Stochastic Generalized Active Space Self-Consistent Field: Theory and Application

Oskar Weser Kai Guther Khaldoon Ghanem Giovanni Li Manni

1 Computational Details

1.1 Benzene stack

Generally contracted atomic natural orbitals (ANO-RCC) of split-valence, double- ζ plus polarization quality were used (ANO-RCC-VDZP)[1, 2], resulting in a total of 570 basis functions. Scalar relativistic effects were included with the Douglas-Kroll-Hess integral correction. Evaluation of electron repulsion integrals has been accelerated by using the resolution-of-identity Cholesky decomposition with a threshold of $1 \cdot 10^{-3} E_{\rm h}$.[3–7] For the SCF procedure, a convergence threshold of $1 \cdot 10^{-4} E_{\rm h}$ over the energy was utilized. The Stochastic-GAS calculations were performed using our new GAS-PCHB algorithm, while the full CAS calculations were performed using the conventional i-FCIQMC algorithm with PCHB excitation generator. A maximum walker number of $2 \cdot 10^8$ has been utilized. The semi-stochastic space consisted of $1 \cdot 10^4$ configurations. The adaptive shift method was employed with a offset value $\Delta = S/2$, where S is the shift value. RDMs were sampled using the non-variational initiator approximation expression:

$$\overline{d}_{PQRS} = \sum_{D_{\text{init}} \in I} \frac{\langle D_{\text{init}} | a_P^{\dagger} a_R^{\dagger} a_S a_Q | \Psi_{\text{total}} \rangle}{\langle D_{\text{init}} | \Psi_{\text{total}} \rangle}$$
(1.1)

as already reported in reference [8]. The energies reported in this manuscript were calculated from these RDMs.

Coordinates The cartesian coordinates for a distance of 4.5 Å can be found in benzene_4.5_Ang.xyz.

Molcas input The OpenMolcas input to prepare the electronic integrals and to perform the orbital SCF optimization is give in benzene_4.5_Ang.inp.

NECI input The NECI input for solving the CI problem with FCIQMC is given in benzene_4.5_Ang.FciInp. To vary the interspace excitations the arguments to the GAS-SPEC keyword have to be adjusted.

Starting orbitals The starting orbitals are supplied in the OpenMolcas RasOrb fileformat. The file is called benzene_stack.InpOrb. These orbitals come from five times repeating the MO coefficient matrix of a (6, 6) CASSCF calculation on a single benzene. The orbitals are *not orthonormal*. The given Molcas input orthonormalizes the starting orbitals depending on the distance of fragments and the resulting AO-overlap.

1.2 MRCI on Fe-porphyrin

All calculations were performed on the same $\text{Fe}^{(\text{II})}$ -porphyrin model complex as in our earlier work.[8, 9] The pyrrole β -carbon atoms were removed and remaining bonds were capped with H-atoms. The Fe–N bond length was kept at 1.989 Å which is closer to the triplet's equilibrium geometry. The molecule was placed into the xy plane with ligand N-atoms on the x and y axes. The point group of the planar molecule is D_{4h} , however, calculations were carried out using the D_{2h} Abelian point group, the largest our programs can handle.

Basis set and integral specifications have been chosen as in our earlier work [9]. Generally contracted atomic natural orbitals (ANO-RCC) of split-valence triple- ζ plus polarization quality, were utilized (ANO-RCC-VTZP)[1, 2], resulting in a total of 707 basis functions. Scalar relativistic effects were included with the Douglas-Kroll-Hess integral correction. Evaluation of electron repulsion integrals has been accelerated by using the resolution-of-identity Cholesky decomposition with a threshold of $1 \cdot 10^{-3} E_{\rm h}$.[3–7]

The FCIQMC RASCI-optimization was performed using our new GAS-PCHB excitation generator with initiator approximation and a maximum walker number of $1 \cdot 10^9$. The semi-stochastic space consisted of $1 \cdot 10^7$ configurations. The adaptive shift method was applied with an offset of half the correlation energy. The projected energy is reported for the energy results.

