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Supplementary Figure S1. Average swimming parameters in bins of tumble bias

A) Probability mass function of tumble bias TB = 1 — B,,,,, in populations of RP437 recorded with
a 4X objective (Methods; bin size = 0.02). Each cell was weighted by its trajectory duration when
generating this distribution. Error bars in each panel were determined by boot strapping (S1). In all
panels, the vertical black dashed line indicates the population-median B.,,,. B-D) In bins of tumble
bias: (B) Average directional persistence of tumbles, defined as (cos(A8)), where Af is the angle
between the cell’s heading vectors before and after runs; (C) Average tumble rate A,; and (D)
Effective run speed v,. During transitions between run and tumble states, the swimming speed
takes finite time to reach a steady value *?. We lump these transitions into the run state, leading to
effective run speeds that depend on how often the cell tumbles, i.e. B.,,. Excluding these
transitions would make cells appear to climb gradients artificially slowly compared to their run
speeds. It would also lead to over-estimated information rates.
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Supplementary Figure S2. Velocity autocorrelation functions for RP437 and VS100

A) Autocorrelations of the x-velocity of wild type (RP437) E. coli cells in the absence of a
gradient, averaged over cells in bins of B, (bin size 0.005). From blue to green, B.,,,, values are:
0.93,0.89,0.84,0.79,0.74. The orange line is the correlation function the median B.,,,,. Curves in
this panel are reproduced from Fig. 2C of the main text. The black dashed lines are the best fits of
a decaying exponential to each correlation function (SI). Shading is + one standard error, which
was computed from the standard deviation of the samples of v, (0)v,(t) at each time delay ¢,

divided by /n;(t). n;(t) = n(t)ﬁ;lwt is the effective number of independent measurements

at time delay t 3, where n(t) is the total number of observations at delay t, At is the imaging
interval (50 ms), and A,,; is the best fit to the decay rate of each exponential. Since samples come
from multiple cells, whose velocities are uncorrelated, this underestimates the actual n;. B)
Population-averaged x-velocity autocorrelation function of VS100 cells, which lack the cheY gene
and therefore cannot tumble. Their correlation function is expected to decay exponentially with
rate A, = 2 D,,, from which we inferred the rotational diffusion coefficient, D,.. Black dashed line
is an exponential fit to the first 10 seconds of time delay. C) Same as (B) (velocity autocorrelation
function for VS100 cells), but with the y-axis on log-scale. At long time delays, there is a bias for
cells that remained visible, i.e. cells that had small vertical component to their velocity and
therefore remained in the depth of field of our microscope objective. These cells by chance appear
to be undergoing rotational diffusion in two dimensions instead of three; therefore, they lose
direction at a rate D,. instead of 2 D,.. This transition did not affect our inference of D,.
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Supplementary Figure S3. Stimulus control by microfluidics

A) An image of the microfluidic device used in the FRET experiments (Kamino et al, Sci. Adv.
2020). The white scale bar at the bottom right is 200 um. The direction of flow is shown by a white
arrow and the position of a field of view (FoV) for FRET measurements is shown by a white
rectangle. The three locations at which the temporal profiles of delivered chemical solutions were
measured and plotted in panels (B) and (C) are indicated by the three colored crosses. Different
solutions were delivered into the FoV from the five inlet channels shown on the left (Methods). B)
The temporal profile of chemoattractant stimuli that the cells experience during the FRET
experiment corresponding to main text Fig. 2D and Supplementary Fig. S5. Each solution
delivered to the FoV through each inlet channel was visualized by using different concentrations
of fluorescein, and the relative fluorescence intensities of the solutions were measured at three
different positions in a 60X field of view (see panel (A)) and the measurement at each location is
plotted in the color of its corresponding cross in panel (A). Five solutions were delivered to the
imaging region by computer-controlled solenoid valves, which control the pressure applied to each
channel (Methods). C) A magnified view of the gray box part of panel (B). The inset shows further
magnified plots of the time window indicated by the horizontal gray bar to resolve the transient
rise of fluorescence intensity. The X-grid in the inset is 1 s interval. Intensities were obtained at
75 ms intervals, indicated by the circles. The transient rise and delay between positions within the
FoV are on the order of 0.1 s.



b -]
. lv~]
@]

30

8
= = ~ 200 = —
) i % ' o 6
‘ J <
£ 8 £ b
2‘
e 0 0
0 50 100 0 1000 2000 3000 0 10 20 30
Lyaga) Ippipy [Alpp|
D 200 - F 03
- ¥
—_ ‘] DD y=1.15
3 !
El \\‘1‘\ DA 02
z * taa &
2100 -
2 ’“—MM“
= 2. P 0.1
£
O L 1 1 Q S,
0 400 800 1200 0 0.1 0.2 03
Time (sec) Ey
E

Ecorr
o
)
—————e
—
=
ey
o

0 400 800 1200 0 005 01 o015
Time (sec) A,

Supplementary Figure S4. FRET analysis

A) Single-cell fluorescence intensities from a strain that only expresses the acceptor (mRFP),
obtained through the acceptor channel I,4(4) and the FRET channel I 4.4y. The slope gives an
estimate of the cross-excitation coefficient ay = 0.337. B) Single-cell fluorescence intensities
from a strain that only expresses the donor (mYFP), obtained through the donor channel Ippp)

and the FRET channel I 4(py. The slope gives the estimation of the bleedthrough coefficient d =

0.089. C) Absolute changes in the donor fluorescent signal |Alpp| and the sensitized emission
|AF;| before and just after the removal of a saturating chemoattractant stimulus obtained from a
FRET strain that expresses both the donor and acceptor. The slope gives the parameter G5 = 0.35.
D) Representative time series of background-subtracted fluorescent signals I, (t), Ip4(t), and
1,,(t) from a FRET experiment. Green shading at the start and end of the experiment indicate
times when a saturating stimulus (1 mM MeAsp and 100 uM serine) was applied, which were
followed by the removal of all attractants (i.e., [MeAsp] = [serine] = 0 M) for 5 seconds. After
this, the rest of the experiment was performed in a background of 100 uM MeAsp. The
fluorescence intensities decrease over time due to photobleaching. We show in the SI that the
photobleaching and the finite precision of the parameter estimation (A-C) results in a bias in FRET
estimation, but we also show that it can be corrected (E-G). E) The FRET index E_,,-(t) (SI)
computed from the fluorescent signals I, (t), Ip4(t), and I,,(t) in panel (D). F) The median of
E .. (t) during the saturating stimuli at the beginning (E;) and at the end (E,) of the measurement
in panel (E). Consistent with the theoretical analysis (Sl), the level of E, shows systematic
deviation from the level of E; (i.e., from the line y = x) as a result of photobleaching of the
fluorescent proteins. G) The change in E,,,.- induced by the removal of the saturating stimulus at
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the beginning (4,) and at the end (A4,) of the measurement defined in panel (E). Consistent with
the theoretical analysis (SI), the signal changes show undetectable bias after photobleaching,
distributing around the line y = x. Thus, we can correct for the slowly-increasing bias in the
absolute value of E_,,..(t) over time (E and F) by subtracting the trend, while also preserving
information about signaling-induced changes in E.,,, (SI).
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Supplementary Figure S5. Extracting linear response function

A) Representative time series of single-cell kinase activity a (SI for definition; red lines) and
population average (a) (blue lines). Gray dots are raw data points and red lines are smoothed
curves (10th order median filter; 7.5 s time window). Red and blue shading indicates times at
which [MeAsp] is elevated by 10 uM and decreased by 10 uM from 100 uM, respectively. Green
shading indicates when saturating stimuli (1 mM MeAsp and 100 uM serine) were applied to
measure the minimum Kkinase activity, which were followed by the removal of the attractants (i.e.,
[MeAsp] = [serine] = 0 M) for 5 seconds to measure the maximum kinase activity. B) Averaged
kinase responses. Gray lines with error bars are the within-cell average and standard error of the
mean of the change in kinase activity Aa, defined as the change in a from its pre-stimulus value
(left: step-up responses; right: step-down responses). Best fit model curves are shown in black (Sl).
Population-averaged kinase activity changes A{a) are shown at the bottom in blue. C) (Top)
Values of the extracted parameters sorted by the mean (for a,) or maximum a posteriori probability
(MAP) estimates (for ,, G, and 7,). The errorbars are standard errors (for a,) or 25 and 75
percentiles of the posterior distributions (for 7,, G, and t,), and are shown for one in every ten
cells. (Bottom) Marginal histograms of each parameter. 95% bootstrap confidence intervals are
shown by the error bars. D) Time series of population-averaged kinase activity (a) upon 5% and
10% change in [MeAsp] from 100 uM background (changed at time zero; both step-up and step-
down responses are shown). The inset shows the distribution of single-cell response amplitudes
(defined as the average of |Aa| over the first 3 s after the stimulus) upon step concentration

Kinase activity {a)

pdf

0 10 20
Time (sec)



changes. Both step-up and step-down responses are lumped into the same distribution. The gray
line shows y = a x fitted to the population average shown by black crosses. Consistent with
previous work 4, the responses show quasi-linearity in this concentration range.
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Supplementary Figure S6. Quantifying signaling noise

A) Representative time series of single-cell kinase activity a (red lines) and population average
(a) (blue lines). Gray dots are raw data points and red lines are smoothed curves (10th order
median filter; 10 sec time window). Green shading indicates when saturating stimuli (1 mM
MeAsp and 100 uM serine) were applied, which were followed by the removal of the attractants
(i.e., [MeAsp] = [serine] = 0 M) for 5 seconds before returning to the background of 100 uM
MeAsp. B) Autocorrelation function of the kinase activity a of the cells shown in (A). Gray error
bars are the average and standard error of the autocorrelation function computed from six segments
of the time series with identical length. The black lines are the autocorrelation function of the
Ornstein-Uhlenbeck (OU) process C(t) = t,,D, exp(—t/t,) with the extracted parameters using
a Bayesian-filtering method (see SI). In blue at the bottom is the autocorrelation function of the
population-averaged time series, with error bars. C) (Top) Values of extracted parameters sorted
by the mean (for a,) or MAP estimates (for t,,, D,,, and 62 = t,,D,,). The error bars are the standard
deviation (for a,) or 25 and 75 percentiles of the posterior distributions (for t,,, D,,, and o2 =
t,Dy,,), and are shown for one in every five cells for visualization purposes. (Bottom) Marginal
histograms of each parameter. 95% bootstrap confidence intervals are shown by the error bars.

10
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Supplementary Figure S7. Frequency domain representations of signal, response, and noise

A) Inferred models for up-gradient velocity power spectrum V(w) (red; units (mm/s)?),
frequency response squared |K(w)|? (green), and noise power spectrum N(w) (blue) are shown
(SI). Shading in all panels indicates + one standard error (SI). B) Normalized frequency-space
quantities plotted with linear axis scales. C-D) The integrand for computing £, the proportionality
constant between squared gradient steepness g2 and information rate I, shown in main text
Fig. 2A (SI Egn. (127)). The integrand is plotted on (C) linear-log scale (bits/s) / (mm~2) and
(D) linear-linear scale (units (bits/s) / (mm~2 rad/s)). In (C), the integrand is multiplied by w
so that the area under the curve is equal to the integral.

11
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Supplementary Figure S8. Dependence of the information rate on 74

The information rate from signal to kinase activity I, = 8 g% depends on the kinase fast
response time t; through S (see main text and Sl). Plotted here is g for varying values of t,,
showing weak, monotonically decreasing dependence. The dashed line at t; = 0.22 s is the kinase
response time we measured, which contains the kinetics of CheY-CheZ binding and catalysis. The
dashed line near 7; = 0.017 ~ 1/60 s indicates the previously-measured kinase response time °©.
We used the latter value of 7; to calculate the information rate. This can only make cells less
information efficient, achieving the same chemotactic performance with more information.
Regardless, the effect on the information rate is small, and the effect on the efficiency is even
smaller due to the square root dependence of the bound in Egn. 1 the information rate.

12
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Supplementary Figure S9. Computing average drift speeds

A) Up-gradient velocity (v,(t)) averaged over cells in the field of view in each frame of a
particular movie of cells climbing a chemical gradient. Only the first 100 s of the movie are shown.
B) Autocorrelation function of (v, (t)) from (A) is shown in blue (shading is standard error), and
an exponential fit is shown in black. C) Histogram of all data points in (B) (bin size 0.5 pm/s).
Drift speed v, is the mean of the distribution. D) Example time course of fluorescein fluorescence
intensity from a particular experiment. Color represents time since loading the cells into the device.
In this experiment, a movie of swimming cells was recorded 54 minutes after loading them into
the device, and a final fluorescein image was taken afterwards, 72 minutes after loading. Since this
is raw fluorescence intensity, the profile deviates from a linear one outside of the region marked
by black dashed lines because the depth of the device changes. Drift speed was computed from
trajectories recorded inside the marked region. E) Drift speeds of individual, independent
experiments, colored by experiment number. The same data is shown in gray in Fig. 3B of the
main text. Uncertainties are standard errors. Colors in (D), (E) come from ref ’. F) In theory, the
population average drift speed could be different from the drift speed of the median phenotype
(see SI). However, drift speed mostly depends on the combination of swimming parameters plotted
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here for different bins of tumble bias TB = 1 — B.,,,, (blue line; error bars from bootstrapping; see
SI). Using this and the distribution of B,.,,,, (shown in orange; same as in Supplementary Fig. S1A),
we compared the average value of this function to its value when evaluated at the median B,
(black dashed line) (see SI). We find that these two are similar: the population average gives

2 (1-a)Ago - pm 2 . . .
<v0 o imt2Dr Prun> 375+ 1 ( : ) (solid blue horizontal line), whereas the value of the blue

. . . 2 (1-a)ARo pm 2 - .
curve at the median bin B, gives v; mPrun ~410+3 (T) (solid black horizontal
- RO T

line). This justifies our comparison of population-average drift speeds to bounds quantified using
a median cell’s parameters.

