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Abstract: A primary criticism of organic agriculture is its lower yield and nutritional quality
compared to conventional systems. Nutritionally, dry pea (Pisum sativum L.) is a rich
source of low digestible carbohydrates, protein, and micronutrients. This study aimed
to evaluate dry pea cultivars and advanced breeding lines using on-farm field
selections to inform the development of biofortified organic cultivars with increased
yield and nutritional quality. A total of 44 dry pea entries were grown in two USDA-
certified organic on-farm locations in South Carolina (SC), USA, for two years. Seed
yield and protein for dry pea ranged from 61 to 3833 kg/ha and 12.6 to 34.2 g/100 g,
respectively, with low heritability estimates. Total prebiotic carbohydrate concentration
ranged from 14.7 to 26.6 g/100 g. A 100-g serving of organic dry pea provides 73.5 to
133% of the recommended daily allowance (%RDA) of prebiotic carbohydrates.
Heritability estimates for individual prebiotic carbohydrates ranged from 0.27 to 0.82.
Organic dry peas are rich in minerals (Fe: 1.9-26.2 mg/100 g; Zn: 1.1-7.5 mg/100 g)
and have low to moderate concentrations of phytic acid (18.8-516 mg/100 g).
Significant cultivar, location, and year effects were evident for grain yield, thousand
seed weight (TSW), and protein, but effects for other nutritional traits varied with
genotype, environment, and interactions. “AAC Carver,” “Jetset,” and “Mystique” were
the best-adapted cultivars with high yield, and “CDC Striker” had the highest protein
concentration; these cultivars should be incorporated into organic dry pea breeding
programs to develop cultivars suitable for organic production. In conclusion, organic
dry pea has potential as a winter cash crop in southern climates but will require
selecting diverse genetic material and location sourcing to develop improved cultivars
with  higher yield, disease resistance, and nutritional quality.
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Abstract: A primary criticism of organic agriculture is its lower yield and nutritional quality 26 

compared to conventional systems. Nutritionally, dry pea (Pisum sativum L.) is a rich source of 27 

low digestible carbohydrates, protein, and micronutrients. This study aimed to evaluate dry pea 28 

cultivars and advanced breeding lines using on-farm field selections to inform the development of 29 

biofortified organic cultivars with increased yield and nutritional quality. A total of 44 dry pea 30 

entries were grown in two USDA-certified organic on-farm locations in South Carolina (SC), 31 

USA, for two years. Seed yield and protein for dry pea ranged from 61 to 3833 kg/ha and 12.6 to 32 

34.2 g/100 g, respectively, with low heritability estimates. Total prebiotic carbohydrate 33 

concentration ranged from 14.7 to 26.6 g/100 g. A 100-g serving of organic dry pea provides 73.5 34 

to 133% of the recommended daily allowance (%RDA) of prebiotic carbohydrates. Heritability 35 

estimates for individual prebiotic carbohydrates ranged from 0.27 to 0.82. Organic dry peas are 36 

rich in minerals (Fe: 1.9-26.2 mg/100 g; Zn: 1.1-7.5 mg/100 g) and have low to moderate 37 

concentrations of phytic acid (18.8-516 mg/100 g). Significant cultivar, location, and year effects 38 

were evident for grain yield, thousand seed weight (TSW), and protein, but effects for other 39 

nutritional traits varied with genotype, environment, and interactions. “AAC Carver,” “Jetset,” and 40 

“Mystique” were the best-adapted cultivars with high yield, and “CDC Striker” had the highest 41 

protein concentration; these cultivars should be incorporated into organic dry pea breeding 42 

programs to develop cultivars suitable for organic production. In conclusion, organic dry pea has 43 

potential as a winter cash crop in southern climates but will require selecting diverse genetic 44 

material and location sourcing to develop improved cultivars with  higher yield, disease resistance, 45 

and nutritional quality.  46 

Keywords: Plant breeding, organic production, dry pea, biofortification, nutritional breeding, 47 

prebiotic carbohydrates, minerals 48 
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Introduction: Organic agriculture production has increased since the American Organic Foods 54 

Production Act of 1990. The USDA National Organic Standards Board describes organic 55 

agriculture as “an ecological production management system that promotes and enhances 56 

biodiversity, biological cycles, and soil biological activity” (USDA, 2016). Pulse crops, including 57 

dry pea (Pisum sativum L.), increase the ecological, economic, and social benefits of organic 58 

cropping systems via biological nitrogen (N) fixation, enhanced biodiversity, and creation of 59 

healthy food systems that can combat malnutrition and obesity. Organic agriculture is perceived 60 

as more environmentally friendly and sustainable than high-yielding conventional farming 61 

systems. Several studies support that notion, indicating organic farming systems provide a range 62 

of soil, biological, ecological, and other environmental benefits over conventional farming systems 63 

(Murphy et. al., 2007;Crowder and Reginold, 2015).  64 

Dry pea is an excellent source of complex carbohydrates, protein, vitamins, and minerals 65 

(5,6). Dry peas are naturally rich in iron (Fe: 4.6-5.4 mg/100 g), zinc (Zn: 3.9-6.3 mg/100 g), and 66 

magnesium (Mg: 135-143 mg/100 g). In addition, dry pea is naturally low in phytic acid (PA) (4.9-67 

7.1 mg/g of PA or 1.4-2 mg/g of phytic-P) despite very high total P concentrations (3.5-5 mg/g) 68 

(Amarakoon et al., 2012, 2015; Ray et al., 2014; Powers and Thavarajah, 2019; Powers et al., 69 

2020). Nutritionally, dry pea is a rich source of low digestible carbohydrates (12-15 g/100 g), 70 

protein (20-25 g/100 g), and essential amino acids (e.g., lysine and tryptophan) (Powers and 71 