Due to the large scale of this calculation we also want to report the computational cost of the FCIQMC dynamics with $1 \cdot 10^9$ walkers. They were performed on the Max-Planck Computing and Data Facility (MPCDF) HPC system Cobra using 256 nodes, each having two Intel Xeon Gold 6148 (20 cores, 2.4 GHz) processors and 192 GB DDR4 RAM, with the nodes connected through Intel OmniPath interconnect. The calculations used 38 processes and 170 GB of memory per node and ran for $5 \cdot 23$ h resulting in a total of $1.1 \cdot 10^6$ core hours. Since NECI is near-linearly parallelized[10], the dynamics with fewer walkers were performed on in-house clusters.

Coordinates The cartesian coordinates can be found in FePor.xyz.

Molcas input The OpenMolcas inputs to prepare the electronic integrals and to perform the orbital SCF optimizations for the two spin states can be found in quint.inp and tripl.inp.

NECI input The NECI inputs for solving the CI problem with FCIQMC for the two spin states can be found in quint.FciInp and tripl.FciInp.

Starting orbitals The (32, 34) CASSCF converged starting orbitals are supplied in the OpenMolcas RasOrb fileformat. The files are called quint.InpOrb and tripl.InpOrb for the two respective spin states.

1.3 Spin exchange in Fe_4S_4

 N_4 The basis set consisted of generally contracted minimal atomic natural orbitals (ANO-RCC-MB), resulting in a total of 20 basis functions.[1, 2] The calculations were performed with conventional CI in a spin pure basis using OpenMolcas and with FCIQMC in an SD basis using NECI.[10, 11]

The FCIQMC CI-optimization was performed using our new GAS-PCHB and the existing FCI PCHB excitation generator with initiator approximation and a maximum walker number of $1 \cdot 10^5$. The semi-stochastic space consisted of $1 \cdot 10^5$ configurations. The projected energy is reported for the energy results.

 Fe_4S_4 The cluster is depicted in Figure 1.

Figure 1: Structure of the Fe_4S_4 cluster.

The basis set consisted of generally contracted minimal atomic natural orbitals on all atoms except iron, where split-valence, double- ζ plus polarization quality functions were used (ANO-RCC-MB, Fe.ANO-RCC-VDZP)[1, 2], resulting in a total of 212 basis functions.

The FCIQMC CI-optimization was performed using our new GAS-PCHB and the existing FCI PCHB excitation generator with initiator approximation and a maximum walker number of $5 \cdot 10^7$. The semi-stochastic space consisted of $1 \cdot 10^4$ configurations. The projected energy is reported for the energy results.

Coordinates The coordinates are saved in Fe4S4.xyz.

Molcas input The OpenMolcas input to prepare the electronic integrals and to perform the orbital SCF optimization for the s = 0 state can be found in Fe4S4.inp. The input has to be adjusted for the other spin states. The spin argument changes the spin and the FileOrb argument changes the file for the input orbitals.

NECI input The NECI input for solving the CI problem with FCIQMC is given in Fe4S4.FciInp. To vary the interspace excitations the arguments to the GAS-SPEC keyword have to be adjusted.

Starting orbitals The CASSCF optimized starting orbitals are supplied in the OpenMolcas RasOrb fileformat. The files are called Fe4S4_S_\${s}.InpOrb where \${s} goes from 0 to 10 and denotes the spin state.