14
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Supplementary Figure S10. Information bounds on performance

The upper bound on chemotactic drift speed set by information acquisition depends on the cell’s
behavioral response, 1z ({s}), but also on its behavioral parameters, 8 = {Az,, @, P} (@lternative
parameterization from the main text). The green line and blue lines/data points are reproduced
from main text Fig. 3C. The green line is the maximum drift speed possible for a cell that has the
same behavioral parameters as those we measure in RP437 E. coli. This bound was found by
optimizing over responses Az ({s}). In principle, a cell with different behavioral parameters has a
different bound on its drift speed. Optimizing the mean tumble rate A5, but keeping the remaining
behavioral parameters held fixed at their measured values, gives the red curve. Finally, if the
remaining parameters are optimized, this gives the black curve. No cell’s drift speed can exceed
this bound. See Sl for derivations and expressions for each bound. Shading and error bars indicate
+ one standard error.
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(chemotactic coefficient)

Parameter Value Meaning Source
P 0.89 +0.01 Median run bias This study
Aro 0.893 + 0.006s™? Baseline tumble rate This study

a 0.06 + 0.01 Directional persistence of tumbles This study
v, 22.61+0.07 um/s Speed during runs This study
D, 0.0441 + 10~ * rad?/s Rotational diffusion coefficient This study
a pmy 2 Fit prefactor of the x-velocity This study
i 157.1£ 0.5 (T) autocorrelation function V (¢t)
Aiot 0.862 + 0.005s* Fit decay rate of the x-velocity This study
autocorrelation function V (t)
G 1.73 £ 0.03 Gain of kinase output This study
T, 99+03s Adaptation time This study
7 0.22 +0.01s Time for kinase response and This study
CheY/CheZ hinding
7 0.017 £ 0.004 s Kinase response time Refs 56
~1/60s (used to compute the information
rate 1__,,)
D, (72+03) x107*s7? Diffusivity of kinase activity This study
fluctuations
T, 11.75 £ 0.04 s Correlation time of kinase activity This study
fluctuations
o, 0.092 + 0.002 Standard deviation of kinase activity This study
fluctuations
a, 0.29 + 0.07; Baseline kinase activity This study
0.30 £ 0.08
B 0.225 4+ 0.032 bits/s / mm~2 | E. coli’s information rate from signal This study
to kinase activity per squared gradient
steepness, I, = B g°
X 4300 + 150 um?/s Drift speed per unit gradient steepness This study

Supplementary Table S1. Parameter values.

Implicit in the units of parameters G and o, are the dimensionless units of kinase activity.
Uncertainties for a, are its standard deviation over an isogenic population. The first value comes
from the linear response experiments, and the second one from the noise measurement

experiments.
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Supplementary Information Text

Section 1: Relationship between mutual information and transfer entropies

Consider two time-dependent random variables X(t) and Y(t), and let time be discrete with
X(k) = X(t) = X(k At). The set of values of X fromtime t = 0 totime t = t,_, (inclusive) will
be denoted XX~1. Then, the mutual information between X (¢) and Y (t) fromt = 0to t = ty is:

1)

P XN, YN
MI(XY; YY) = f dxy dYONP<XaV,YaV>log< o, Yo ) )

P(XY) P(Y)

where the probability distributions and integral are over trajectories. Each of the probability
distributions can be decomposed into a product of conditional distributions, chosen such that the
probability of each X and Y is conditioned only on those at earlier times:

N
PxY, Y] = HR_OP(X(k),Y(k)|X(’;—1,Y0’<—1) (2)

where the k = 0 term is just P(X(0),Y(0)). Doing this for each of the distributions in Eqn. (1)
gives:

N p(X(k),Y(k)|Xk1 vk
mioe ) = [ axg dYoNP(xéV,YONNog( k=0 PXCO), YOO, Y67 ) 3)

N o P(XCUD|XE ) TINy_, P(Y(R™)|YE ")

Writing the log of the products as a sum of the logs and grouping probabilities of X and Y at the
same time step:

P(X(k), Y (R)IXE, Yo ) > %)

MI(XY; Y =deo Yy P(Xo, Y )Zk=olog<P(X(k)IXé“1)P(Y(k)IYo"’l)

Moving the sum outside of the integral, the k’th term in the sum only depends on X and Y at earlier
times; therefore P(X{', YY) can be marginalized for X and Y at all times larger than t:

P(X(k),Y(R)| XK1, YE) ) )

T k vk k vk
MI(XQ;Ys') = Zk=0 ] dXo dY; P(Xo,Yo)10g<P(X(k)|Xg—1) P(Y(R)IYFT)

Multiplying the numerator and denominator inside the log by P(X(k)|X(’f‘1,Y0"‘1) and
P(Y(k)|X(’,“1, Yok‘l) and then separating the log of the product into a sum of logs gives:
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MI(XSI;YON) ( | k-1 vk 1)
N P(X(k)|Xg™ " Yo~ )
= Xk dyk p(xk, vk)1
D) 4 08 PORE ) °g< PX(OIXS )

N P(Y(k)|X§-1,YO’<-1)> (6)
dxk dyk p(xk vk)1
+Zk=0f o ¥ P (X, ) °g< PY(O)IYED)
N
+z de(’f dyy P(Xg,yo")log<
k=0

P(X(k), Y ()| XE~1, v 1) )
k=N
=Iy x + Iyoy + z I(X(k); Y (R)|XE, vt
k=0

P(X(R)IXE YEY) P(Y () IXETYgET)
(7)

= IY—)X + IX—)Y (8)

The first term is the transfer entropy from Y to X, and the second is the transfer entropy from X to
Y. The last term measures the conditional dependence of one variable at the current time on another
at the current time, given their histories, and is zero for a stationary, causal, finite-order Markov
system.

We use “transfer entropy” to refer to the cumulative amount of statistical influence of one variable
onto another over some period of time. This is in contrast to Schreiber & who used transfer entropy
to refer to a rate—Schreiber’s “transfer entropy” is our “transfer entropy rate”.

The steady state mutual information rate and transfer entropy rates are obtained by dividing by the
total time t,, = N At and taking N to infinity.

P(Y(k)|x&1, Yok‘1)> )

. 1 N
Iy_y = lim —Z jdX" dyk p(xk v®)lo (
xor = I e 2y ) X0 Y0 PG Yo' log P(Y(k)|YE™)

For a stationary process, after sufficient time has passed (sufficiently large N), each term in the
sum is equivalent, and we can reassign the indices so that k = 0 is the current time, k = 1 is the
next future time step, and negative indices indicate time in the past:

P(Y(k = 1DI|XZy, Y—N)> (10)

. 1
— 1 1 1 1 1
Loy = lim Atf dXy d¥oy POt Yon) log( P(Y(k = DY)

Taking At — dt, the continuous time limit, k = 0 is replaced with the current time t, k =1
becomes time t + dt, and we get

[ _ 1 d dt)} d
ey =7 [ dxG + oy atre

+dt)} P({X(t + dt)}, {Y(E , (11)
P(Y(t + dOIX (D)}, Y O
+do)})log ( POY(E + DY (D)) )
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. 1 (12)
by = = (D (PCY (£ + ADIX (O} Y ODIIPE (€ + ADIY OD)) e, e

where {X(t)} is the full history of X(t) up to time t (inclusive), and Dy, is the Kullback-Leibler
divergence.

Section 2: Drift speed in the regime of small chemotactic bias

The first step in connecting information transfer to chemotactic performance is to construct a
model of chemotaxis and derive expressions for the two quantities. Here we draw on past work °°
to derive the drift speed of a chemotactic E. coli cell in shallow, static gradients. In this section,
rather than re-derive that result, we will cast it in a form that will be convenient later on, when we
derive the upper bound that information transfer places on the maximum drift speed a cell can
achieve.

We model chemotaxis, like others have done before 913, as follows. During runs, the cell swims
with speed v, and is subject to rotational diffusion with coefficient D,.. Many experiments to date
1418 gre consistent with a Monod-Wyman-Changeux (MWC) model * of cells’ transmembrane
receptor activity. In this description, cells sense concentration through its effects on the free energy

difference between the inactive and active states of the receptors, f. = log (%3;?) Here, K;
a

and K, are the receptor dissociation constants for the ligand when the receptors are in the inactive
or active state 22, and cells are log-sensing over a wide range of concentrations K; < c(t) <
K, 1622, In a static, shallow, exponential gradient, we have c(x) = cy,e?*, where c, is the
background concentration and g is the gradient steepness. Cells respond to time changes of

concentration through time changes of receptor state %fc, which in the log-sensing regime is
~%log c(t) = vx(t)%log (c(x(t))) = g vocos(6(t)). Here, 8(t) is the angle between the cell’s
heading at time ¢ and the direction of the concentration gradient (the x-axis). Therefore, we define
the signal to be s(t) = %log c(t). In shallow gradients (small g), we could just as well define the

. d . . . . .
signal as s(t) = d—i, lumping c, into the cell’s response to the signal. Since signal and response
always come as a pair, this distinction does not affect our results.

The cell’s swimming state m(t) can be either run (R) or tumble (T). We assume that the cell has
zero speed during tumbles %. Previous studies have shown that slow fluctuations in signaling
activity drive long tails in the counterclockwise rotation durations of single motors 2*?’. Here and
in our experiments, we only consider shallow gradients, where these slow fluctuations are
predicted to increase drift speed by at most 10% 2%2°. For simplicity, here we model run-tumble
transitions as Poisson processes with rates that do not fluctuate in the absence of signal. As a result,
the tumble rate should be understood as an effective tumble rate that lumps together the effects of
ligand arrival noise, noisy internal state, and multiple motors. This model fits well our
measurements of cells’ velocity autocorrelation functions, which on the time scale we are able to
measure exhibits an exponential decay (Supplementary Fig. S2A; see also refs *?3). The run-to-
tumble transition occurs with rate
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AR(t) = Ago (1 - E({S(t)})), (13)

depending on the history of signal seen, {s(t)}. Curly brackets { }, such as {s(t)}, indicate a
trajectory of a quantity up to and including the indicated time (in this case, t). We define Az, as
the average tumble rate in the absence of a gradient. Tumble to run transitions occur with constant
rate A, which is taken to be independent of s(t), valid in shallow gradients ®2. As a result of the
Poisson assumption, run and tumble transitions have no memory of how long the cell has been in
its current state.

Tumbles can partially reorient the cell %2°, quantified by a = (cos(y)), where y is the angle
between the cell’s swimming direction before and after the tumble. When a = 0, tumbles fully
reorient the cell. We also assume that the cell is navigating a shallow gradient, therefore the tumble
rate modulation is small, e({s(t)}) « 1.

In general, e({s(t)}) might be a complicated function of the past signals, but in shallow gradients,

only a linear response approximation is needed to calculate the cell’s drift speed. Therefore, we
consider responses of the form

t
e{s(®)} = f Ky (t —t) s(¢') dt’, (14)

with kernel K, (T) mapping signal to behavior.

By integrating by parts, one can show that responses to s(t) with kernel K, (T) are equivalent
responses to (log) concentration with a different kernel:

e(c(®))) = f Ry (t — t)(log(c(t) — log(cy)) dt', (15)

where ¢, is the background concentration. These are equivalent for s(t) = ilog(c(t)) R,(T) =

K,(0) 6(T) + —— de(T) ,and K, (T) = f R, (T") dT'. In these formulations, perfect adaptation 332

can be encoded by fO R, (T) dT = 0 or K, (o) = 0. See Section 7: Imperfect Adaptation for
derivations.

Locsei ? and Celani and Vergassola 1° showed that the drift speed is:

UO (1 - a)ARO UO g foo ~ ~
= — P R.(T ((1=a)ARo+2 DR)T g 1
v 3 (1 - a)ARO + 2 D‘r run (1 - a)ARO + 2 DT 0 b( ) € d ( 6)

Py = P(m(t) =R) is the fraction of time the cell spends in the run state, or B.,,, =1 —TB,

with tumble bias TB = ———. Plugging in the relationship between R, (T) and K, (T) above, and
RO

integrating by parts, one fmds
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v zﬁ (1 —a)Ago
17 3 (1 —a)lg+2D,

Prun Vo g f K, (T) e (1-@2ro+2 D) T g, (17)
0

This expression applies whether or not the response kernel adapts perfectly %12 (see Section 7:
Imperfect Adaptation).