Thavarajah, 2019; Powers et al., 2020). Dry pea, in a symbiotic relationship with Rhizobium 72 

bacteria, can also fix atmospheric nitrogen , providing 75-120 kg of N per hectare for use by 73 

subsequent crops (Peoples et al., 1995). 74 

Consumer demand for pulses has increased due to the demand for plant-based protein (Ohr, 75 

2020). However, organic farming systems face three significant global challenges: (1) maintaining 76 

crop productivity to produce enough food for a projected population of 9 billion in 2050, (2) 77 

delivering the expected nutritional quality as a human food and animal feed, and (3) maintaining 78 

ecological benefits, e.g., N and phosphorus (P) use efficiency (13). A primary criticism of organic 79 

agriculture is lower yield and nutritional quality compared to non-organic systems. Organic grains 80 

use  soil nutrients derived from organic cover crop breakdown. Organic consumers believe organic 81 

foods are nutritionally superior and improve human health compared to conventional foods; 82 

however, organically grown grains typically have lower yields and nutritional quality than 83 

conventionally grown crops (Trewavas, 2001; Murphy et al., 2007; Wiebe et al., 2016). A meta-84 
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analysis of over 10,000 organic farmers representing >800,000 hectares of organic farmland 85 

demonstrated that, averaged among food crops (wheat, maize, common bean, potato, and 86 

vegetables), the organic yield was 80% of conventional yield (Kniss et al., 2016). The organic to 87 

conventional yield ratio varied with crop type, cultivars in production, and growing locations, 88 

highlighting the importance of regional breeding programs for organic production (Kniss et al., 89 

2016). Therefore, it is essential within the organic farming framework to focus on organic plant 90 

breeding, resulting in more suitable cultivars for organic production and delivering enhanced 91 

nutritional quality and nutrient bioavailability to combat micronutrient malnutrition, obesity, and 92 

overweight. 93 

Current world pea production is 14.1 MMT on over 18 million acres, with US dry pea 94 

production representing about 7.1% of world production on 1,052,001 acres (FAO, 2020). The 95 

USDA does not report definite statistics on organic dry pea acreage. Still, the number of acres 96 

devoted to organic pulse crops is approximately 1.5-2% of total dry pea and lentil acreage. In 2011, 97 

certified organic dry peas and lentils were grown on more than 17,877 acres; North Dakota and 98 

Washington led with over 3,500 acres each (19). Yellow dry pea has become one of the popular 99 

cool-season legumes grown in SC during the winter. Carolina soils, especially in the Pee Dee 100 

region, have pH and soil phosphorus (P), potassium (K), and organic matter levels appropriate for 101 

dry pea germination, establishment, and growth. A rotational cropping system of dry pea and cereal 102 

has shown promise in sustainable, non-organic farming operations (20). Winter legumes provide 103 

weed control and available soil N and P for the following summer grain crop (Powers and 104 

Thavarajah, 2019). Developing crops for optimal performance in organic management systems 105 

requires integrating a range of traits, such as yield, agronomy, nutrient use efficiency, disease 106 

resistance, and nutritional quality. However, no breeding efforts have aimed to reduce the yield 107 

gap or increase the nutritional quality (i.e., biofortification) of dry pea for organic farming systems. 108 

Similarly, genomic and translational resources for selecting dry pea cultivars for organic 109 

production are also nonexistent. 110 

With increasing societal nutritional needs for organically grown dry pea, biofortification 111 

brings organic plant breeding and nutritional sciences together to work on the persistent problems 112 

of human nutrition. In addition, biofortification of dry pea under organic systems will improve 113 

human nutrition, provide N and C benefits to subsequent cereal and vegetable crops, and increase 114 

nutrient use efficiency and biodiversity. Current organic pulse production depends on cultivars 115 

Highlight

Highlight
Please provide full form.

Highlight



5 
 

that have been bred for non-organic production, but these are often not suited to organic 116 

production. For example, these cultivars may have a low grain yield, production issues (weed 117 

control, disease resistance, etc.), and low nutritional quality. The objectives of this study were to 118 

evaluate 44 dry pea entries in two on-farm locations for two years to determine grain yield and 119 

nutritional quality for human food, e.g., high protein, low digestible carbohydrates, and minerals 120 

as well as low phytate.  121 

Materials and Methods 122 

Materials: Standards, chemicals, and high-purity solvents used for prebiotic carbohydrate, 123 

minerals, and PA analysis were purchased from Sigma Aldrich Co. (St. Louis, MO), Fisher 124 

Scientific (Waltham, MA), VWR International (Radnor, PA), and Tokyo Chemical Industry 125 

(Portland, OR) and used without further purification. Water, distilled, and deionized (ddH2O) to a 126 

resistance of ≥18.2 MΩ×cm (PURELAB flex 2 system, ELGA LabWater North America, 127 

Woodridge, IL) was used for sample and reagent preparation.      128 

Field design: The experimental field design was a randomized complete block design (RCDB) 129 

with 44 dry pea entries (25 cultivars and 19 advanced breeding lines) with two replications at two 130 

locations in 2019 and three replications at one location in 2020 (n=308; Table 1). The commercial 131 

dry pea cultivars were purchased from Pulse USA (Bismark, ND, USA), Meridian Seeds 132 

(Mapleton, ND, USA), and the Washington State Crop Improvement Association (Pullman, WA, 133 

USA). The advanced dry pea breeding accessions were obtained from the USDA-ARS Pulse 134 

Breeding Program, Washington State University, WA, USA (Table 1). Material transfer 135 

agreements (MTAs) were signed with the seed companies and the USDA-ARS for field testing 136 

these entries in SC, USA. These dry pea cultivars were selected based on yield potential, disease 137 

resistance, and consumer acceptability. Before sowing, two soil samples were randomly taken at 138 