2 Results

$d/{ m \AA}$	$n_{\rm exc}$	$E/E_{\rm h}$	SCF	constraints
3.0	0	-1154.504927	Т	cumulative
3.0	1	-1154.513659	Т	cumulative
3.0	1	-1154.513630	Т	local
3.0	2	-1154.513777	т	cumulative
3.0	3	-1154.513771	Т	cumulative
3.0	CAS	-1154.513764	т	cumulative
3.5	0	-1154.631333	Ť	cumulative
3.5	ĩ	-1154633592	Ť	cumulative
3.5	1	-1154633644	Ť	local
3.5	2	-1154633661	Ť	cumulative
3.5	3	-1154.633.657	Ť	cumulative
3.5	CAS	-1154.033.057 -1154.633.655	Ť	cumulative
4.5	OAD	1154.660.400	T	cumulative
4.5	1	-1154.009490	Ť	cumulative
4.5	1	-1154.009.055	T	cumulative
4.5	1	-1154.009.051	I T	local
4.5	2	-1154.669.655	T'	cumulative
4.5	CAS	-1154.669656	T	cumulative
5.0	0	-1154.671701	T	cumulative
5.0	1	-1154.671740	т	cumulative
5.0	1	-1154.671739	Т	local
5.0	2	-1154.671740	т	cumulative
5.0	CAS	-1154.671740	т	cumulative
6.0	0	-1154.673126	Т	cumulative
6.0	1	-1154.673125	Т	cumulative
6.0	1	-1154.673130	т	local
6.0	2	-1154.673128	т	cumulative
6.0	CAS	-1154.673128	Т	cumulative
20.0	0	-1154.674761	т	cumulative
20.0	CAS	-1154.674795	Ť	cumulative
3.0	0	-1154 483 846	F	cumulative
3.0	1	-1154.400.365	F	cumulative
3.0	2	-1154.499.503 -1154.400.811	F	cumulative
2.0	2	1154 400 810	Г Г	cumulative
3.0	C A C	-1154.499.810	F	cumulative
3.0	CAS	-1154.500 000	г	cumulative
3.5	0	-1154.624 159	F	cumulative
3.5	1	-1154.628593	F	cumulative
3.5	2	-1154.628614	F	cumulative
3.5	3	-1154.628631	F	cumulative
3.5	CAS	-1154.628730	F	cumulative
4.5	0	-1154.668048	F	cumulative
4.5	1	-1154.668367	F	cumulative
4.5	2	-1154.668363	F	cumulative
4.5	CAS	-1154.668432	F	cumulative
5.0	0	-1154.670944	F	cumulative
5.0	1	-1154.671024	F	cumulative
5.0	2	-1154.671024	F	cumulative
5.0	CAS	-1154.671076	F	cumulative
6.0	0	-1154.672910	F	cumulative
6.0	1	-1154 672 018	F	cumulative
6.0	2	-1154.672.019	F	cumulative
6.0	C AS	-1154.072.918	r F	aumulative
0.0	CAS	-1104.072.908	г	cumulative
20.0	0	-1104.074700	г	cumulative

 Table 1: Results for the stack of benzene.

	Def	fined			Empirical
Algorithm	S	S_z	n _{exc}	$E/E_{\rm h}$	S
Davidson	0		CAS	-217.691055	
Davidson	1		CAS	$-217.690423^{\rm a}$	
Davidson	2		CAS	-217.689159	
Davidson	3		CAS	-217.687262	
Davidson	4		CAS	-217.684734	
Davidson	5		CAS	-217.681574	
Davidson	6		CAS	-217.677788	
Davidson	0		0	-217.669068	
Davidson	1		0	-217.669443	
Davidson	2		0	-217.670281	
Davidson	3		0	-217.671504	
Davidson	4		0	-217.673192	
Davidson	5		0	-217.675255	
Davidson	6		õ	-217.677788	
Davidson	0		1	-217.690918	
Davidson	1		1	-217.690300	
Davidson	2		1	-217.689063	
Davidson	3		1	-217.687202	
Davidson	4		1	-217.684709	
Davidson	5		1	-217.681574	
Davidson	6		1	-217.677788	
Davidson	õ		2	-217.691055	
Davidson	1		2	-217 689 963 ^b	
Davidson	2		2	-217 689 159	
Davidson	3		2	-217.687.262	
Davidson	4		2	-217.007.202 -217.684.734	
Davidson	5		2	-217.681.574	
Davidson	6		2	-217.677788	
	-		~ . ~		
FCIQMC		0	CAS	-217.690927	0.017992
FCIQMC		1	CAS	-217.690294	0.999335
FCIQMC		2	CAS	-217.689108	2.000011
FCIQMC		3	CAS	-217.687259	2.999996
FCIQMC		4	CAS	-217.684734	4.000000
FCIQMC		5	CAS	-217.681574	5.000000
FCIQMC		6	CAS	-217.677788	6.000000
FCIQMC		0	1	-217.690805	0.014956
FCIQMC		1	1	-217.690190	0.998939
FCIQMC		2	1	-217.689025	2.000015
FCIQMC		3	1	-217.687200	3.000002
FCIQMC		4	1	-217.684709	4.000000
FCIQMC		5	1	-217.681574	5.000000
FCIQMC		6	1	-217.677788	6.000 000
FCIQMC		0	2	-217.690927	0.018 142
FCIQMC		1	2	-217.690294	1.001640
FCIQMC		2	2	-217.689111	2.000047
FCIQMC		3	2	-217.687259	2.999990
FCIQMC		4	2	-217.684734	4.000000
FCIQMC		5	2	-217.681574	5.000000
FCIQMC		6	2	-217.677788	6.000000

