SR	Depend	TTURC2	Р
NCT ID	01621009	01621022	00332644	no test
Citation	(McCarthy	(Piper et al.	(Piper et al.	no test
	et al. 2008)	2007)	2009)	
Site	Madison	Milwaukee	Both cities	no test
Years of	2001-2002	2001-2002	2005-2007	no test
Interview				
N (%) GSS	186 (9.98%)	376 (20.17%)	1302 (69.85%)	no test
% of RCT	40.2% of 463	61.8% of 608	86.6% of 1504	<i>P</i> < .001**
Age				
GSS Age	37.77 (11.19)	41.54 (10.65)	44.75 (11.23)	<i>P</i> < .001 ^α
RCT Age*	39.4 (11.3)	41.8 (11.3)	44.7 (11.1)	<i>P</i> < .001 ^α
				n.s. GSSvRCT
Sex				
GSS Sex	97 (52.2%)	218 (58.0%)	775 (59.5%)	<i>n.s.</i> in GSS
RCT Sex*	233 (50.3%)	352 (57.9%)	876 (58.2%)	mixed ***
				n.s. GSSvRCT
Ethnicity				
GSS Black	10 (5.38%)	88 (23.4%)	162 (12.4%)	<i>P</i> < .005 ^β
GSS White	176 (94.6%)	288 (76.6%)	1140 (87.6%)	
RCT Black*	26 (5.94%)	130 (22.5%)	204 (14.0%)	<i>P</i> < .001 ^β
RCT White*	412 (94.1%)	449 (77.6%)	1258 (86.0%)	
				n.s. GSSvRCT

Supplementary Table 6: Demographics of UW-TTURC Sample, by RCT

*From original publications. **N participating vs not participating vs RCT χ^2 test. ***ED SR vs Depend and ED SR vs TTURC2, *P* < .05; Depend vs TTURC2, *n.s.*. ^{*a*}Age comparisons by *t* test. ^{*b*}Ethnicity comparisons by χ^2 test.

	Female	Male	Black	White
Ν	1,090	774	260	1,604
Age	42.94 (11.19)	44.07 (11.50)*	45.22 (9.30)	43.11 (11.60)**
Sex (F)	1090 (58.48%)	774 (41.52%)**	174 (66.92%)	916 (57.10%)**
Ethnicity			260 (13.95%)	1604 (86.05%)
Hispanic	12 (1.10%)	12 (1.55%)	4 (1.53%)	20 (1.25%)
Age of	14.25 (3.71)	14.16 (3.74)	14.89 (4.27)	14.10 (3.62)
Initiation				
Years Smoked	28.68 (11.16)	29.93 (11.77)*	30.32 (10.39)	29.02 (11.58)

Supplementary Table 7: Demographics of the GSS, by Sex and by Ethnicity

*P < .05, **P < .005. Female:Male and Black:White P indicator superscripts in Male and in White columns, respectively.

	All	Female	Male	Black	White
FTND N	1843	1077	766	254	1589
M (SD)	5.41 (2.16)	5.25 (2.11)	5.65 (2.21) ^y	5.54 (2.04)	5.39 (2.18)
CPD N	1862	1090	772	260	1602
1-10 N (%)	99 (5.3)	75 (6.9)	24 (3.1) ^γ	29 (11.2)	70 (4.4) ^γ
11-20 N (%)	988 (53.1)	650 (59.6)	338 (43.8)	164 (63.1)	824 (51.4)
21-30 N (%)	533 (28.6)	272 (25.0)	261 (33.8)	49 (18.9)	484 (30.2)
≥ 31 N (%)	242 (13.0)	93 (8.5)	149 (19.3)	18 (6.9)	224 (14.0)
TTFC N	1861	1089	772	260	1601
> 60 N (%)	137 (7.4)	84 (7.7)	53 (6.9)	10 (3.9)	127 (7.9) ^γ
31-60 N (%)	285 (15.3)	167 (15.3)	118 (15.3)	36 (13.9)	249 (15.6)
6-30 N (%)	875 (47.0)	500 (45.9)	375 (48.6)	108 (41.5)	767 (47.9)
0-5 N (%)	564 (30.3)	338 (31.0)	226 (29.3)	106 (40.8)	458 (28.6)

Supplementary Table 8: FTND, CPD, and TTFC, by Sex and by Ethnicity

 $^{\alpha}P$ < .05, $^{\beta}P$ < .005, $^{\gamma}P$ < .001. Female:Male and Black:White *P* indicator superscripts in

Male and in White columns, respectively.