0-6″ depth from each plot. The soil samples were homogenized, and three composite samples were 139 

analyzed for soil properties at the Clemson University Soil Testing laboratory, SC, USA. Soil 140 

properties, precipitation, and temperature varied with growing location (Tables 2 and 3).  141 

Land preparation: USDA-certified organic on-farm locations were WP Rawl and Sons (Pelion, 142 

SC, USA) and Calhoun Fields Laboratory (Clemson University, SC, USA). Before planting, fields 143 

were tilled using a disc harrow and smoothly leveled. All plots were then marked with a 144 

weatherproof barcoded field tag, and cultivar “Hampton” was planted as a control to eliminate the 145 

border effect. A cone plot planter was used for sowing seed in 1.4×6 m plots (8.4 m2) containing 146 
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seven rows spaced 20 cm (7.9 in) apart, with a seeding depth of 5-7 cm (~2-3 in), at a seeding rate 147 

of 90 seeds/m2. USDA-certified organic inoculant (Peaceful Valley Farm Supply, Inc, USA) was 148 

added to the seed packets at the rate of 3.1 g per kg of seed. Organically certified fertilizers, 149 

pesticides, and chemicals were not used in this experiment; weeds were removed by a mechanical 150 

cultivator attached to a small tractor. Irrigation was not provided. These cultivars and breeding 151 

lines were planted in mid-January and harvested in the third week of May. At physiological 152 

maturity (110-115 days after planting), the plots were harvested using a small plot. Dry pea grain 153 

yield was calculated based on the size of the plot, and 1000-seed weight (TSW) was calculated 154 

from the weight of 100 seeds, measured using a top-loading electronic balance. Subsamples (500-155 

750 g) of harvested seeds were stored at −10 °C until nutritional quality analysis. Additional dry 156 

pea samples collected from each replication were hand cleaned, finely ground using a UDY 157 

grinder, and then stored at −10 °C until nutritional quality analysis. All nutritional quality data are 158 

reported on a dry basis (15% moisture).  159 

Protein analysis: Finely ground dry pea samples were sent to the Soil Testing Laboratory, 160 

Clemson University, SC, for total N analysis, and then values converted to total protein content by 161 

multiplying by 6.25.  162 

Prebiotic carbohydrate analysis: Dry pea seeds were ground (Blade Coffee Grinder, KitchenAid, 163 

St. Joseph, MI, USA) and sieved to 0.5-mm particle size. Carbohydrates were extracted the method 164 

described by  Muir et al., 2009. Ground dry pea samples (150 mg) were weighed into a centrifugal 165 

polypropylene tube (VWR International, Radnor, PA, USA). After adding 10 mL of water, each 166 

tube was mixed on a vortex mixer and placed in a water bath for 1 h at 80 ℃. Tubes were then 167 

centrifuged at 3000 g for 10 min, and the supernatant was filtered through a 13 mm × 0.45 μm 168 

nylon syringe filter (Thermo Fisher Scientific, MA, USA) into an HPLC vial. Carbohydrate 169 

analysis was done using a Dionex ICS-5000+ system (Thermo Scientific, Waltham, MA, USA) 170 

equipped with a pulsed amperometric detector (PAD) with a working gold electrode and a silver-171 

silver chloride reference electrode. Analyte separation was achieved using a Dionex CarboPac 172 

PA1 analytical column (250 × 4 mm) in series with a Dionex CarboPac PA1 guard column (50 × 173 

4 mm). Pure standards were used to identify peaks, generate calibration curves, and monitor 174 

detector sensitivity; a lab reference sample was also used to monitor extraction consistency. 175 

Concentrations were quantified within a linear range of 0.1-500 ppm with a minimum detection 176 

limit of 0.1 ppm. Concentrations of each carbohydrate were calculated according to X = (C × V) / 177 
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m, where X is the moisture-corrected analyte concentration in the sample, C is the concentration 178 

in the filtrate, V is the sample volume, and m is the mass of the sample. 179 

Starch analysis: Resistant, non-resistant, and total starch were measured using the modified 180 

Megazyme resistant starch assay method (22). Samples (100 mg) of finely ground seed were 181 

weighed into centrifugal polypropylene tubes, to which an enzyme solution (2 mL) containing 182 

amyloglucosidase (3 U/mL) and αּ-amylase (10 mg/mL) in sodium maleate buffer (100 mM, pH 183 

6.0) was added. Tubes were then incubated with constant circular shaking (200 strokes/min) for 184 

16 h at 37 ℃. Ethanol (4 mL; 99%) was added, then the tubes were vortexed, centrifuged at 1500 185 

g for 10 min, and decanted into 100-mL volumetric flasks. Two additional washings were 186 

performed by adding 2 mL of ethanol (50%) and vortex mixing to suspend the pellet, followed by 187 

an additional 6 mL of ethanol (50%), vortex mixing, centrifugation, and decanting. Pooled non-188 

resistant starch washings were brought to 100 mL volume with water. Pellets containing resistant 189 

starch were dissolved in 2 mL of 2 M KOH with a magnetic stir bar for 20 min in an ice water 190 

bath. Sodium acetate buffer (8 mL, 1.2 M, pH 3.8) was added, immediately followed by 0.1 mL 191 

of amyloglucosidase (AMG; 3300 U/mL). Samples were incubated at 50 ℃ in a water bath for 30 192 

min. Tubes were then centrifuged (1500 g for 10 min). Resistant starch (RS) and non-resistant 193 

starch fractions were quantified via spectrophotometry. Starch solution (0.1 mL) and glucose 194 

oxidase/peroxidase (GOPOD) reagent (3 mL) were added to glass tubes and incubated for 20 min 195 

at 50 ℃. A glucose standard (1 mg/mL in 0.2% benzoic acid) was included in each batch. 196 