Table 2: Results for the N_4 tetrahedron.

^aDavidson CI optimization was in a local minimum and had to be restarted with the CI-vector of the Davidson GAS $n_{\rm exc} = 1$ calculation.

^bDavidson CI optimization was in a local minimum. For technical reasons it could not be restarted from converged CI-solutions.

basis	S	$n_{\rm exc}$	$E/E_{ m h}$	$\sigma(E)/\mathrm{m}E_\mathrm{h}$	$(E - E(\text{GUGA FCI}))/\text{m}E_{\text{h}}$
slater	0	1	-8432.54411810	0.00080	1.05553
slater	0	2	-8432.54459286	0.00071	0.58077
slater	0	CAS	-8432.54459396	0.00079	0.57967
slater	1	1	-8432.54311601	0.00755	1.51837
slater	1	2	-8432.54350770	0.00791	1.12668
slater	1	CAS	-8432.54351238	0.00577	1.12200
slater	2	1	-8432.54200918	0.08352	1.57917
slater	2	2	-8432.54224563	0.03242	1.34272
slater	2	CAS	-8432.54225342	0.07292	1.33493
slater	3	1	-8432.54095658	0.13840	1.11660
slater	3	2	-8432.54123450	0.15041	0.83868
slater	3	CAS	-8432.54134563	0.10314	0.72755
slater	4	1	-8432.53964877	0.07697	0.52708
slater	4	2	-8432.53982452	0.09787	0.35133
slater	4	CAS	-8432.53993122	0.04333	0.24463
slater	5	1	-8432.53765165	0.04632	0.30189
slater	5	2	-8432.53777222	0.02443	0.18132
slater	5	CAS	-8432.53779243	0.02172	0.16111
slater	6	1	-8432.53525882	0.01031	0.21119
slater	6	2	-8432.53551695	0.04561	-0.04694
slater	6	CAS	-8432.53550026	0.02918	-0.03025
slater	7	1	-8432.53272305	0.02581	0.06260
slater	7	2	-8432.53275652	0.04259	0.02913
slater	7	CAS	-8432.53278919	0.00508	-0.00354
slater	8	1	-8432.52997451	0.00143	0.02600
slater	8	2	-8432.52999146	0.00161	0.00905
slater	8	CAS	-8432.52996841	0.00248	0.03210
slater	9	1	-8432.52720956	0.00044	0.00510
slater	9	2	-8432.52721032	0.00032	0.00434
slater	9	CAS	-8432.52722031	0.00031	-0.00565
slater	10	1	-8432.52452663	0.00000	0.00025
slater	10	2	-8432.52452663	0.00000	0.00025
slater	10	CAS	-8432.52452663	0.00000	0.00025
GUGA	0	CAS	-8432.54517363		0
GUGA	1	CAS	-8432.54463438		0
GUGA	2	CAS	-8432.54358835		0
GUGA	3	CAS	-8432.54207318		0
GUGA	4	CAS	-8432.54017585		0
GUGA	5	CAS	-8432.53795354		0
GUGA	6	CAS	-8432.53547001		0
GUGA	7	CAS	-8432.53278565		0
GUGA	8	CAS	-8432.53000051		0
GUGA	9	CAS	-8432.52721466		0
GUGA	10	CAS	-8432.52452688		0

Table 3: Results for the Fe_4S_4 cluster. The spin-pure GUGA results are taken from
reference [12].