Below, we will show that in the drift speed expression:

(e{s(®P cos(8(D))) = %vog f OOKD(T ) e~ ((1=®2ro+2D1)T g, (18)
0

where the angled brackets are an average over trajectories, conditioned on the cell being in the run
state at the current time t, m(t) = R. Writing the drift speed in this form,

(1—a)lgro
(1—-a)Ago + 2D,

Brun (6({S(t)}) COS(G(t)))' (19)

Vg = Vy

will simplify the derivations later when we upper bound the cell’s drift speed at fixed information
rate from signal to behavior.

To show this, we start from the definition of e({s(¢)}) in Eqgn. (14) and split the average over
trajectories into two expectations. The first is an average over past trajectories given that they end
with signal s(t), and the second is an average over current signals s(t). The first expectation is:

(e({s(O}) cos(8(t)) |s(t), m(t) = R)

= (cos(0®) [*,, Kyt =) st dt’ |s(6), m(®) = R) (20)

Given s(t) = vy g cos(0(t)), only 8(t") is a random variable in this expression. Similarly,
conditioning on s(t) is the same as conditioning on cos(e(t)), so we can simplify to:

=g v, cos(@(t)) ft K, (t — t’)(cos(@(t’)) | cos(G(t)) ,m(t) = R) dt’. (21)

The heading at time t’ in the past is cos(@(t’)) = cos(G(t’) —6(t) + H(t)) = cos(e(t’) —
6(t)) cos(8(t)) —sin(8(t") — 6(t)) sin(6(¢)), using the angle sum formula. The product of sine
terms will equal zero in the end, so we drop them here. Plugging this in:

(E({s(t)}) cos(e(t)) |s(t), m(t) = R)

= g v, cos? (H(t)) J-_t Kb(t - t') <cos (B(t') - G(t)) | cos(@(t)) ,m(t) = R> dt. (22)
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Since we assume the gradient is shallow, we will only keep terms up to first order in g. Therefore,
(cos(6(t") — 6(t))) is an average over swimming trajectories that experience rotational diffusion
and tumbles but that don’t respond to the gradient. Rotational diffusion is symmetric around the
initial heading, which is why we excluded the term (sin(6(t") — 6(t))) = 0 above. Since

(cos(B(t") — 6(t))) = e~ (A=®Aro+2Dr) (') for ¢/ < £30, we now have:

t
=g v, cosz(ﬁ(t))f K, (t — t") e~ (=®2ro+2Dy) (t=t") g¢'. (23)

Since the system is stationary and we conditioned on the state at time t, we can change variables
to integrate over time into the past T, back from the current time t: T =t — t' and dT = —dt’.
This gives:

(E({S(t)}) cos(@(t)) |s(t),m(t) = R)

=g v, Cosz(e(t))f K,(T) e~ ((1=ARo+2 D) T 4T (24)
0

Then, taking the second expectation, over current signals s(t), or current headings cos(8(t)) (with
the conditioning on m(t) = R implied):

(e({s(D)}) cos(6())) = g vp (cos?(8(t))) j OOK,, (T) e~ (A-DAro+2Dr) T g, (25)
0

Again, since we assume the gradient is shallow and only keep terms to first order in g, the
expectation (cos?(6(t))) is with respect to a uniform distribution of headings in three-dimensional
space, giving:

(e({s(O}) cos(8(D)))
=g, %]0 jo cos?(0) sin(6) db dquO K, (T) e~ (A-®2ro+2 D) T gT (26)
or:
(e({s(O} cos(6(D))) = %g Vo f Ky, (T) e~ ((1=@Aro+2D:) T g (27)
0

Section 3: Information rate from signal to behavior

Although the information available to the cell to navigate is the transfer entropy from signal to
kinase activity (discussed later), chemotaxis performance depends on the properties of the motor
responses. Therefore, to connect information acquisition at the kinases to performance, we will
need an expression for the rate of information transfer to behavior. The information acquired by
the kinases upper bounds the information communicated to behavior, which in turn upper bounds
chemotactic performance. Thus, information acquired by the kinases upper bounds performance.
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To derive an expression for the information communicated to behavior, or the information rate for
short in this section, we will use the differential expression for the steady state transfer entropy
rate:

: 1
Ism = E(DKL(P (m(t + d){m(O} {sODIIPm(t + dOMODN)),,. 01,600 (28)
_1 <10 (P(m(t + dt)|{m(0)}, {S(t)})>> | (29)
“ P(m(t +do)lim(®)}) {m(®)}{s@®}m(t+dt)

Again, the cell’s swimming state m(t) can be either run (R) or tumble (T), s(t) is the signal the
cell perceives, and curly brackets { }, such as {s(t)} indicate a trajectory of a quantity up to and
including time t.

Deriving the information rate for a chemotactic E. coli requires deriving the transition probabilities
above. Each of the transition probabilities can be written with the trajectories {m(t)} and {s(t)}
separated by the current time and the past: {m(t)} = (m(t),{m(t —dt)}) and {s(t)} =
(s(t),{s(t —dt)}). Furthermore, since we assumed in the previous section that transitions
between runs and tumble are inhomogeneous Poisson processes given the trajectory {s(t)}, the
transition probabilities are independent of how long the cell has been in its current state. Together,
these give: P(m(t + dt)|{m(t)}, {s(t)}) = P(m(t + dt)|m(t),s(t),{s(t — dt)}). In particular,
the probability that a running cell transitions to tumbling in the next dt is
P(m(t +dt) =T|m(t) = R,{s(t)}) = Ag({s(t)}) dt and the probability that a tumbling cell
transitions to running in dt is P(m(t + dt) = R|m(t) = T,{s(t)}) = A, dt.

We also need the conditional probability P(m(t + dt)|{m(t)}). When the cell is in the tumble
state at time t, P(m(t +dt) = Rlm(t) = T,{m(t — dt)}), reduces to
P(m(t + dt) = R|m(t) = T) = Ay dt, since tumble-to-run transitions are independent of the past
and of the signal. When the cell is the run state, the transition probability P(m(t+ dt) =
T|m(t) = R,{m(t — dt)}) is more complicated. This quantity measures the inferred probability
that the cell will tumble in dt, given the past of motor states {m(t)}. The past motor states are
informative of whether the cell will tumble only because they allow inference of the past signals
{s(t)}. Writing this out mathematically:

P(m(t +dt) = Tim(t) = R,{m(t — dt)}) (30)
= fP(m(t +dt) = T|{s(t)}, m(t) = R, {m(t — dt)}) P({s(®)}|m(t) = R, {m(t — dt)}) d{s(t)} (31)
- f P(m(t + dt) = T|{s(D)}, m(t) = R) P((s(O)}|m(t) (32)
= R, (m(t — d&)}) d{s(D)}
(33)

= le({S(t)}) dt P({s(O}Im(t) = R, {m(t — dt)}) d{s(0)}.
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P({s(t)}m(t) = R,{m(t — dt)}) is the distribution of past signal trajectories that can be inferred
from knowledge that the cell is currently running and from its past behavior. Since the behavioral
response e({s(t)}) is small and behavior only depends on the history of signal through it,
P({s(®)}m(t) = R, {m(t — dt)}) can be written as an asymptotic series solution in e({s(t)}):

P({{s®}Im(t) = R, {m(t — dt)}) ~ Po({s(0)}Im(t)

= R)(1+ 0(e({s(OD) + 0(2{s(OP) + ), (34)

where Py({s(t)}|m(t) = R) is the distribution of signal trajectories when the cell does not respond
to the signal. This is a probability distribution, so it must integrate to one. Since the zeroth order
term integrates to one, all higher order terms must either integrate to zero or equal zero. Since
terms with e({s(t)}) raised to an even power are nonnegative, their integrals can only equal zero
if they are zero. Therefore, we have:

P({s(®)}Im(t) = R, {m(t — dt)}) ~ Po({s(0)}Im(e)

=R)(1+ 0(e({s(®}) + ). (35)
We assumed that A, is the average tumble rate in the absence of a gradient, or:
Aro = [ PoGs(@Hm(®) = R) 24({5(0) dfs(0) (3)
= Aro j Po({s(O)}Im(®) = R) (1 = e({s(O))) dis()} &7
= Ao (1 — (({s(OD) (38)
> (eds@®) =0 (39)

Therefore, (0(e({s(t)}))) = 0. Below, angled brackets without a subscript will denote an average
with respect to Py({s(t)}|m(t) = R), which is the same usage as in the derivation of the drift
speed in the section above.
Using the expression for P({s(t)}|m(t) = R, {m(t — dt)}) above, we get:
P(m(t +dt) = T\m(t) = R, {m(t — dt)}) = (40)
dt J Aro(1 = e({s(©)})) Po({s(O)}Im(t) = R)(1 + 0(e({s(D)})) + -+ ) d{s(t)}.

Keeping terms up to order e2({s(t)}) (and dropping (t) for clarity):
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=@wqﬁﬂmmmo

(41)
=R) (1 - e({sh + 0(e(s)) — 0(e({sh)) dls(®)}.
Using (e({s(t)})) = 0, this is:
= Ao dt (1~ <0(e({s}))2>) = Apo dt (1 — A), (42)

where we define 4 = <0(e({s}))2> > 0 as the expectation of the first-order terms squared that

come from P({s(t)}|m(t) = R,{m(t — dt)}). This definition will be useful because A will
ultimately drop out in the final expression for I,,,. To understand the expression for
P({s(®)}m(t) = R,{m(t — dt)}) above, observing that the cell has been running for any finite
amount of time increases the likelihood that it has been running up the gradient. The amount by
which that likelihood increases is order e({s(t)}). Then, since it is more likely going up-gradient
than down-gradient, the likelihood that it will tumble in dt should be strictly lower than average.
Predicting whether the cell will tumble in dt produces another factor of e({s(t)}) in A from the
definition of Az (t).

With these transition probabilities in hand, we now derive the transfer entropy rate. As a reminder,
the information rate is:

- 1 P(m(t + dt)[{m(t)}, {s(t)})
ls-m = G\ 18\ P mce + ao1mOD (“3)
{m(O}{s(®)}m(t+dr)
Writing out the expectation with respect to m(t):
_1 - (P(m(t + dt)Im(t) = R, {m(t — dv)}, {s(t)})>
A P(m(t + dt)|m(t) = R, {m(t — dt)}) (O e+ DO m(6)— )
' ' " 44

P(m(t + dt)|m(t) = T, {m(t — dt)}, {s(t)})>>

+ Ptumble <10g( _ _ )
P(m(t +de)jm(t) =T, {m(t — d6)}) (s} m(t+dt){m(E—dt)}mE)=T

where Pympie = 1 — Prypn. Since tumble durations are assumed to not depend on past behaviors or
on the signal, the second term in the parentheses is zero. We also simplify the numerator in the
remaining logarithm:

is—)m
1, ¢%< P(m(t + dt)lm(t) = R, {s()}) » | (45)
dt P(m(t + dt)m(t) = R, {m(t — dO)}) (s(O}m(t+de),{m(t-de)}m(t)=R

Writing out the expectation with respect to m(t + dt),
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at P(m(t + db) = T|m(®) = R, {m(t — D))
P(m(t + dt) = Rlm(t) = R, {s()}) >> (46)

P(m(t + dt) = Rlm(t) = R, {m(t — dt
(m( ) = R|m(6) = R, {m( ) O m—dtm(e)—R

=L Prun <P(m(t +dt) = TIm(®) = R, {s(O)) log( Pn(t+dn) = Tim(®) = R, {50) )

+ P(m(t + dt) = R|m(¢t) = R, {s(®)}) log(

Plugging in the transition probabilities derived above:

= i Prun <’1R0(1 - E({S(t)}))dt 10g<

dt

ARO(l - E({S(t)})) dt
ARO dt (1 - A)

(47)

(1= Aro(1 — €({s(O) dt)))

+ (1= Aro(1 — e(s(ON)dt) log( (1= 2o dt (1 - A))

{s(O}fm(t-an}im(®)=R
Next, expanding the second logarithm to first order in dt:

1

_1 1-e({s(O}
S dt

Prun <’1R0 dt (1 - 6({S(t)})) 10g< 1-A4
+ (1= g dt (1 = e(Cs@®N) ) (~Aro dt (1 = e(ts(OD) (48)

+ Apo dt (1 — A))

(SOHmE-dOlim®=R

1- 6({S(t)})) (49)
1-4

1

= E Prun <AR0 dt (1 - E({S(t)})) 10g<

+ (~Aro dt (1 = e(ts (D)D) + Ago dt (1 — A))>
{s@}m(e-do)}im(®)=R
1 - e((s(D)}) (50)

= Aro Prun <(1 - 6({5(t)})) 108( 1-4

) +e({s(®) - A>

{s@®}{m(t-do)}im(e)=R

For shallow gradients and small e({s(t)}), we can expand the remaining logarithm to second order
in e({s(t)}). Recalling that A is already second order in e({s(t)}), we get:

1
= Ao P (1= €((sOD) (—e(s () 52 (5OD +4) + (D

(51)

_ A) _

{s(®}{m(t-at)}m()=R

Keeping to second order in e({s(t)}):
1
= Agro Prun <_E({S(t)}) - EEZ({S(t)}) +A+e2({s()}) +e({s(®)}) — A> (52)
{s(O}m(t-dt)}m(t)=R

(53)

=3 Aro B (€2({s(OD)iso)} tm(t—a)}m()=r-

Next we separate the remaining expectation into two parts:
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1
= 5 4ro Frun {(e2(LsONNs(rpime-atm©=r ) g, aim(O=R" (54)

Since the term inside the angled brackets is already order €2({s(t)}), only the zeroth order term
of P({s(t)}I{m(t — dt)}, m(t) = R) contributes to the inner expectation:

1
= 80 Prun (€SO o —aormityor (55)

The inner expectation is taken with respect to P,({s(t)}|m(t) = R). What remains there does not
depend on {m(t — dt)}, so we can integrate out {m(t — dt)}, leaving:

1
[som = EARO Bun (62({5(t)}))

1 Ar(s(O)) = Ago )
- EARO Prun << /1R0 ) >

(56)

This equation indicates that in the linear regime, the information rate measures the signal-induced
variation in the tumble rate A, ({s}). The factor of Az, B, indicates that I;_,,,, measures the long-
time, signal-induced variation in 1z ({s}) times the frequency of tumble events. Larger signal-
induced variations in the tumble rate indicates larger information transfer from signal to behavior.
When tumbles occur more frequently on average (larger A5,), those variations in tumble rate cause
more apparent changes in the run-tumble statistics, increasing the transfer entropy rate.