	All*	Female	Male	Black	White
Ν	1856	1086	770	260	1596
TDS	6.81 (1.91)	6.95 (1.85)	6.62 (1.98) ^γ	6.63 (2.25)	6.84 (1.85) ^α

Supplementary Table 9: TDS Dependence, by Sex and by Ethnicity

*M (SD). ${}^{\alpha}P$ < .05, ${}^{\beta}P$ < .005, ${}^{\gamma}P$ < .001. Female:Male and Black:White *P* indicator superscripts in Male and in White columns, respectively.

	All*	Female	Male	Black	White
Ν	1860	1089	771	260	1600
Automaticity	4.60 (1.68)	4.67 (1.68)	4.50 (1.68) ^α	4.66 (1.77)	4.59 (1.67)
Loss Of	5.15 (1.43)	5.28 (1.42)	4.98 (1.44) ^γ	4.93 (1.63)	5.19 (1.40) ^y
Control					
Craving	4.94 (1.31)	4.96 (1.32)	4.90 (1.30)	4.96 (1.53)	4.93 (1.27)
Tolerance	4.94 (1.41)	4.95 (1.44)	4.92 (1.37)	5.19 (1.43)	4.89 (1.40) ^α
PDM Total	19.62 (4.75)	19.86 (4.70)	19.29 (4.80) ^γ	19.74 (5.37)	19.61 (4.64)

Supplementary Table 10: WISDM Primary Dependence Motives, by Sex and by Ethnicity

*M (SD). ${}^{\alpha}P$ < .05, ${}^{\beta}P$ < .005, ${}^{\gamma}P$ < .001. Female:Male and Black:White *P* indicator superscripts in Male and in White columns, respectively.

	All*	Female	Male	Black	White
Ν	1809	1052	757	244	1565
Drive	0.04 (1.04)	0.11 (1.05)	-0.05 (1.01) ^γ	-0.07 (1.15)	0.06(1.02)
Ν	1820	1062	758	251	1569
Priority	0.02 (1.06)	0.06 (1.09)	-0.04 (1.02)	0.29 (1.16)	-0.03 (1.04) ^y
Ν	1814	1055	759	244	????
Tolerance	-0.36 (1.13)	-0.40 (1.14)	-0.31 (1.12)	-0.28 (1.05)	-0.37 (1.14)
Ν	1815	1061	754	247	1568
Continuity	-0.08 (1.02)	-0.13 (1.04)	0.00 (1.00) ^α	-0.31 (1.07)	-0.04 (1.01) ^y
Ν	1813	1060	753	249	1564
Stereotypy	-0.09 (1.05)	-0.19 (1.06)	0.04 (1.02) ^γ	0.13 (1.12)	-0.13 (1.03) ^γ
Ν	1800	1050	750	243	1557
NDSS Total	-0.17 (0.92)	-0.18 (0.92)	-0.17 (0.92)	-0.07 (1.07)	-0.19 (0.89)

Supplementary Table 11: NDSS Scales in the GSS Participants, by Sex and by Ethnicity

*M (SD). ^{*a*}*P* < .05, ^{*β*}*P* < .005, ^{*γ*}*P* < .001. Female:Male and Black:White *P* indicator superscripts in Male and in White columns, respectively.

FIGURE LEGENDS

Supplementary Figure 1. Regression Tree Model, Urinary Nicotine Metabolite Ratio, Without CPD

Supplementary Figure 2. Regression Tree Model, Total Nicotine Equivalents, Without CPD