3 Evaluate \hat{S}^2 with 2-RDM

The aim is to bring the operator into the same format as the reduced density matrices. We start with

$$\hat{S}^2 = \hat{S}_+ \hat{S}_- + \hat{S}_z \left(\hat{S}_z - 1 \right) \tag{3.1}$$

and

$$\hat{S}_{+} = \sum_{p} a^{\dagger}_{p\alpha} a_{p\beta}$$
$$\hat{S}_{-} = \sum_{p} a^{\dagger}_{p\beta} a_{p\alpha}$$
$$\hat{S}_{z} = \frac{1}{2} \sum_{p} \left(a^{\dagger}_{p\alpha} a_{p\alpha} - a^{\dagger}_{p\beta} a_{p\beta} \right)$$
(3.2)

We evaluate:

$$\hat{S}_{+}\hat{S}_{-} = \sum_{p} a^{\dagger}_{p\alpha}a_{p\alpha} - \sum_{pq} a^{\dagger}_{p\alpha}a^{\dagger}_{q\beta}a_{p\beta}a_{q\alpha}$$
(3.3)

and

$$4\hat{S}_{z}\left(\hat{S}_{z}-2\right) = \sum_{pq} \left(a_{p\alpha}^{\dagger}a_{p\alpha}a_{q\alpha}^{\dagger}a_{q\alpha} - a_{p\alpha}^{\dagger}a_{p\alpha}a_{q\beta}^{\dagger}a_{q\beta} - a_{p\beta}^{\dagger}a_{p\beta}a_{q\alpha}^{\dagger}a_{q\alpha} + a_{p\beta}^{\dagger}a_{p\beta}a_{q\beta}^{\dagger}a_{q\beta}\right)$$
$$-2\sum_{p} \left(a_{p\alpha}^{\dagger}a_{p\alpha} - a_{p\beta}^{\dagger}a_{p\beta}\right) \quad .$$
(3.4)

We note the following identities:

$$a_{p\alpha}^{\dagger}a_{p\alpha}a_{q\alpha}^{\dagger}a_{q\alpha} = \delta^{pq}a_{p\alpha}^{\dagger}a_{q\alpha} - a_{p\alpha}^{\dagger}a_{q\alpha}^{\dagger}a_{p\alpha}a_{q\alpha}$$
$$-a_{p\alpha}^{\dagger}a_{p\alpha}a_{q\beta}^{\dagger}a_{q\beta} = -\underbrace{\delta^{p\alpha q\beta}a_{p\alpha}^{\dagger}a_{q\beta}}_{0} + a_{p\alpha}^{\dagger}a_{q\beta}^{\dagger}a_{p\alpha}a_{q\beta} = a_{p\alpha}^{\dagger}a_{q\beta}^{\dagger}a_{p\alpha}a_{q\beta}$$
$$-a_{p\beta}^{\dagger}a_{p\beta}a_{q\alpha}^{\dagger}a_{q\alpha} = -\underbrace{\delta^{p\beta q\alpha}a_{p\beta}^{\dagger}a_{q\alpha}}_{0} + a_{p\beta}^{\dagger}a_{q\alpha}^{\dagger}a_{p\beta}a_{q\alpha} = a_{p\beta}^{\dagger}a_{q\alpha}^{\dagger}a_{p\beta}a_{q\alpha}$$
$$(3.5)$$
$$a_{p\beta}^{\dagger}a_{p\beta}a_{q\beta}^{\dagger}a_{q\beta} = \delta^{pq}a_{p\beta}^{\dagger}a_{q\beta} - a_{p\beta}^{\dagger}a_{q\beta}^{\dagger}a_{p\beta}a_{q\beta}$$