Section 4: Information-performance bound with fixed behavioral parameters

Here we derive the bound in Eqn. 1 of the main text and in Figs. 1 and 3. As we’ve shown above,
the drift speed v, and the information rate I;_,,,, depend on the behavioral response A, ({s}), or
e({s}). However, while some responses correspond to high information rates, they don’t
necessarily generate high drift speed. We reiterate that we are looking for the behavioral response
that achieves the highest drift speed with a given information rate—this is not necessarily the
response that produces the highest information rate or the highest drift speed.

To find the behavioral response e ({s(t)}) that maximizes the drift speed at fixed information rate,
we solve:

. L(e({s(D)}, ) (57)

where 0 = {a, Ago, Bun} are the behavioral parameters characterizing the cell’s swimming in
absence of a gradient (this is an alternative parameterization from the one in the main text). The
Lagrangian is:

L =vq =By Ism — B2 le({s(ON). (58)

27



B, and B, are Lagrange multipliers (and since I, = 0, we must have that 8, > 0). The second
term constrains the information rate, while the third term enforces the constraint that (e ({s(¢t)})) =
0 (see previous section). The full expressions for the quantities above are:

(1—a) Ago

Va = V0 = oy it 2D, brun (e{s(® cos(6(D))), (59)

1
Isom =5 Aro Prun (€ ({s(})- (60)

Our efforts in previous sections to write v, and I, in terms of e({s(t)}) and to write
expectations with respect to the same distributions make taking the functional derivative with
respect to e({s(t)}) easier here. Setting it equal to zero gives:

oL _ 0
se({s()}) (61)
(1—a) Ago 1 . _
— Vo (1—a) Ago + 2D, Bun COS(H(t)) — f1 Aro Brun €*{s(®)}) + 2 =0
. _ B2 1 (1 —a) Ago (62)
D =~ g Tt P = @ Ao + 20, 00

_ B2 1 1-a) l (63)

B 51 Aro B run+ﬁ1 (1-a)Are+2D,g s(®)
= A+ B s(t), (64)

11 (1-a)

with B = ﬂ1g (1-a) ARo+2 Dy

. Enforcing that (e({s(t)})) = 0 givesthat A =0, §, = 0.

Comparing to Eqgn. (14) of the drift speed derivation, e({s(t)}) = f_too K,(t—t") s(t") dt', we
see that the optimal strategy is achieved by a behavioral kernel that is proportional to a delta
function at the current time:

Ky (T) = €y 6(T), (65)
and B = ¢,. Putting this together, we have:

e"({s(O} = € s(®). (66)

The strategy that achieves the highest drift at a given information rate, in the regime of shallow
gradients, is to modulate the tumble rate proportionally to the current signal s(t). For this strategy,
all signal-induced variations in the tumble rate contribute the gradient climbing—no signal-
induced variations go unused. This optimal strategy can’t be achieved by a real cell, which
measures the signal by comparing concentrations at different times 3334, Still, no cell or agent can
outperform this optimal strategy.
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At the optimum:
Vo (1—a) Ago

r =2 Puns 67

Va 3 (1—a)Ago + 2D, (Vo 9 €0) Prun (67)
. 1. (vyg€p)? (68)
Iim = E’lRO 3 run-

Expressing the drift speed in terms of the information rate, one finds that the drift speed cannot

exceed:
1

Va < (1 - a) ARO <2 is—>m >E (69)

U_O - (1 - a) ARO + 2 Dr run §/1R0 Prun

The term lis*;Pm inside the square root can be interpreted as the information the cell gets about the

RO Frun

signal trajectory per run: higher information per run is necessary, but not sufficient, for higher
drift. The factor outside of the square root determines how well the information is translated into
drift in the presence of rotational diffusion. Therefore, in addition to information acquisition,
navigation depends on the matching between the cell’s behavioral parameters and the properties
of the physical environment. Comparing to Eqn. 1 of the main text, we have

N[ =

_ (1—a) Ago & (70)
f(6) = (1—a) Age + 2 D, (8/1R0 PT“") '

Section 5: Relevant bits for bacterial chemotaxis

Is_,,, measures the rate of information transfer from the full history of signal to motor behavior.
But the response strategy that maximizes drift speed given some information rate I,_,,, is one that
only responds to the current signal. This suggests that the information rate can be partitioned into
two parts: information about current signal, which drives chemotaxis, and information about the
rest of the signal trajectory. We will now show that the drift speed is proportional to the square
root of the former, for any behavioral response. Among strategies with the same information rate
I, the optimal response achieves the highest drift speed by only transferring information about
current signal s(t). We will make this more precise below.

I, can be partitioned as follows:

1 <1 (P(m(t +dt)[{m(1)}, {s(t)}))>
og (71)

i —
som = gy P t + dt)|{m(t m(t+d
d (m( )l{ )y {m(©O}{s(O)}m(t+de)

(72)
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<log (P(m(t +db)[{m(6)}, S(t))>>

P(m(t+do) l{m(t)}) {m@®)}{s@®)}m(t+dt)

o (P(m(t + dt)|{m(t)}, s(t), {s(t — dt)})>
8 P(m(t + do)[{m(D)}, (D)

_ 1

T dt
1
dt

{m@®)}{s@®}m(t+dt)

= I3 m + Iise—anyyomis(o)- (73)

The first term measures the information transferred about current signal s(t) to behavior. The
second term measures how much information is transferred about past signals that aren’t correlated
with s(t). In general, I7,,, < I;_, because I_,,, contains information about s(t) as well as the
full history of s. For the optimal response, L5, = I3—m and I5()—arjom|sy = 0—no information
is transferred about past signals that aren’t correlated with the current signal. Note that there is a
distinction between responding to a signal in the past (i.e. by making A({s}) depend on that past
signal) and transferring information about a signal: responding to a signal at some time transfers
information about all signals at other times that are correlated with it.

Next, we will show that the drift speed of any behavioral response is proportional to I;_,,,. The
derivation of I3, is nearly identical to that of I, but with e({s(¢)}) replaced with e(s(t)),

which is the deviation of the tumble rate in response to the current signal, after averaged over
histories of signal that end with signal s(t) at the current time t. Carrying out the same steps gives:

F£ o = 5 20 P (€2(5 () &

The arguments in the drift speed derivation let us derive e(s(t)) in the linear regime as

e(s(®) = (e{s®OPIs@®), m(t) = R)

= g v, cos(@(t))f K, (T) e~ ((1=0)2Aro+2Dy) T 4T (75)
0

Comparing to the drift speed section, the right-hand side of the equality above can be written as:
(e2(s(®)) = 3 (e({s(O)}) cos(B(D)))". (76)
With this, the relevant information rate to the motors is
1 °° 2
j;—>m = EARO Prun <U0 gJ Kb (T) e—((l—a’)ARo+2 DT)T dT) . (77)
0

Therefore, we have for the drift speed of any behavioral response in the linear regime:
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_ (1 - a) Ago (1 2 ) (78)
@ =V Z @) Agg + 2D, TV 3(€(0))
(=@ 2_Lom \" 79)
0 (1 - a) /1R0 +2 Dr e 3 /1R0 Prun

The drift speed therefore is set by how much information about the current signal a cell
communicates to its behavior. I;_,, is a kind of predictive information rate 3-*7: it measures the

mutual information between the current signal and the cell’s behavior state in the next dt, given

the past of behavioral states, or I7_,, = L M1 (s(t);m(t + dt)|{m(t)}). The optimal response

dt
strategy makes Is_, = i m.

Eqgn. (77) indicates that behavioral responses to signals that occurred within approximately one
velocity correlation time, ;1 = (1 — @)Az + 2 D, into the past transmit relevant information
because those signals are most correlated with the current signal. Responses to signals that
occurred further in the past still transmit information, but less of it is relevant.

In static gradients, run-tumble transitions and rotational diffusion determine the signal statistics.
We assumed that run-tumble transitions were Poisson processes, so to leading order in the gradient
steepness g, the signal is Markovian. Therefore, signals farther in the past are less correlated with
the current signal. However, if the signal were non-Markovian, for example if it were oscillatory,
responding to past signals that are highly correlated with the current signal could be an effective
way of transferring information about the current signal (for example, see Becker et al PRL 2015
38 who solved a different but related optimization problem).

Section 6: Information-performance bound with optimal behavioral parameters

The bound derived in the previous section is valid for any behavioral parameters a, Arg, and P,.,,.
In the main text, we measured how efficiently a typical RP437 E. coli uses information to climb
gradients by comparing their performance to the maximum they could possibly achieve, which
was set by measuring the behavioral parameters of the median phenotype P,,,, and plugging them
into the bound (right hand side of supplemental Eqgn. (69), main text Eqn. 1). But individual cells
in an isogenic population or different strains of E. coli can have different behavioral parameters.
The performance of these cells is bounded by a different curve from the one in Fig. 3 of the main
text, given by Eqn. (69) with those cells’ behavioral parameter values. In principle, the Lagrangian
L can be further optimized with respect to the behavioral parameters to find the bound that no
individual cell can exceed.

First setting the derivative of the Lagrangian with respect to Az, equal to zero, we get:

oL vy 2D,(1—a) 1 2
oA = ? 2 (UO g 60) Prun - 6 Bl (UO g 60) Prun =0 (80)
R0 3 (- @) A +2D,)
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1 (1-a)

Using 8, = e =2 imt2D. from the expressions above, this reduces to:

(1—a)Apo =2D,. (81)

This indicates that at the optimum, the rate at which the ideal cell actively changes direction by
tumbling equals the rate at which it passively changes direction by rotational diffusion. The
optimal value of this behavioral parameter depends on the physical environment through D,.
Interestingly, others have arrived at the same optimal mean tumble rate, but by optimizing a
different objectivel®.

For the optimal value of Ap, the drift speed is:

1/2

Va (1 (l) 1s—>m
L2 2 s2Mm p 82
vy ( 12 D, run ’ (82)

and £(6) reduces to £(0) = ((1 — a) Prun)l/z.

Finally, the right-hand side of the inequality above is maximized when the cell’s tumbles
completely reorient its swimming direction, i.e. « = 0, and tumbles are instantaneous, i.e. P,,, =
1:
] 1.2
Zdg(mm) (83)
vo ~ \12D,

This is the absolute maximum speed at which a cell could possibly climb a gradient given its
information rate. With these optimal behavioral parameters, (@) = 1, its maximal value. But, in
addition to responding instantaneously, achieving a« = 0 and P,,, = 1 might not be physically
realizable for E. coli cells. If reorienting completely during tumbles takes finite time, then having
a = 0 might require that P,.,,,, < 1.

With this, we have series of bounds:

1 1 1
ﬁ < (1 - CZ) /‘lRO p E Is—>m 2 < (1 - CZ) Is—»m p 2 < Is—>m z (84)
v (1—a)Agg+2D, "™ \32goPrun) 12D, T \12D, )

The first inequality comes from optimizing the cell’s behavioral response to signal; the second one
comes from additionally optimizing the mean tumble rate A5,; and the third one comes from further
optimizing a and P,.,,. These bounds are plotted in Supplementary Fig. S10.

Although we derived the optimal parameters assuming the optimal (instantaneous) behavioral
response, these parameters should still be optimal for any given kernel. We focus on Agq in
particular because, for the parameter values we measured in E. coli, it has the biggest effect on the
bound. First, we found that the highest drift speed at fixed information rate is achieve by
responding to the current signal only. However, if the cell responds to signals that are highly
correlated with the current one, it can approach the bound. Longer runs make the signal correlation
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time longer, making the efficiency of any given kernel get closer to that of the instantaneous one.
Second, runs longer than 1/(2 D,.) waste information because they lose direction before the signal
elicits a change in run duration. As a result, the optimal A5, should still be about 2 D,. for any fixed
kernel.