Absorbance was measured at 510 nm against a reagent blank. Non-resistant starch (NRS) was 197 

calculated using the formula NRS (g/100 g sample) = ΔE × F/W × 90, where ΔE is the absorbance 198 

of the sample, F is the absorbance to microgram conversion factor (100 / absorbance of glucose 199 

standard), W is the sample dry weight, and 90 includes adjustments for volume, unit conversions, 200 

and free to anhydrous glucose. A similar formula was used to calculate resistant starch (RS), RS 201 

(g/100 g sample) = ΔE × F/W × 9.27, where 9.27 includes adjustments for volume, unit 202 

conversions, and free to anhydrous glucose. Total starch (TS) was calculated as TS = RS + NRS. 203 

Statistical analysis: Replicates, years and genotypes were included as class variables. Data from 204 

both years were combined (after testing for heterogeneity) and analyzed using a general linear 205 

model procedure (PROC GLM) mixed model (SAS Institute 9.4, 2012). Fisher’s least significant 206 

difference (LSD) at ≤ 0.05 was performed for mean separation. Correlations (Pearson correlation 207 

coefficients) among yield, TSW, and other traits were determined. ANOVA was used to determine 208 
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if the effect was significant. A statistical model was developed to estimate broad-sense heritability 209 

(H2) with the variables and genotype as random effects. The model was calculated using the 210 

restricted maximum likelihood (REML) method. H2 was estimated as the proportion of variance 211 

due to genotype, and analyses were performed using JMP 14.0.0 and SAS 9.4.  212 

Results 213 

Field weather and soil conditions: The field trials took place at Clemson and Pelion, SC during 214 

2019 and at Pelion, SC in 2020. A total of 25 cultivars and 19 breeding lines were evaluated at 215 

each location, with two replicates in 2019 due to seed limitations and three replicates in 2020 (n = 216 

308) (Table 1). In 2019, the Pelion, SC location was warmer (25.6 °C) and received more 217 

precipitation (68.6 mm) in May than the Clemson, SC location. In 2020, the average temperature 218 

was lower (20.8 °C) and the average precipitation was higher (236 mm) at Pelion, SC than in the 219 

previous year (Table 2). In 2019, the Clemson field had a lower pH (6.3), with higher N-NO3 (48 220 

ppm), K (284 lbs/ac), and organic matter (4.3%) than the Pelion field, which had more P (727 221 

lbs/ac). In 2020, Pelion soil values reflected higher pH (6.8 to 7.1), N-NO3 (16 to 21 ppm), and 222 

organic matter (0.8 to 1.1%) compared to 2019 as well as lower levels of P (727 to 549 lbs/ac) and 223 

K (108 to 81 lbs/ac) (Table 3). Clemson soils are clay loam, and Pelion soils are sandy, which 224 

may explain the differences in N, K, and organic matter.  225 

Analysis of variance: With respect to yield, cultivar, year, and cultivar × location were highly 226 

significant at P<0.05, location and cultivar × year were significant at P<0.1, and all components 227 

were highly significant (P<0.05) for TSW (Table 4). Only cultivar × location was not significant 228 

for protein, with all other components highly significant (P<0.05) (Table 4). Broad-sense 229 

heritability estimates indicated TSW was more heritable (H2=0.69) than yield (H2=0.21) and 230 

protein (H2=0.24). Most prebiotic carbohydrates varied with dry pea cultivar except for maltose 231 

and starch polysaccharides. For sugar alcohols, location was not significant for xylitol and 232 

mannitol, year was not significant for sorbitol, cultivar × location was not significant for mannitol, 233 

and cultivar × year was not significant for sorbitol; all other components were significant (P<0.05) 234 

for each sugar alcohol (Table 4). For simple sugars, only cultivar and location significantly 235 

(P<0.05) affected glucose concentration, and only location and year were significant (P<0.05) for 236 

maltose concentration. Cultivar × location was not significant for fructose concentration, and 237 

cultivar × year was not significant for sucrose concentration. Location was not significant for 238 

arabinose concentration, with all other components being highly significant (P<0.05) for simple 239 
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sugars. For RFO and FOS, location was not significant for Ver+Kes, and cultivar × location was 240 

not significant for nystose, with all other components significant (P<0.1 and P<0.05) for each RFO 241 

and FOS (Table 4). Location (P<0.05), year (P<0.1), and cultivar × year (P<0.05) had significant 242 

effects on resistant starch, while only location and year were significant (P<0.05) for total starch. 243 

Prebiotic carbohydrates exhibited broad ranges of heritability for organic dry pea, with glucose 244 

and fructose having the lowest heritability at 0.29 and 0.27, respectively. Galactinol (H2=0.74) and 245 

Ver+Kes (H2=0.75) had the highest heritability, with all other prebiotic carbohydrates having 246 

moderate to high heritability, except for maltose and the starch polysaccharides, which were not 247 

heritable. For mineral concentrations, cultivar was significant for all minerals except Se; cultivar 248 

× location was only significant for K (P<0.1) and Fe (P<0.05), and cultivar × year was not 249 

significant for any mineral (Table 4). Location was significant (P<0.05) for K, Ca, Mg, Fe, Zn, 250 

and Se but not for P, Mn, and Cu. Additionally, the year was significant (P<0.05) for K, Ca, Fe, 251 

Zn, and Se but not for Mg, P, Mn, and Cu. Finally, only cultivar (P<0.1) and year (P<0.05) were 252 

significant for PA concentration of organically grown dry pea (Table 4). All minerals were found 253 

to be not heritable. 254 

Nutritional quality: Organic dry pea shows broad phenotypic variation for protein (12.6-34.2 255 

g/100 g), prebiotic carbohydrates (12.5-19.8 g/100 g), minerals, and PA (88.8-354 mg/100 g) 256 