Now we can write:

$$4\hat{S}_{z}\left(\hat{S}_{z}-2\right) = -\sum_{p}a^{\dagger}_{p\alpha}a_{p\alpha} + 3\sum_{p}a^{\dagger}_{p\beta}a_{p\beta}$$
$$-\sum_{p\neq q}\left(a^{\dagger}_{p\alpha}a^{\dagger}_{q\alpha}a_{p\alpha}a_{q\alpha} + a^{\dagger}_{p\beta}a^{\dagger}_{q\beta}a_{p\beta}a_{q\beta}\right)$$
$$+\sum_{pq}\left(a^{\dagger}_{p\alpha}a^{\dagger}_{q\beta}a_{p\alpha}a_{q\beta} + a^{\dagger}_{p\beta}a^{\dagger}_{q\alpha}a_{p\beta}a_{q\alpha}\right) \quad .$$
(3.6)

We conclude:

$$\hat{S}^{2} = \hat{S}_{+}\hat{S}_{-} + \hat{S}_{z}\left(\hat{S}_{z} - 1\right)$$

$$= \frac{3}{4}\sum_{p}\left(a^{\dagger}_{p\alpha}a_{p\alpha} + a^{\dagger}_{p\beta}a_{p\beta}\right)$$

$$- \frac{1}{4}\sum_{p\neq q}\left(a^{\dagger}_{p\alpha}a^{\dagger}_{q\alpha}a_{p\alpha}a_{q\alpha} + a^{\dagger}_{p\beta}a^{\dagger}_{q\beta}a_{p\beta}a_{q\beta}\right)$$

$$+ \frac{1}{4}\sum_{pq}\left(2a^{\dagger}_{p\alpha}a^{\dagger}_{q\beta}a_{p\alpha}a_{q\beta} - 4a^{\dagger}_{p\alpha}a^{\dagger}_{q\beta}a_{p\beta}a_{q\alpha}\right)$$
(3.7)

References

- (1) Widmark, P.-O.; Malmqvist, P.-Å.; Roos, B. O. Theoret. Chim. Acta 1990, 77, 291–306.
- (2) Roos, B. O.; Lindh, R.; Malmqvist, P.-Å.; Veryazov, V.; Widmark, P.-O. J. Phys. Chem. A 2004, 108, 2851–2858.
- (3) Aquilante, F.; Pedersen, T. B.; Lindh, R. J. Chem. Phys. 2007, 126, 194106.
- (4) Aquilante, F.; Lindh, R.; Bondo Pedersen, T. J. Chem. Phys. 2007, 127, 114107.
- (5) Aquilante, F.; Pedersen, T. B.; Lindh, R.; Roos, B. O.; Sánchez de Merás, A.; Koch, H. J. Chem. Phys. 2008, 129, 024113.
- (6) Aquilante, F.; Gagliardi, L.; Pedersen, T. B.; Lindh, R. J. Chem. Phys. 2009, 130, 154107.
- (7) Pedersen, T. B.; Aquilante, F.; Lindh, R. *Theor Chem Acc* **2009**, *124*, 1–10.
- (8) Weser, O.; Freitag, L.; Guther, K.; Alavi, A.; Li Manni, G. Int. J. Quantum Chem. 2021, 121, 26454–26467.
- (9) Li Manni, G.; Alavi, A. J. Phys. Chem. A 2018, 122, 4935–4947.
- (10) Guther, K. et al. J. Chem. Phys. **2020**, 153, 34107–34131.
- (11) Fdez. Galván, I. et al. J. Chem. Theory Comput. 2019, 15, 5925–5964.
- (12) Dobrautz, W.; Weser, O.; Bogdanov, N.; Alavi, A.; Manni, G. L. arXiv 2021, 2106.07775.