Section 7: Imperfect adaptation

To understand how imperfect adaptation affects our results, we need to revisit the mapping
between response kernels that act on concentration and those that act on the rate of change of
concentration.

Celani and Vergassola *° derived a cell’s drift speed in terms of its behavioral response kernel that
acts on absolute concentration (see also Wong-Ng et al. !?), even for imperfectly-adapting
responses. As above, concentrations experienced along the cell’s swimming trajectory modulate
the tumble rate according to:

Ar(t) = ARO(]- - E(t))

t (85)
e(t) = f Ry(t—t') c(t") dt’

The response function comes from linearizing the cell’s biochemical signaling pathway and motor
responses. As noted before 12, this response is only locally valid around a certain background
concentration c,. Although we will model the responses to c(t) and dc/dt in this section, the

approach is the same for responses to log(c(t)) and %log(c(t)). If adaptation is imperfect, the
kernel R, (T) integrates to value different from zero, A = f0°° R, (T) dT # 0.

The drift speed is given by Eqn. (16) above, but there is some ambiguity in the literature about
which value of the average tumble rate and which kernel R, (T) to use. We will clarify this
ambiguity here, and in the process demonstrate that a kernel acting on deviations in concentration
from the background, c(t) — ¢y, is equivalent to one acting on the rate of change of concentration
s(t) = dc/dt, even when the response does not adapt perfectly.

To start, we note that if the response does not adapt perfectly, then the baseline tumble rate is a
function of the background concentration c,. In terms of the expressions above,

A (6) = Aro (1 - f t R,(t —t") c(t) dt’)
= Aro <1 - f R, (t —t)(c(t") = co + o) dt’)
IR (86)
= Ago (1 —Acy— f Ry (t —t")(c(t") —cp) dt’>
1 t
= ARO(]- —A CO) (1 - 1——14(,‘0_[ Rb(t — t’)(C(t') — CO) dt')

33



t
Ar(t) = Ay <1 - f Ry(t —t")(c(t’) — co) dt'>, (87)

where

Ar1 = Ago(1 —Acy)
Ry (T) (88)
1—Acy

Ry(T) =

Here we see that the effect of the background c, is to multiply the average tumble rate A, and
divide the response function R, (T) by a factor of (1 —Acy) <1. If A> 0, this reduces the
average tumble rate and increases the effective gain of the response. The gain increases because
the same absolute response amplitude causes a larger relative change in Az (t) when the baseline
rate Az, is lower. Note that when A = 0, Azq = Azq, Rp(T) = R, (T), and the ¢, term drops after
integration.

Using simulations (details below), we verified that the equation for the drift speed is indeed given
by Eqn. (16), however the average tumble rate and response function should be those in Egn. (88),
ie.

_ v (1—a) g

vy = —
“73 (1= a)Ap, +2D,)

5 Prun gf exp(_((l —a) Ags + 2 Dr) T) R, (T) dT. (89)
0

Next, we show that these expressions can equivalently be written in terms of a response function
Ky(T) = [} Ry(T") dT" acting on s(t) = dc/dt, with

t
Ar(t) = A, (1 - j K,(t—t") s(t") dt’) (90)
and
2 (1 _ )/1 [}
v = e gy Pn [ e(—((1= @) Ay +2D,)T) Ky() T (1)

To show this, we start from Eqgn. (90). Since the system is stationary, we change variablesto T =
t—t'andt:

A2 (8) = Apy <1 - f wa (T)s(t —T) dT). (92)
0

Plugging in proposed expression for K(T') gives
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[e9) T
Ae(®) = Apy <1 - f ( f R, (T") dT’) s(E—T) dT). (93)

Then we integrate by parts:
3} T o [e5)
f (f R, (T") dT’) s(t=T)dT = — (f R, (T) dT) c(—) +f Ry(T) c(t —T)dT (94)
0 0 0 0

Here, we identify c(—o0) as the background concentration ¢, around which the system was
linearized. Then the above line is equal to

]m (j Ry (T") dT’) s(t—T)dT = jOOR;,(T) (c(t —T) —cy) dT. (95)
0 0 0

The tumble rate is then

Ag(t) = Agy <1 - f Ry(T) (c(t =T ) —co) dT>' (96)
0

Which is equal to Eqgn. (87) above. This equivalence indicates that a kernel responding to dc/dt
captures the same information as one that responds to c(t) — ¢, i.e. changes in concentration
relative to the background around which the system was linearized.

To show that the drift speed in Eqgn. (91) is also correct, this time we start from the drift speed in
Eqn. (89). First, we integrate by parts to get:

v _Vg (1—-a) g
==
3 ((1 _a) AR1+2DT)

2 Prung <_(f Rl’J(T) dT)T=0

o (97)
+((A—a)Ap +2 Dr)f exp(—((1 —a) Ags +2D,) T) (f RH(T") dT") dT>
v A-d)in _ (R dT),_,
3 (M- g +2D,) " ((1—a) Az, +2D,) (98)
+ jwexp(—((l —a) Ay +2D,)T) (J R(T") dT") dT>
0
v (1—a) A, * 1 L
=3 @ —d i + 2D Pung <f0 exp(—((1 —a) Az, +2D,) T) UO R,(T") dT ) dT) (99)
_ V_g (1—a) Ap; foo (1
=3 (=) Ay +2D)) Pun g ( ) exp(—((1 —a) Agy +2D,) T) Kp(T) dT) (100)
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which agrees with Eqgn. (91) above.

For completeness, we also derive the reverse mapping, from K, (T) to R, (T). We start from Eqn.
(92) for the tumble rate Ax (t). We then do the integral by parts to get

* dK,(T)
dTr

fooKb(T) s(t =T ) dT = c(¢) K, (0) — c(—00) K, (o) +f c(t—T)dT. (101)
0 0

We take c(—o0) = c,, the background concentration, and recognize that K; (c0) = f0°° R,(T) dT.
Moving the c¢(t) term into the integral, we get

meb(T) s(t—T)dT
0

- <K (0) 5(T) + dK”(T)) cw-Tydar—cy [ Ry(ryar o
o b dT 0 0 b '
Comparing to Eqn. (87), this means
R, (T) = K,,(0) 8(T) + 4K, (T) (103)

dT

When taking integrals, the Dirac delta function is treated as being entirely within the domain of
integration. Therefore,

dKp(T")

a7’ dT

T T
f R, (T") dT" = f K, (0) 5(T") +
0 0

(104)
= Kp(0) + Kp(T) — K, (0)

= Kb(T)'
forall T,evenas T — 0.

Taken together, these expressions indicate that the typical approach of writing down a response of
the form in Eqn. (85) is actually

Ar(t) = Ago(co = 0) <1 - f t Ry (t — t'|co = 0) c(t") dt’), (105)

i.e. it linearizes the system around c, = 0, not around the background concentration c,. The steps
that transform this response into Eqn. (87) (with Az, and R, (T)) essentially extrapolate the
linearization around c, = 0 to a nonzero background concentration. But the dependence of the
average tumble rate and the response gain on background concentration are most likely not linear,
and even A can change with ¢, 23, making this approach give a less accurate estimate of the drift
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speed. Thus, Eqgn. (88) is only valid near a background of c¢,~0. The more accurate approach is to
linearize the system’s response to c(t) — c,, around a particular ¢, to begin with:

t
Ar(t) = Ago(co) (1 - f Ry (t —t'|co) (c(t') — cp) dt')- (106)

Here, AR, is replaced by 1, (c,), the average tumble rate in background ¢y, and R, (T) is replaced
by R,(T|cy), the behavioral response function in background c,. Done this way, Az,(c,) and
R, (T|c,) already account for the fact that the cell is adapted to a background c,, and no rescaling
of the parameters is needed. As mentioned earlier, this formulation also applies to perfectly-
adapting responses. This clarifies that linear theories of chemotaxis linearize the cell’s responses
to changes in concentration around a particular background c,, and perfect adaptation is a special
case. Even for perfectly-adapting responses, c, can enter the gain of R, (T) or K, (T) if it is close
to the receptor dissociation constants for ligand when in the active or inactive states, K, and K;,
respectively. This approach requires the gradient to be shallow, in part so that the cell’s responses
are small and approximately linear in past signals, but also so that the cell reaches a steady state
drift speed before the background concentration changes appreciably. This second condition
makes the shallow gradient regime different from the small gain regime in the case of imperfect
adaptation.

To see how imperfect adaptation is encoded in K, (T), the response to the rate of change of
concentration, we consider an example. Take as the kernel acting on concentration:

R, (T|cy) = Ryexp(—AT). (107)

This kernel response does not adapt perfectly: A(cy) = fooo R, (T|cy) AT = Ry/A. Here, R, (T|c,)
is understood to be linearized around the correct c,, as in Eqn. (106). The corresponding K, (T) is

T

K, (T) = J Ry (T'|cy) AT’ = %(1 —exp(—AT)). (108)

0

Imperfect adaptation is encoded by the property that Kj, (o) = fooo R, (T|cy) dT = A(cy) =
Ry/A # 0.

These results show that the equations we used for drift speed and information rate earlier are valid
even when the cells’ responses don’t adapt perfectly, with the caveat that they are locally valid
around a particular background concentration c,. Therefore, our analysis did not preclude an
imperfectly-adapting kernel as a possible solution. However, we found that the optimal behavioral
response kernel, i.e. K;(T) = €, 6(T), does adapt perfectly because Kj (o) = 0. This can be
understood from the perspective of relevant versus irrelevant information. Signals far in the past
are uncorrelated with the current signal, but imperfect adaptation implies that the cell responds to
a signal (a change in concentration) that occurred infinitely far in the past, K; (o) > 0. Therefore,
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responding to them only transmits irrelevant information and lowers efficiency of information
usage.

Simulations to confirm Eqn. (89) were performed using the kernel in Eqn. (107) and taking the
common approach of linearizing around ¢, = 0. In the simulation, a cell swims in 3D and climbs
a gradient of concentration that increases in the x direction. Like in ref 12, we took v, = 20 pm/s,
D, = 0 for simplicity, Ago = 1571, ¢, = 1 mM, and the linear gradient steepness was g =
1 uM/um. Some differences were that tumbles were taken to fully reorient the cell, so a = 0, the
gain was set higher to Ry = 1.5x 10™* (uM s)™%, and the kernel rate parameter 2 = 0.5 s7 1.
Equations of motion were integrated by a forward Euler method with time step At = 7,,/50, where
T, = Apy = Ago(1 — cg Ry/A) ~ 0.7 Ao in this case. Cells were initialized as (imperfectly)
adapted to the background. 10° cells were simulated for 120 seconds. The first 20 7,, seconds of
the simulation were thrown out, during which the cells forgot the initial condition and reached
steady state. The drift speed was computed as the average velocity in the gradient direction, over
all cells and all time. The resulting value of drift speed agreed well with the prediction of Eqn.
(89), consistent with the changes in gain and average tumble rate caused by imperfect adaptation.

Section 8: Information rate from signal to kinase activity

Measuring information transfer between two continuous, time-dependent variables is highly
nontrivial because of the need to infer high-dimensional probability distributions. However, a
simple analytical expression has been derived in the special case of linear, Gaussian systems. If
S(w) is the power spectrum of the input signal, K (w) is the linear response function mapping input
to output, and N(w) is the power spectrum of spontaneous noise in the output, then the mutual
information rate /(X; Y) between input X and output Y is 394°;

2
w> do. (109)

. 1 (®
MI(X;Y)=EL log<1+ N(@)

In our case, the input signal is s(t) = %log(c(t)) and the output is a(t), the activity of CheA
Kinases.

The mutual information rate between signal and Kinase activity MI(s; a) is not generally equal to
the transfer entropy rate from signal to kinase activity I,_,,, because kinase activity affects the
cell’s behavior, which feeds back onto the signal. Instead, MI(s; a) = I, + I,5. However, by
breaking the feedback of kinase onto signals, we can quantify I,_, from MI(s; a). To do this, we
measured kinase responses and noise in immobilized cells. Then, we separately measured the
signal statistics from freely swimming cells (see below). In this setup, I, = 0, so the mutual
information rate and transfer entropy rate are equal: MI(s;a) = I,_,,. Breaking this feedback
excludes some correlations between s and a, making our estimate of I,_,, slightly different from
its value in a swimming cell. In particular, when a fluctuation lowers a, the run duration and signal
correlation time get longer, which could affect I,_,,. But these variations in run duration are not
correlated with the sign of the signal: the fluctuation makes the signal longer-lived, regardless of
whether the cell is going up or down the gradient. Therefore, they don’t change the covariance
between signal and kinase activity, only higher-order correlations. As a result, this effect will only
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enter as a correction term multiplied by g*, and it can be neglected in the shallow gradients we
considered here.