(Table 5). Organic dry pea can provide a significant portion of the recommended daily allowance 257 

(RDA) of prebiotic carbohydrates (81%), protein (38-46%), and a range of minerals (Table 5). 258 

Organic dry pea provides a significant amount of the %RDA for K (29.6-38.8%), Mg (31.3-259 

40.3%), Zn (29.1-40%), and Se (36.4%) for both men and women but is not a good source of Ca 260 

(7.8-9.4%) in the diet (Table 5).  261 

Cultivar responses: Yield varied among the organically grown cultivars, with “AAC Carver” 262 

having the highest yield (~2600 kg/ha) and “LG Koda” the lowest (~750 kg/ha) (Figure 2). “AAC 263 

Carver” had one of the lowest protein concentrations (~19 g/100g), while “CDC Striker,” which 264 

had one of the lowest yields (~1000 kg/ha), had the highest protein concentration (~24 g/100 g) 265 

(Figure 2). Cultivars varied in terms of the total concentrations of the sugar alcohols myo-inositol, 266 

xylitol, galactitol, sorbitol, and mannitol (Figure 3A). The cultivar “Hampton” had the lowest 267 

concentration of sugar alcohols (~425 mg/100 g) and “CDC Greenwater” the highest (575 mg/100 268 

g) (Figure 3A). All cultivars had varying concentrations of RFOs (Raf+Sta and Ver+Kes), with 269 
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cultivar “Fiddle” having the lowest total RFO concentration (~5200 mg/100 g) and cultivar 270 

“Mystique” the highest (~6000 mg/100 g) (Figure 3B). 271 

Analysis using Pearson’s correlation was performed to determine significant correlations 272 

between agronomic and nutritional quality traits (Figure 1). A significant (P<0.05) and strong 273 

correlation was observed for total water-soluble carbohydrates and yield (r=0.42), with low but 274 

significant (P<0.05) positive correlations found between TSW and yield (r=0.2), and TSW and 275 

total water-soluble carbohydrates (r=0.26) (Figure 1). Protein was significantly (P<0.05) 276 

negatively correlated with all agronomic traits: yield (r=−0.2), TSW (r=−0.26), and total water-277 

soluble carbohydrates (r=−0.1) (Figure 1). More specifically, significant (P<0.05) negative 278 

correlations were found between yield and xylitol, mannitol, sucrose, arabinose, maltose, and 279 

resistant starch, but the yield was significantly (P<0.05) positively correlated with galactinol, 280 

sorbitol, glucose, fructose (P<0.1), all RFO and FOS, as well as soluble starch and total starch 281 

(Table 6). Finally, yield was not correlated with Zn, P, or PA but was positively correlated with 282 

both Mg (P<0.05) and Fe (P<0.1). A significant (P<0.1) negative correlation was observed 283 

between yield and K (Table 7). Positive, significant correlations were evident for protein and myo-284 

inositol (P<0.1), xylitol (P<0.1), mannitol (P<0.05), sucrose (P<0.1), arabinose (P<0.05), and 285 

maltose (P<0.05). Protein was predominantly negatively correlated with RFO and FOS 286 

carbohydrates (P<0.05) (Table 6). All minerals were significantly (P<0.05) positively correlated 287 

with each other, while PA was negatively correlated with all minerals, especially Zn (P<0.05) 288 

(Table 7). 289 

Discussion: Organic pulse crop production is challenging for many reasons, one being the less 290 

suitable cultivars adapted for low-input organic systems. Current dry pea cultivars in North 291 

America are mainly bred for conventional production systems that use chemical herbicides and 292 

pesticides for weed, pest, and disease management. This paper reports the first detailed field study 293 

conducted in USDA Organic Certified fields to assess the performance of dry pea cultivars and 294 

advanced breeding lines under organic field conditions without adding any chemical fertilizers or 295 

herbicides. Our study clearly indicates “AAC Carver,” “Jetset,” and “Mystique” are the highest 296 

yielding dry pea cultivars (above 2000 kg/ha) and are the most suitable for organic production 297 

without a yield penalty (Figure 1). The average crude protein content of the cultivars studied is 298 

~21.1 g/100 g, with “CDC Striker” being the highest and “AAC Carver” the lowest (Figure 1). 299 

Our on-farm organic field trials provide a thorough evaluation of available dry pea cultivars for 300 
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yield, protein, and other nutritional traits for two years. The information from this study will help 301 

organic producers decide if these dry pea cultivars will be profitable on their farm and, if so, which 302 

cultivar will perform best in their organic cropping system in terms of yield and protein. In 303 

addition, these data are very useful for future organic dry pea cultivar development with respect to 304 

selecting appropriate parents for organic systems.  305 

 Weed management in organic systems is a significant challenge. Dry pea is not a good 306 

weed competitor. Yield losses in organic systems can be up to 80% due to post-emergent weeds 307 

in the Northern Great Plains of Canada (Leeson et al., 2000; Baird et al., 2009; Shirtliffe and 308 

Johnson, 2012). Suggested methods to reduce weed pressure in an organic cropping system are to 309 

increase seeding rate, crop rotation, and seeding depth and to change planting dates. In Canada, 310 

dry pea reached a maximum economic return at a seeding rate of 200 seed/m2 with a grain yield 311 

of 1725 kg ha-1(Baird et al., 2009). We used dry pea as a winter crop (Jan-May) in SC with 90 312 

seeds/m2 and manually reduced the post-emergence weeds, and several dry pea cultivars tested (7 313 

out of 25) reached more than the threshold yields reported by the Canadian study (Figure 1). 314 