Eqgn. (109) is valid for Gaussian inputs and outputs related by a linear mapping. The response of a
to s is approximately linear for the range of signals we used (see Supplementary Fig. S5 and
previous work >#1), and the fluctuations in a are well-described by a Gaussian process (see noise
autocorrelation functions in Fig. 2G, Supplementary Fig. S6B, and previous work 2627), consistent
with the assumptions of Eqn. (109) above. But the statistics of the signal s are not Gaussian. Still,
the expression above for the mutual information rate is a good approximation in shallow gradients.
In static, one-directional, shallow exponential gradients, the signal is directly proportional to the
component of the cell’s velocity projected onto the gradient direction, v,(t): s(t) =

%log (c(x(t))) = g v, (t) = g vy cos(6(t)), where 6 is the angle between the cell’s swimming

direction and gradient direction. In the long term and to leading order in g, the distribution of
cos(6(t)) (in 3D space) is uniform between -1 and 1, therefore s is uniform between [—-v, g, vy g].
Eqn. (109) only keeps the second moment of the signal statistics; higher moments are zero for a
Gaussian process. However, higher moments of s are multiplied by higher powers of g (i.e. g*),
and therefore they only add small corrections to the Gaussian information rate in shallow gradients.
(The next power of g is g*, not g3, because the mutual information can only depend on even
powers of g; otherwise, it would depend on whether the gradient was in the positive or negative x
direction). This makes Eqn. (109) a good approximation of the information rate, even though the
signal s is not Gaussian.

We can simplify the expression in Egn. (109). As noted in the paragraph above, in static,
exponential concentration profiles that vary in one direction the signal is s(t) = g v,(t).
Therefore, the power spectrum of the signal is just S(w) = g? V(w), where V(w) is the power
spectrum of v, (t). Plugging this in, we have:

© 2
I ~MI(s;a) = %f_ log<1 + g° %) dw. (110)

In shallow gradients, the term inside the log multiplied by g2 is small for all frequencies w.
Therefore, we can further simplify this by linearizing the log:

L[V K@l (w11

o, 1
I~ 9" 37| .7 N
from which we see that the information rate is proportional to g2 in shallow gradients. Calculating
the information rate, as described in the next section, using Eqn. (111) overestimates the exact
integral in Egn. (110) by about 1% in the steepest gradients we used experimentally.

These expressions are analogous to the mutual information between two univariate Gaussian

random variables related by a linear mapping. Say we have X and Y = k X + &, where the signal
X~N(0,02) and the noise €~N(0,0?2). Since noise is assumed to be independent of X, the
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variance of Y is 0% = k*02 + ¢2. Then the mutual information between X and Y can be written in
terms of the Pearson correlation r between them:

1
MI(X;Y) = —Elog(l —r?). (112)
By definition,
2
2 0%y (x(kx +O) (ko2) B k*o? 113
0202 52 (1262 4+ 62) o2 (K262 + 62) Klg2 + g2 (113)
X o (k"o% + o5 os (k" o5 + o; %+ o;

That is, 72 measures the fraction of total variance in Y that comes from X. Plugging this into the
mutual information and rearranging,

MI(X;Y) = %log (é) (114)

1 k%c? (115)
= Elog <1 + -2 )

For small signal variance a2, this can be simplified by linearizing the log:

1k?0?
MICGY) ~ Z—=

n

(116)

Comparing this univariate mutual information to the mutual information rate in Eqns. (109)-(111),
we see that the variances of the signal and the noise become their power spectra, o2 - S(w) and
0% - N(w), and the gain becomes the frequency response function, k - K(w). The univariate

kza,zc

mutual information quantifies the ratio of signal-induced variance in Y to noise variance, —
Analogously, the mutual information rate (Eqn. (111)) quantifies the ratio of signal-induced power

2
in kinase activity a(t) to noise power, % integrated over frequency components. Since the

chemotactic signal power S(w) is proportional to the gradient steepness squared, S(w) =
g% V(w), the signal-induced power in kinase activity and the information rate are both also
proportional to g2 when the gradient is shallow.

Returning to Egn. (111), even with the dramatic simplification that this expression provides for
estimating the mutual information rate, inferring the spectra V(w), K(w), and N(w)
nonparametrically from data still requires long trajectories. Instead, we used parameterized models
for the signal and noise power spectra and for the signaling kernel that we constrained with data.
These phenomenological models are described below.

Section 9: Models of signal statistics and kinase activity noise and response
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In this section we explain the models used for the signal statistics, the noise statistics, and the linear
response function. We start with the swimming statistics. As described above, in static gradients,
the signals a cell experiences are proportional to its up-gradient velocity v, (t). The statistics of
v, (t) are characterized by their power spectrum V (w), which can be computed from the Fourier
transform of the autocorrelation function V(t). Importantly, in shallow gradients and to leading
order in gradient steepness g, the statistics of v, (t) are identical to those of a cell swimming in
the absence of a gradient. Therefore:

2
14
V(t) = (v, (), (0)) = ?0 Py e~ (=®2ro+2Dp) 1t = g o=Aeoclt]) (117)

where the parameters have the same meaning as in earlier sections. A;,; is the total rate at which
the cell loses its swimming direction. The factor of 1/3 results from measuring variations of v, (t)
in 3D space. We define the Fourier transform as

Flf@®)] = foof(t) e~ @t dt, (118)

Therefore, the power spectrum of v, (t) is:

2 1= @)Ae +2D
V(w) = FIV(D)] = z%"gun (1 = @)ro -
(1= a)Ago +2D;)" + w?
2 Aeor (120)

v 2 2'
Atot” + @

(119)

=a

We explain how we compute the velocity autocorrelation function of a typical cell, as well as how
we measure the behavioral parameters of the model, in Section 21: Estimating behavioral
parameters, run speed, and rotational diffusion.

Next, we consider the linear response function, which can be inferred directly from the cells’
kinase responses to an impulse (delta function) of signal. The cells’ impulse responses have a
stereotypical shape consisting of a fast change in kinase output, followed by slow relaxation to
baseline due to adaptation. A simple phenomenological model that captures these features of the
response to a unit impulse of stimulus, §(t), is:

t t
K@) =G (1 - e‘ﬁ) ) (121)
where G is the gain, t, is the adaptation time, and t, is the fast response time, and H(t) is the

Heaviside step function.

We infer CheA kinase output from FRET between fluorescently-labeled and overexpressed CheY
and CheZ (see below), as has been done before 118262741 Therefore, the FRET signal we measure
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has a relaxation time arising from CheY-CheZ binding and CheY-p dephosphorylation, and the
value of 7; we infer includes these relaxation dynamics. The CheA autophosphorylation time has
been measured before to be about 7, ~ 1/60 s >%; we measure t; with CheY/CheZ relaxation to
be about 0.22 s (Supplementary Table S1; Section 16: Estimating linear response function
parameters). The information rate has a weak dependence on t,, and decreasing the value of 7,
monotonically increases the information rate. We use the value of 7, from the literature to
compute I,_,,, which results in a lower information efficiency. Using T, = 0.22 s decreases the
information rate by 16% relative to the literature value; using t; = 0 increases it by 6%. The square
root dependence of the bound in Eqgn. (69) (Egn. 1 of the main text) makes the effects of these
differences on the efficiency even smaller. In Supplementary Fig. S8, we plot the dependence of
the information rate on . Our fit to t,, the adaptation time, should not be affected by CheYp-
CheZ binding because it is much longer than the measured ;. The gain G that we inferred should
also not be affected by CheYp-CheZ binding.

The frequency response K (w) is the Fourier transform of K (t):

G 1
K(w)_a(%+iw)(%+%+iw)’ (122)

where i? = —1. K(w) appears in Eqn. (111) for the information rate as |K (w)|? = K(w)K*(w),
with K*(w) the complex conjugate of K (w). This is:

G*? 1
|K(@)I? =—

g )

The noise in kinase output a(t) is well-described by an Ornstein-Uhlenbeck process 6. This
process is characterized by two parameters, a diffusivity D,, and a relaxation time scale z,,. The
long-term distribution of the process is Gaussian with variance ¢ = D,, 7,,. The autocorrelation
of this process, in the absence of signal, has the form:

(a(t)a(0)) = a2 e_lf_ill (124)

and the power spectrum, N (w) is:

N(w) = L
(%)2 b w?

(125)

Using data from single-cell FRET experiments described in the following section, we constrained
the parameters of the response function K (w) and the noise spectrum N(w): G, T4, T,, Ty, and D,,.
The parameter inference procedure is described in Section 16: Estimating linear response
function parameters and Section 17: Estimating noise statistics parameters.
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Error bars for the parameterized models above that are plotted in Fig. 2 of the main text come from
propagating errors in parameter estimation. To compute how errors in parameter estimation
propagate to errors in a function f(x, 8) with argument x (such as time t or radial frequency w)

and parameters 6, we used:
0 (x)
o7 () = Z‘ !

where afz (x) is the variance in the function f at argument value x, @; is the ith parameter, and agl,
is the variance of the ith parameter (standard error squared).

oy (126)

il

At this point, we have models for all of the expressions needed to calculate the transfer entropy
rate from signal to kinase output. For the models above, the integral in Eqn. (111) can be solved
analytically, giving the following expression for the information rate:

; 1 1/9 \a, ;_7221(1'1_1+£+/1t0t)+/1t°t(r_11+l) 5
I q ~10g(2)Z<T_ ) D_n l l l 1 1 l =B g (127)
(Tl + Tz) (‘L'1 + ) (/1“”5 T, ) (T1 + T, + At"t)

2
where Ao = (1 — @)Ago + 2 D,- and a,, = — B, The factor of 1/1log(2) makes the units bits/s.

We used the above expression to compute the information rate in the main text. By inferring model
parameters from data, we inferred the prefactor, 3.

Error bars for the information rate in Fig. 3 come from propagating uncertainties in the parameters
to uncertainty in the information rate using Eqn. (127) above, with £ (x) being I, (g) in this case.

We emphasize that this is the total information transferred from the trajectory of signal to kinase
output. Not all of this information is relevant to gradient climbing—only the part that is informative
of the current signal contributes to gradient climbing.

Section 10: Overview of E-FRET analysis method

The goal of our FRET analysis is to quantify the degree of interaction between the phosphorylated
response regulator CheY-mRFP and its phosphatase CheZ-mYFP to infer the output of the
histidine kinase CheA that phosphorylates CheY *14? (see below). For this purpose, we used a 3-
filter cube FRET imaging method, E-FRET “3, rather than the FRET method previously used in
bacterial chemotaxis studies 18264142 The two methods aim to infer the same quantity as a measure
of the degree of molecular interaction (see below), but with a different set of observables and
assumptions. The key differences are: (i) E-FRET provides a principled photobleaching correction
method, enabling us to estimate the degree of molecular interaction quantitatively even in presence
of photobleaching, while the previous FRET method gives a biased estimate of the degree of
molecular interaction if photobleaching is nonnegligible. (ii) E-FRET is a 3-cube FRET imaging
method (i.e., observes three different fluorescent signals), while the previous FRET is a 2-cube
method. This makes E-FRET require fewer assumptions. Crucially, unlike the previous method,
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E-FRET does not require measuring fluorescent signals in the absence of FRET interactions, which
is generally hard to measure precisely.

To introduce some notation used below, we consider a general bimolecular FRET system with the
donor fluorophore D and acceptor fluorophore A fused to two target molecules X and Y
respectively. In the presence of photobleaching, the system contains eight chemical species:
D*, D, A", A,D*A*,D*A, DA*, and DA, where fluorescent and non-fluorescent (i.e., photobleached)
molecules are represented with and without the star respectively, and free and complexed
molecules are also distinguished. We denote background-subtracted fluorescence signals from
single cells by Ipp, Ip4, and 1,4, Which are respectively the signals obtained through the donor
channel (donor excitation and donor emission), the FRET channel (donor excitation and acceptor
emission), and the acceptor channel (acceptor excitation and acceptor emission). As in a typical 3-
cube imaging setup, we selected filter sets (see Methods) such that the donor is not excited by the
acceptor excitation wavelengths and the acceptor emission is not transmitted through the donor
emission filter. Under these conditions, the three observables are linked to the concentrations of
the chemical species as follows *3:

Ipp = Cpp ([D*] + [D*A] + (1 — Epnax) [D*A™]) + $pp,
Ipa = Caa ([A"] + [D*A"] + [DA']) + £ a4 (128)
Ipa = dgIpp + ag Iyg + Cpp Gg Eppax [D*A"] +épa,

where &pp, &44, and &p, are zero-mean shot noise in each channel, and I, and I,, are,
respectively, the noise-free I, and I,, signals. E,,,, is the maximum FRET efficiency, where
FRET efficiency is defined as the probability of energy transfer from the donor to the acceptor per
donor excitation event 434 and the maximum FRET efficiency is achieved when only the
chemical species D*A* is present. The first and second term on the right-hand side of the last
equation, respectively, represent the bleedthrough of the donor emission into the acceptor emission
filter and the cross-excitation of the acceptor by the donor excitation wavelengths. Cpp, Caa, ag,
dg, and G are parameters dependent on the imaging system and the photophysical properties of
the FRET pair, which are defined as:

Cpp = vp€ppQpLpSptpp,

Caa = Va€aaQaLlaSatsn,

__ Vp€patpa
ap = ———,
Va€aatan (129)
_ LuSptpa
d, = A2ata
LpSptpp
_ QaLsSatpa
Gy = SAAATDA
QpLpSptpp
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where v (v,) is the intensity of illumination reaching the sample through the donor (acceptor)
excitation filter, epp is the absorption coefficient of the donor, €p, (€44) IS the absorption
coefficient of the acceptor at the donor-excitation (acceptor-excitation) wavelength, Q, (Q,) is the
quantum vyield of donor (acceptor), L, (L,) is the throughput of the donor (acceptor) emission
light-path, S, (S,4) is the quantum sensitivity of the camera for donor (acceptor) emission, and tp 4,
taa, and tpp are, respectively, the exposure time for the FRET, acceptor, and donor channels.

As a measure of the degree of molecular interaction, E-FRET, as well as the above-mentioned
previous FRET method, aims to obtain the following quantity **:

[XY]

E=—Emax
[Xtotal] max

(130)

where [X;o¢q:] 1S the total concentration of the carrier molecule to which the donor is attached (i.e.,
[Xtotar] = [X] + [XY]). In the absence of photobleaching, £ is the FRET efficiency. E-FRET
maintains that, under some assumptions (see below), the quantity € can be estimated by computing
the following FRET index from the observables:

F.(t|ag, dg) 144(0)
F.(tlag, dg) + Gg Ipp(t) I1a(t)’

Ecorr(tlag, dg, Gg) = (131)

where the sensitized emission F; is

F.(tlag,dg) = Ipa(t) — dg Ipp(t) — aglaa(t). (132)

In practice, the value of I44(t), which is independent of FRET and thus changes slowly due to
photobleaching, is interpolated from sparsely-sampled data points over time, while the values of
Ipp(t) and Ip,(t) are directly measured more frequently in time . In the limit that the system-
dependent parameters ay, dg, and Gg can be determined with infinite precision, and zero
measurement noise of the observables, one can show that E.,,, converges to € (see below for
proof):

[XY]

Ecorr(tlaE; dE; GE) - &= —Emax- (133)
[Xtotal]

Realistically though, ag, dg, and G5 can only be estimated with finite uncertainty. In what follows,
we will show that errors in estimating these parameters creates a bias in E,,,.- that grows quasi-
exponentially over the course of a time-lapse FRET experiment. We also discuss some predictable
properties of the bias, and how one can exploit these properties to correct the bias.

Section 11: Derivation of the E-FRET formulae

Based on the original paper *3, here we re-derive the E-FRET formula (Eq. (131)) to make the
assumptions and their validation in our system clearer. We first assume that the total concentrations
of the donor and acceptor molecules inside the cell are conserved during the experiment, which in
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our case lasts < 40 minutes. The assumption is satisfied in our experiment because RP437 E. coli
and their derivatives are auxotrophic for several amino acids, which we do not provide in the
experimental media. Therefore, new proteins cannot be synthesized after we wash the cells (see
Methods). Furthermore, the interval (~2 hrs) between cell washing and the beginning of the FRET
experiment ensures that essentially all fluorescent proteins have matured 4°. Therefore, we have:

[Dotar] = [D*](8) + [D](E) + [D*A"](t) + [D*A](E) + [DA™](E) + [DA](t) (134)
[Atorarl = [A7](1) + [A](2) + [D"AT](E) + [DA]() + [DA™](2) + [DA](D).

Again, D is the donor molecule (CheZ-mYFP), A is the acceptor molecule (CheY-mRFP), and
species with a star are not yet photobleached. We also assume that all of the target molecules are
labeled by the fluorescent proteins:

[Dtotal] = [Xtotal]

[Atotal] = [Ytotal]-

(135)

Next, we assume that the photobleaching rate is a first-order decay process. Combined with the
assumption that there’s no synthesis of new fluorescent proteins, this leads to:

d([D*] + [D*A"] + [D"A])

= —6()([D*] + [D"A"] + [D"A])

d([A"] + [Dgftl*] + [DA*]) (136)

dt

= —a()([A*] + [D*A"] + [DA"]),

where §(t) and a(t) are the bleaching rates of the donor and acceptor at time t, which can depend
on the degree of FRET and hence can depend on t. Solving these equations, we get:

[D°] + [D*A°] + [D*A] = [Xpgpqr] e Jo 8¢

137

[A°] + [D*A%] + [DA"] = [Yroear] e o 4" 1
Lastly, we assume that the system is in a quasi-steady state at each time point, i.e. the Kinetics of
the binding and unbinding of the target molecules X and Y and the diffusion timescales of the donor
and acceptor over the enclosed compartment are sufficiently short compared to the time scale of
photobleaching. In our system, the binding-unbinding kinetics between CheY-p and CheZ (< 0.3
s %) and the time it takes CheY to diffuse throughout the cytoplasm (~0.05 s ) are much shorter
than the time scale of photobleaching (= 102 s). With this assumption, the fraction of each free or
complexed species that is not photobleached decays exponentially, analogous to Eqns. (137). From
this, we get:

o

*[ 1 o=y 8(")a"
b % e (138)
W —e b a(t')dt"

+| 5+
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Furthermore, defining y as the binding affinity constant between X and Y:

[D*A"] =y [D"][A"] (139)

=y (([D*] +[DDe o 6(t’)dt’> <([ A+ [ADe o a(t')dtf> (140)
=y ([X] o fota(t’)dt’) ([Y] o s a(t’)dt’) (141)

= [XY] e Jo a(t')+o(t)ar’, (142)

Under these assumptions, Eqns. (128) become
Eolpl el t ’ )
Ipp = Cpp ([Xtotal] e Jod(e)ae _ Emax [XY] e o a(t')+6(¢")dt )
t I I
Ina = Can Yeora] €70 a(e')at (143)
—[fa(t)+8(t")at’
IDA sz IDD+aE IAA+CDD GE Emax [XY]B foa(t )+ ,

and Eqn. (132) becomes
F(t) = Cop G Emax [XY] e~ @()+000ac, (144)
By plugging these expressions in the formula for E,,,.- in Egn. (131), one gets

F.(t) 144(0)

E t) = 145
corr (£ F.(t) + Gglpp(t) 1aa(®) (145)
_ ConGEmax XY™ o €482 1 (146)
~ CppGrEmax [Xy]e_fl]ta(t’)+5(t’)dt’ + CppGp ([chal] e—fotﬁ(t’)dt’ —E,., [Xy]e—fotll(f')’fs(t’)dt’) e—fotu(t’)dt’
_ Enmax[XY] (147)

= g,
[Xtotal]

which is the degree of molecular interaction defined above.

Section 12: Measurements of imaging system parameters

The imaging-system parameters ag, dz and G were determined in the following way. The cross-
talk coefficients a; and dj can be estimated by observing the fluorescent signals from strains that
express only the acceptor or the donor because +

Vp€patpa _ Ipac

ag = )
Va€aataa  laaw

(148)
LaSatpa _ Ipaw)

dg

LpSptpp Inpy’
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where A (D) in the parentheses in the lower index indicates that the corresponding fluorescent
signals are obtained from the strain that only expresses the acceptor (the donor). The
approximations above are equalities in the limit of zero measurement noise. The equations can be
shown by noting that

Ipacay = [A"]1vp€paQaLlaSatpa + Epaca
Lyacay = [A*]Va€44QaLlaSatan + EAA(A)
Ipay = [D*1vp€ppQpLaSatpa + $pa)
Ippwy = [D*]vpepp@pLpSptop + $pp(p),

(149)

where &pacay, €aacay, $pay and pp(py represent shot noise. We obtained estimates for the
parameters ag o5 and dg .5, by linear least-squares fitting the background-subtracted fluorescence
signals from hundreds of cells (Supplementary Fig. S4AB):

) 2
Agest — arg H&}EHZ(QE Lyaca,i — IDA(A),i) )

L ) (150)
dgest = arg H;LHZ(CZE Ipp(py,i — IDA(D),L') )
i

where subscript i indicates different cells. The values we obtained were ag o, =
0.3369 (+0.0006), and dg .5, = 0.0891 (£0.0001).

The parameter G quantifies the change in sensitized emission F, per change in I, due to
FRET, G = |£FC , Which in principle can be measured by using a FRET strain expressing both
DD
donor and acceptor as *

QaLaSatpa _ F

QpLpSptpp IggSt—Il')D'
where I},’g“ is the intensity of donor fluorescence in the condition where the acceptor is completely
photobleached while the donor remains intact, and F. and Ij,, correspond to F. and Ipp,

respectively, in the absence of photobleaching. Again, the equality is exact in the limit of zero
measurement noise. The relation can be shown by noting

Gg =

(151)

F! = [XY]vpeppEmaxQaLaSatpa + &k, (152)
153“ —Ipp = [XY]vp€ppEmax@pLpSptpp + $pp,
where & and ¢y represent the effects of shot noise. To avoid issues associated with acceptor
photobleaching #*, we can take advantage of the fact that, in our system and microfluidic device,
FRET changes can be induced rapidly by applying a step change of chemoattractant stimulus.

Doing so lets us measure changes in F. and I, before substantial photobleaching occurs, and we
can estimate G from:
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_|AF]
[Alpp|

We estimated the value of G by least-squares fitting the fluorescence signals from multiple cells
(Supplementary Fig. S4C), i.e.,

. 2
Gpest = arg rr(}}EHZ(GE |Alpp il — |AF,])", (154)

l
where |Alpp ;| and |AF, ;| for the i-th cell were obtained by applying a saturating stimulus (1 mM
MeAsp and 1 uM serine) on top of a background stimulus 100 uM MeAsp, and then removing the
stimulus and the background (i.e., 0 M chemoattractants) in the microfluidic chamber because it
induces the maximal FRET change %!, The obtained value was G ¢5; = 0.3497 (£0.0018).

G (153)

Section 13: Effects of parameter-estimation error on the FRET signal

The FRET index E,,,, computed from observables (Egn. (131); see Supplementary Fig. S4D)
provides an unbiased estimator of £ (Eqn. (130)) in the presence of photobleaching, given the true
values of the system-dependent parameters ag, d; and Gg. However, the parameters are always
estimated with finite precision. Furthermore, although it is often assumed that the values are
invariant given a system, they may not be constant over the course of measurements. It has been
reported that some fluorescent proteins change their fluorescent properties upon photobleaching
44 Zal and Gascoigne only explored how errors in the parameter estimates bias E.,,. in the absence
of photobleaching 3. Here we study the effect of the parameter-estimation error in the presence of
photobleaching and propose a method to correct for the effects.

The estimated values of the parameters can be written as
Agest = Ap + Aag,
dE,est = dE + AdE, (155)
GE,est = Gg + AGg,
where true values of the parameters are denoted by ag, dg, and Gg and the deviations from them
by Aag, Adg, and AGg. First, we note that E,,.- can be approximated as

I
Ecorr = FCIDD IA? © (156)
Tp + G 44
L@ _F (157)
" Gp Ipplaa
_ aa (0) Ips — dg Ipp — ag laa (158)
G Ioplaa '

In the second line, we used Ii & Gy to simplify the following calculation, but it is not essential.
DD
This assumption is valid in a typical low FRET-efficiency experiment where the value of F. is
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sufficiently lower than I, (li 3¢ 1) and yet, to be able to detect FRET signals, the parameter
DD
Gg needs to be ~O (1) *3. In our setup, Ii < 0.05 and G ~ 0.35.
DD

The error in E,,,, due to the error in the estimated parameters Aag, Adg, and AGg can be written
as

AE orr = Ecopr(ag + Dag, dig + Adg, G + AGg) — Eorp(ag, dg, Gg) (159)

~ aEcorr(gS;dE» Gg) Aa, + aEcorr(;ljl;dE, Gg) Ady + aECorr(glg;dE, Gg) AG, (160)
Thus, the fraction of error in E,,.- can be written as

AEcorr __ lysBag  IppAdp  AGg (162

Ecorr Fc Fc GE .

From the assumptions about the molecular interactions and photobleaching that underly the E-
FRET method, the observables I, and 1,, and the sensitized emission F. can be written as

AEcorr _ IpaAag _ IppAdg _ AGg

- (163)
Ecorr Fc Fc GE
t li li

Ipp = Cpp ([Xtotal] e~ Joo(t)ar (164)

t / / / ot P ,

— Epay [XY] e o a(t")+8(t")de ) ~Cpp [Xrorar] €% 8(t")dt

t li li

Lya = Cap [Yeotall e_fo a(t)at (165)
Fo(t) = Cpp Gy Emax [XY] e Jo @(t)40(ar’) (166)

where §(t) > 0 and a(t) > 0 are, respectively, the (time-dependent) rates of photobleaching of
the donor and acceptor, and the final approximation for I, is valid under the assumption fe «

Ipp
Gg.