Additionally, organic dry pea grain yields in the present study significantly varied with cultivar, 315 

year, and the interaction of cultivar × location (P<0.05), indicating cultivar performance is subject 316 

to growing conditions, e.g., soil, weather, and organic management conditions. Overall, average 317 

dry pea grain yield (769-2638 kg ha-1) and protein concentrations (19.3- 24.2 mg/100 g) from this 318 

study are similar to results reported for studies in Canada and Australia (Baird et al., 2009; Gollner 319 

et al., 2019).  320 

 Pulse crops show great potential for biofortification and are suitable for meeting increasing 321 

consumer demand for organic plant-based protein, prebiotic carbohydrates, and minerals, 322 

especially within allergen- and gluten-free markets (Ray et al., 2014; Johnson et al., 2013; 323 

Thavarajah et al., 2017). Our results indicate organic dry peas are rich in prebiotic carbohydrates 324 

(12.5-19.8 g/100 g), providing 63-99% of the RDA for adults (Table 5). Sugar alcohols and RFOs 325 

have moderate to high broad-sense heritability (0.42-0.75) estimates, indicating it is possible to 326 

breed for variable concentrations of these prebiotic carbohydrates for better human health. Sucrose 327 

and arabinose are heritable traits, but starch polysaccharides are not (Table 4). Total water-soluble 328 

carbohydrates (carbohydrates without starch polysaccharides) are significantly and positively 329 

correlated with grain yield and TSW but negatively correlated with seed protein content (Figure 330 

2). Organic dry pea prebiotic carbohydrate concentrations reported in this study are similar the 331 
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values reported in the literature (Wang et al., 2009, 2011; Johnson et al., 2013, 2015; Vandemark 332 

et al., 2020). Prebiotic carbohydrates are critical components in healthy diets, supporting healthful 333 

hindgut microflora. Healthy gut microbiota decrease host obesity, inflammatory bowel diseases, 334 

and colorectal cancers and modulate immunological functions by affecting the growth and 335 

functioning of host cells (Ley et al., 2005). Due to the dietary nature of human metabolic disorders 336 

related to obesity, solutions will necessarily have a focus on a diet – i.e., a cup of pulses a day 337 

provides 13-15 g of prebiotic carbohydrates and a range of micronutrients (Amarakoon et al., 338 

2012; Powers and Thavarajah, 2019; Powers et al., 2020). Changing the levels of these prebiotic 339 

carbohydrates is possible by developing molecular markers for marker-assisted breeding with 340 

conventional breeding methods in pulse crops; however, genome-wide association mapping 341 

studies with diverse populations at several field locations are essential to avoid the yield and 342 

protein penalty by changing certain carbohydrates as a result of the quantitative nature of these 343 

nutritional traits (Johnson et al., 2020; 2021).   344 

 Pulses crops, including dry pea, also known as “poor man’s meat,” are low in fat and 345 

provide significant quantities of dietary protein (20-25 g/100 g) and minerals (Ray et al., 2014; 346 

Thavarajah et al., 2015). A 50-g serving of conventional grown dry pea provides 3.7-4.5 mg of Fe, 347 

2.2-2.7 mg of Zn, and 22-34 µg of Se and is very low in PA (2.5-4.4 mg g-1), which decreases the 348 

bioavailability of minerals (5,6). Similar to previous studies, our results show organic dry peas are 349 

also rich in Fe, Zn, and Se, but not a good source of Ca (Table 5). Integrating genome-wide 350 

research approaches with conventional plant breeding to identify genetic markers associated with 351 

these mineral traits could significantly accelerate biofortification efforts by enabling molecular 352 

screening of exotic germplasm collections and elite cultivars (Johnson et al., 2021; Powers et al., 353 

2021).  354 

 A rotational cropping system of dry peas and cereals has been promised in organic and 355 

non-organic farming systems (Olesen et al., 2000; Gan et al., 2015). Dry pea as a winter cash crop 356 

will provide economic and environmental benefits of weed control and soil nutrient management 357 

for smallholder organic farms. Generally, organic producers use legume or grass-legume mix 358 

cover crops for their winter season to increase soil fertility and weed control (Snapp et. al., 2005; 359 

Thavarajah et al., 2019;). Overall, critical issues for organic pulse crop production are (1) 360 

production system issues: breeding and selection of high yielding varieties adapted for organic 361 

cropping systems and growing regions; (2) nutritional quality and grading: organic edible pulse 362 
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markets are susceptible to nutritional quality, so it is difficult to sell anything less than top-grade, 363 

i.e., high protein; (3) marketing and trade: for example, the organic grain market remains small as 364 

a result of a limited number of buyers in a given region; and (4) public research availability: 365 

minimal research is available on organic pulse production, variety development, nutritional 366 

quality, and end-use as a whole food or an ingredient (Trewavas, 2001; Kniss et al., 2016). 367 

Moreover, no research has been conducted regarding reducing the yield gap without compromising 368 

nutritional yield and developing genomic tools for marker-assisted breeding of organic pulse 369 

cultivars, i.e., biofortification of organic pulse grains. Therefore, it is essential within the organic 370 

farming framework to focus on organic plant breeding activities that will result in cultivars that 371 

are more suitable for organic production environments and will deliver economic and social 372 

benefits to growers and consumers. Overall, organic markets (especially the gluten-free market) 373 

will continue to grow >10-20% per annum at the retail sales level for the foreseeable future in all 374 

food categories due to increasing awareness of the connection between diet and human health 375 

(Ohr, 2020). Successful production of organic pulse crops would increase regional production 376 

acreage, grower profitability, and stakeholder confidence in organic farming systems in the USA. 377 

 378 

Conclusions: Organic dry pea is a potential winter crop in southern US regions. Dry pea grain 379 

yields and protein concentrations are within the range of conventional production systems. Further, 380 

organic dry pea is a rich source of prebiotic carbohydrates (14.7-26.6 g/100 g). Most individual 381 

prebiotic carbohydrates are moderate to high in terms of broad-sense heritability estimates, with 382 

the exception of starch polysaccharides. Organic dry peas are rich in minerals with low to moderate 383 

concentrations of phytic acid. “AAC Carver,” “Jetset,” and “Mystique” demonstrated the highest 384 

yields and “CDC Striker” the highest protein concentrationt. These cultivars can be incorporated 385 

into organic dry pea breeding programs to develop cultivars suitable for organic production. 386 

Finally, organic dry pea production has potential as a winter cash crop in southern climates; this 387 

can be accomplished by selecting diverse genetic material and location sourcing to develop 388 

improved cultivars with a higher yield, disease resistance, and nutritional quality. On-farm 389 

evaluation of dry pea cultivars and advanced breeding lines under organic management provides 390 

valuable information for growers, allowing them to make critical decisions regarding variety 391 

selection for (1) growing location, (2) organic management practice, and (3) intended end-use or 392 
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nutritional quality (prebiotic carbohydrates, protein, minerals, and low phytate), all of which are 393 

critical for maximizing grower productivity, profitability, and socio-economic status. 394 
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Table 1: Experimental design used in the dry pea nutritional breeding trials.  545 

Year (location) 2019 (Clemson; Pelion), 2020 (Pelion) 

Location Clemson, SC; Pelion SC 

Replicates (Year) 2 (2019); 3(2020) 

Cultivars/ Breeding lines Cultivars (25): AAC Carver, AAC Comfort, AC Agassiz, AC Earlystar, Banjo, CDC Amarillo,  

CDC Gwater, CDC Inca, CDC Saffron, CDC Spectrum, CDC Striker, Delta, DS Admiral, Durwood, Fiddle 

Flute, Hampton, Jetset, Korando, LG Koda, Matrix, Mystique, Nette 2010, SW Arcadia, SW Midas 

Breeding lines (19): PS01100925, PS03101445, PS05100735, PS08100582, PS08101004, PS08101022, 

PS12100047, PS14100079, PS1410B0003, PS1410B0006, PS1410B0065, PS1410B0073, PS1514B0002, 

PS16100003, PS16100038, PS16100085, PS16100086, PS16100096, PS16100127 

Total  308 

 546 

Table 2: Mean monthly temperature and precipitation for two growing locations in SC, USA.   547 

Year Location Source  Jan Feb Mar Apr May 

2019 Clemson Temp (°C) 6.1 10.0 10.8 16.9 23.1 

  Precipitation (mm) 140 193 88.9 117 19.3 

 Pelion Temp (°C) 9.4 12.8 13.6 19.4 25.6 

  Precipitation (in) 3.6 1.7 2.6 4.3 2.7 

2020 Pelion Temp (°C) 9.6 11.0 16.6 17.6 20.8 

  Precipitation (in) 69 172 83 81 236 

 548 

Table 3: Soil chemical properties at the locations where dry pea was grown in 2019 and 2020.  549 
 550 

Year Location (Soil type) Soil pH N-NO3 (PPM) P (lbs/ac) K (lbs/ac)  Organic Matter (%) 

2019 Clemson (Clay loam) 6.3 48 76 284 4.3 

 Pelion (Sandy) 6.8 16 727 108 0.8 

2020 Pelion (Sandy) 7.1 21 549 81 1.1 
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Table 4: Analysis of variance and broad-sense heritability estimates of yield and nutritional traits evaluated for dry pea genotypes 551 
tested in SC, USA.   552 

 553 

Component Cultivar Location Year Cultivar × Location Cultivar × Year H2 

Yield ** * ** ** * 0.21 

TSW ** ** ** ** ** 0.69 

Protein ** ** ** NS ** 0.24 

Prebiotic carbohydrates  

Sugar Alcohols 

Myo-Inositol ** ** ** ** ** 0.52 

Xylitol ** NS ** ** ** 0.66 

Galactinol ** ** ** ** ** 0.74 

Sorbitol ** ** NS ** NS 0.42 

Mannitol ** NS ** NS ** 0.57 

Simple Sugars 

Glucose ** ** NS NS NS 0.29 

Fructose ** ** ** NS ** 0.27 

Sucrose ** ** ** ** NS 0.52 

Arabinose ** NS ** ** ** 0.65 

Maltose NS ** ** NS NS 0.00 

RFO and FOS 

Sta+Raf ** ** ** * ** 0.64 

Ver+Kes ** NS ** ** ** 0.75 

Nystose ** ** ** NS * 0.27 

Starch Polysaccharides 

Resistant starch NS ** * NS ** 0.00 

Total starch NS ** ** NS NS 0.00 

Minerals 

K ** ** ** * NS 0.07 

Ca * ** ** NS NS 0.03 

Mg * ** NS NS NS 0.00 

P ** NS NS NS NS 0.02 
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Fe ** ** ** ** NS 0.00 

Zn ** ** ** NS NS 0.03 

Mn * NS NS NS NS 0.00 

Cu  ** NS NS NS NS 0.00 

Se  NS ** ** NS NS 0.00 

Phytic acid * NS ** NS NS 0.00 

 554 

Raffinose family of oligosaccharides (RFO); Fructooligosaccharides (FOS); Stachyose, and Raffinose (Sta+Raf); 555 

Verbascose and Kestose (Ver+Kes); ** significant at P<0.05; * significant at P<0.1; Not significant (NS); H2 broad-sense heritability 556 
estimate.  557 

 558 
 559 

Table 5: Range and mean nutrient concentrations of organic dry pea grown in SC.  560 

Nutrient 
Organic %RDA 

Range Mean Female Male 

Protein (g/100 g) 12.6-34.2 21.1 27-74(46) 23-61(38) 

Prebiotic carbohydrates   

Sugar Alcohols (mg/100 g)   

Myo-Inositol 98-399 244   

Xylitol 2.5-31.7 15.7   

Galactinol 91.3-425 163   

Sorbitol 8.4-115 34.9   

Mannitol 0.9-23.8 5.9   

Simple Sugars (mg/100 g)   

Glucose 14.6-137 62   

Fructose 1.7-30.7 6.4   

Sucrose 1530-3043 2156   

Arabinose 3.3-13.1 7.2   

Maltose 2.1-289 26.3   

RFO and FOS (mg/100 g)   

Sta+Raf 2111-4077 3128   

Ver+Kes 1548-3929 2688   

Highlight
Please see my previous comment for significance level.

Highlight
According to P values:*, P<0.05; **, P<0.01; ***, P<0.001 
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Nystose 1.6-9.1 3.4   

Starch Polysaccharides (g/100 g)   

Resistant starch 4.2-10 7.6   

Total starch 35.4-66.9 52.6   

Total known prebiotic carbohydrates (g/100 g) 12.5-19.8 16.1 63-99 (81) 63-99 (81) 

Minerals (mg/100 g)     

Potassium (K) 322-1716 1008 38.8 29.6 

Calcium (Ca) 11-338 94 7.8-9.4 9.4 

Magnesium (Mg) 46-232 125 39.1- 40.3 31.3 

Phosphorus (P) 123-759 377 53.9 53.9 

Iron (Fe) 1.9-26.2 5.7 31.7-71.3 71.3 

Zinc (Zn) 1.1-7.5 3.2 40.0 29.1 

Manganese (Mn) 0.4-3.4 1.2 66.7 52.2 

Copper (Cu)  0.2-3.5 0.8 88.9 88.9 

Selenium (Se: µg/100 g) 0-130 20 36.4 36.4 

Phytic acid (mg/100 g) 88.8-354 159   

 561 
Values are based on the combined statistical analysis of 308 data points for the current study (dry weight basis). Total prebiotic 562 
carbohydrates include sugar alcohols, simple sugars, raffinose-family oligosaccharides, and resistant starch. % RDA is based on 20 563 
g/day for total prebiotic carbohydrates (22). %RDA for protein is 46 g/day for women aged 19-70+ years and 56 g/day for men aged 564 
19-70+years. Mineral %RDA values are from the National Institute of Health 565 

(https://www.ncbi.nlm.nih.gov/books/NBK545442/table/appJ_tab3/?report=objectonly) 566 

  567 
 568 
 569 

 570 

 571 

 572 

 573 

 574 

https://www.ncbi.nlm.nih.gov/books/NBK545442/table/appJ_tab3/?report=objectonly
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Table 6: Correlation of yield, prebiotic carbohydrates, and protein content of organic dry pea genotypes.  575 

Variable Yield Myo Xyl Gal Sor Man Glu Fru Suc Ara Mal Sta+Raf Ver+Kes Nys RS SS TS Pro 

Yield -                  

Myo-Inositol (Myo) NS -                 

Xylitol (Xyl)  -** NS -                

Galactinol (Gal) ** **  -** -               

Sorbitol (Sor) ** **  -** ** -              

Mannitol (Man)  -** ** **  -** NS -             

Glucose (Glu) ** ** NS ** ** NS -            

Fructose (Fru) * NS NS NS ** ** ** -           

Sucrose (Suc)  -** ** ** NS NS NS ** ** -          

Arabinose (Ara)   -** NS **  -** NS ** NS ** ** -         

Maltose (Mal)  -** ** * ** ** * ** ** ** ** -        

Sta+Raf ** ** NS ** **  -** ** ** **  -** ** -       

Ver+Kes **  -**  -** NS ** NS NS ** **  -**  -** ** -      

Nystose (Nys) **  -**  -** ** NS  -** ** **  -** NS NS ** ** -     

Resistant starch (RS)  -**  -** ** ** ** **  -**  -** ** NS ** **  -** ** -    

Soluble starch (SS) **  -** NS ** ** ** ** ** NS NS NS  -** **  -**  -** -   

Total starch (TS) ** ** **  -** ** NS ** NS NS NS NS ** NS NS NS ** -  

Protein (Pro)  -** * * NS NS ** NS NS * ** ** NS  -**  -** NS  -* NS - 

Stachyose and Raffinose (Sta+Raf); Verbascose and Kestose (Ver+Kes); ** significant at P<0.05; * significant at P<0.1; Not 576 

significant (NS). 577 

 578 

 579 

 580 

 581 

 582 
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Table 7: Correlation of yield, critical minerals, and phytic acid concentrations of organic dry pea genotypes.  583 

Variable Yield K Mg Fe Zn P phytic acid 

Yield -       

K -* -      

Mg ** ** -     

Fe * ** ** -    

Zn NS ** ** ** -   

P NS ** ** ** ** -  

Phytic acid NS -* -* -* -** -* - 

 584 

 585 

 586 

 587 

 588 

 589 
 590 
 591 

 592 

 593 
 594 
 595 
 596 
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 597 
 Figure 1: Variation of grain yield and protein content among dry pea cultivars grown in the organic system.  598 

 599 
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 613 

 614 

 615 

 616 

Figure 2: Correlations and distribution of grain yield, 1000 seed weight, total water-soluble carbohydrates, and protein concentration 617 

among the genotypes grown under organic field conditions.  618 
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  619 

 620 

Figure 3: Variation of (A) sugar alcohols and (B) raffinose family oligosaccharides concentrations among dry pea cultivars grown in 621 

an organic system.  622 

 623 
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