Using these expressions, we get

AEcorr A ef0t6(t’)dt,AaE +D efota(t’)dt’AdE - (167)
Ecorr GE
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where A = —Caalfeorall o g o p — eotad - The first and the second terms grow
Cpp GE Emax [XY] GEEmax [XY]

quasi-exponentially as the fluorescent proteins photobleach; thus, the measured value of E_,,, at
baseline levels of molecular interaction, changes over time. Note that the time scale of this change
is governed by the time scale of photobleaching. We discuss how we corrected the baseline of
E o In the next section below.

The remaining question is how uncertainty in the parameters ag, dg, and Gg, in the presence of
photobleaching, affects the mapping between changes in molecular interactions and the
corresponding change in E.,,.-. If this mapping is sensitive to photobleaching, it severely limits
the reliability of the E,,,- measurements because the same changes in molecular interactions
would lead to different changes in E.,,, at different times in the experiment. To address this, we
analyze the sensitivity of E.,,, to the change in the degree of molecular interaction and its
dependence on photobleaching.

The degree of molecular interaction is dictated by the time-dependent binding affinity y(t)
between the two target molecules X and Y. Therefore, the sensitivity of E.,,, to changes in y at a

given time can be quantified by aE”""(V;jE'dE'GE). With errors in the parameters, this quantity can

be written as

OE orr(Ylag + Aag, dg + Adg, G + AGE) _ 0E orr(Ylag, dg, Gg) n 0AE o (V)

168
dy dy dy (169
OAE corr (¥) (169)
_ OE orr(vlag, dg, Gg) 1 dy
a)/ aEcorr(ylaE' dE' GE)
dy
JE ag, dg, G
= corr(yl E»“E E) (1 + A).
dy
9AEcorr
— 6]/ - - - - - -
Thus, A= Eeorr (V|2 A5, G2) characterizes the bias error, and the question is how this quantity
oy
behaves with photobleaching. To compute this, we note
i (_ IAA(O) AaE _ IAA(O) AdE _ Ecorr(y) AGE )
A= dy Gglpp () Gelaa Gg (170)
aECOT’T‘(Y)
dy

_IAA(O)AaEi( 1 )_AGE OE orr (171)

_ Gg  dy \Ipp(¥) Gg Oy

aECOT’T‘
ay
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_IAA(O)AaEi( 1 ) (172)
— Gy dy\Ipp(y) ) AGg
aECOTT GE '
ay
where we used the fact that 1,4 is independent of y, i.e., % = 0. We note
J0E d0 (1 F 1,4(0
corr ~ _<_ C(V) AA( )) (173)
ay Oy \Ge Ipp(¥)  laa
_114(0) 0 (FC ) (174)
Gglaa 0y \pp
_ IAA(O)< 1 d0F, F, aIDD> (175)
Gglya \Ipp Oy I[%D ay
aF, (176)
=_IAA(O)iaIDD oy +£
Gglaa Ipp Oy Olpp * Ipp
dy
o 11x(0) 1 aIDD( + Fc) 177)
Gglaa Ipp Oy £ Ipp/’
where at the final step we used —‘;—ch a;’f’ = |AF.|/|Alp| = Gg. By plugging this to the

expression for A, we get

I14(0)Aag 1 dlpp

G 2 0d AG
A — E IDD y _ E (178)
_ 144(0) 1 dlpp (G + i) Gg
Gglaa Ipp Oy E" Ipp
—IyAag B AGg (179)
- EY G
Ipp (GE + IDD)
L Iy Aag B AGg (180)
IDD GE GE
-y efoté(t')—a(t’)dt'AaE _ ﬁ (181)
Gg'’
where H = —<4altotall - 4 anq i the third line we used —& « Gg. This expression tells us that
Cpp [Xtotall GE Ipp

the relative error in the mapping from molecular interaction to E.,,--, 4, is small if Aaz and AG
are small. Furthermore, this relative error grows slower than the relative error in the baseline of

E.orr, %, because only the difference of the donor and acceptor photobleaching rates appears

corr

in the exponential. Additionally, the coefficient H is typically smaller than the coefficients in
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Bcorr 4 and D. In fact, assuming Cy4 ~ Cpp and [Y;orar] = [Xeorq], ONE can show that both H/A

corr

and H/D are bounded by <1

[Xtotal]

In summary, the estimator of the degree of molecular interaction E,,,. computed from the
observables has the following properties due to uncertainties in estimating the system parameters:
(1) the baseline level of E.,,, changes on the timescale of fluorescence photobleaching, even if
there is no change in the level of molecular interactions; and (ii) biologically-induced changes in
molecular interactions are relatively well-preserved in changes in E.,,,.. This means that although
the baseline level of E,,,,- changes over time, deviations from that baseline faithfully represent
changes in molecular interactions.

We tested whether these properties are observed in actual FRET data by investigating both the
absolute levels of and changes in E,,,,- before and after photobleaching (Supplementary Fig. S4D-
G). Under the assumption that each cell retains approximately identical FRET-response properties
over the course of an experiment, our analyses predict that the baseline level of E.,,,
monotonically changes over time, while the changes in E_,,,- upon stimuli remain approximately
invariant over the course of a measurement. Consistent with these predictions, we observed: (i) the
absolute level of E,,.- slowly increased over time (Supplementary Fig. S4E) and the values after
photobleaching were higher than those before photobleaching (Supplementary Fig. S4F), although
the degree of the change was moderate (Supplementary Fig. S4F; roughly 15% increase after
>1200 frames of image acquisition); (ii) the changes in E.,,- induced by fast-switching, identical
stimuli showed essentially no bias after photobleaching (Supplementary Fig. S4G). Thus, the
behavior of our FRET data due to photobleaching can be consistently explained by the properties
of Ecorr-

Section 14: Correcting baseline FRET signal

The analyses above have established that the baseline level of E.,,,- monotonically changes on the
timescale of photobleaching because of parameter uncertainties, but changes in E,,,, due to fast
biological FRET interactions are more reliable. This suggests that the slow artifact in the baseline
level E.,, can be corrected for by estimating and subtracting the slowly-varying trend. We
obtained a corrected signal E,,, in the following way. First, since the drift in baseline E,,,., is
slow compared to the durations of our experiments (Supplementary Fig. S4EF), we assumed that
the error in E,,,, changes approximately linearly with frame number. The slope of the linear
function was estimated by measuring the minimum values of E_,,, at the beginning (frame
number i) and the end (frame number i,) of each measurement by applying a saturating stimulus,
and by fitting a linear function to {(i1, Ecorr(i1)), (iz, Ecorr(iz)) }. That s, the corrected Eoy.. is
written as

Ecorr(iz) - Ecorr(il) i

Ecorr(i) = Ecorr(i) - i, — i ’ (182)
2 1

where E,(i;) and E,,-(i,) were estimated as medians of 18 consecutive frames to mitigate the
effect of measurement noise. With this correction, we observed population-average FRET signals
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that show essentially no trends, only stimulus-induced changes (see, e.g., Supplementary Figs.
S5A and S6A), validating the assumption of the linearity of the error-induced trend.

Section 15: Converting FRET signal to kinase activity
Using the corrected FRET signal E,,,.-, we defined the kinase activity as

a(t) = Ecorr (1) — Egg%l”
Egorr — Edory

(183)

)

where ET and EM* are respectively the minimum and maximum values of E_,,.- obtained from
responses to a saturating stimulus and following removal of background at the beginning of each
measurement (see Methods). Note that the mutual information rate between chemoattractant signal
s(t) and the kinase output of the chemotaxis signaling pathway, which is the ultimate goal of our
FRET analysis, is invariant to this linear conversion—we could have computed it from, e.g.,
E.,(t). However, we computed a(t) to facilitate comparison with preceding works where the
same normalized measure was used >%. The distributions of the steady-state values of a, aq,
across cells in isogenic populations were evaluated under two different stimulus and illumination
conditions, giving: ay, = 0.29 + 0.07 (mean and standard deviation, estimated from the
experiments for response-function extraction; Supplementary Fig. S5C), and a, = 0.30 + 0.08
(mean and standard deviation, estimated from the experiments for signaling-noise characterization;
Supplementary Fig. S6C). These values are comparable to previously reported values: a;, = 1/3
from population-averaged FRET measurements * and a, = 0.30 4+ 0.07 (mean and standard
deviation) from single-cell FRET measurements 2°.

Biochemical interpretations of the kinase activity a(t) are the following. First, from Eqn. (130),
we write 4142

Epqx [CheYp - CheZ]

) 184
[Cheztotal] ( )

ECOTT(t) ~

where the equality holds in the limit of zero measurement noise. Using this expression, a can be
written as

[CheYp - CheZ](t) — [CheYp - CheZ]™"
a(t) = _ (185)
[CheYp - CheZ]™a* — [CheYp - CheZ]™"

and therefore a(t) is primarily the relative degree of CheYp-CheZ formation. On time scales
longer than the time scale of CheY-p hydrolysis by CheZ (~0.3 s #), phosphorylation and
dephosphorylation of CheY equilibrate 442, and therefore

[CheYp - CheZ](t) = A(t) lli—'; [CheA] = A(t) :—2 [CheAsptarl,s (186)
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where k, and k, are, respectively, the rate constants for autophosphorylation of CheA and for
hydrolysis of CheY-p by Chez, A(t) (0 < A(t) < 1) is the fraction of active CheA, and
[CheA;,:q:] is the total concentration of CheA. Given the conservation equation [CheA;piq1] =
[CheA] + [CheAp], the last step of the above equations holds when [CheAp] <« [CheA]. This is
achieved when the total concentrations of CheY-mRFP and CheZ-mYFP in the cell are large,
which we achieve by overexpressing them in our experimental conditions (see Methods), as done
before 2°. Assuming this, a can be written as

A(t) — Amn

A) ~ et (187)

and therefore a(t) can also be interpreted as the relative autophosphorylation activity of the kinase
CheA, which we have referred to as kinase activity.

Section 16: Estimating linear response function parameters

A kinase activity time series from a single cell (labeled by k) consisted of 10 step-up responses
ax,+;(t) (i = 1,2...10), where the concentration of MeAsp was changed from ¢, = 100 uM to
cy = 110 uM, and 10 step-down responses ay, — ;(t), where the concentration was changed from
o to c_ = 90 uM (Fig. 2D, and Supplementary Fig. S5A). Each response ay, ;(t) (s = {+, —} for
shorthand) consisted of a pre-stimulus measurement (7.5 s; 10 time points) and post-stimulus
measurement (30 s; 40 time points) of kinase output, followed by a 60 second interval before the
next step-response measurement (Fig. 2D, and Supplementary Fig. S5A; Methods). The kinase
response induced by an impulse of stimulus (step change in concentration) was thus defined as

Aak,s,i(t) = ak,s,i(t) - <ak,s,i(t) >prestim: (188)

where {(ay 5, (t))prestep i the time-averaged kinase activity in the moments before the step change
of concentration was delivered. The steady-state kinase activity of the k-th cell a, ;, was estimated
by the average of the pre-stimulus kinase activities (ay s ; (t))prestep, 1-€-,

Nstim
1
Aok = z z <ak,s,i(t))prestim' (189)
2 Nstim s={t-} i=1

where N, = 10 is the number of stimuli of each sign delivered to the cells. The average and the
standard error of the kinase activity responses in each cell were computed as
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Nstim

Aaysi(t), SEs(t)
1

1

(Bays)(t) =

Nstim =

(190)

Nstim

= ! ! 1 z (Aak,s,i(t) - (Aak,s)(t))z :
i=1

Nstim Nstim

To each single cell average response, we fitted the following function with 3 parameters, G, 4,
and t,:

CS
(el m2i) = —log () Kt~ ta) (192)

where K (t) is the parameterized impulse-response function discussed earlier and t, denotes the
timing at which the stimulus levels were changed. fs(t|Gk,rllk,12,k) is the result of convolving

Cs

the response function K (t) with a delta function of signal s(t) with amplitude log (C—) at time t,,
0

or s(t) = %log(c) = log (S—Z) 6(ty). The minus sign is needed because positive signals lead to

drops in kinase activity. The time of each stimulus t, was inferred from the data in the following
way. For each signal, the first time point at which the population response was more than 3
standard deviations below baseline a, , was found. Then, t, for that signal was defined as the time
half-way between that time point and the previous one. This was repeated for each stimulus. The
same values of t, were used for all cells.

We fit this function to both the step-up and step-down responses simultaneously, since in the
linear-response regime the up and down responses are expected to be symmetric. The
measurements of (Aa)(t) were not smoothed before fitting. The fitting was done using a Bayesian
framework 7. Log-uniform distributions were used as priors for each parameter:

P(ty) = U(Ty4;1072,5)

P(tox) = U(t24;1071,102)
(192)

Ao,k
log (‘C:—Z)

fora < x < b, and U(x; a, b) = 0 otherwise. Note the upper bound

P(Gy) = U| G,; 1071,

)

where U(x; a, b) = xlo;b/a

for P(Gy) comes from the positivity of the kinase activity ays;(t) > 0. The log posterior
distribution is defined as
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log P(Gy, T1 4, T2 |D)

2
1 ((Aak,s)(tn) — fo(ta|Gro T g0 Tz,k))
=-5 SE7.(0) +1og(P(Gy)) (193)

n,s

+ log (P(Tl’k)) + log (P(Tz’k)) +C,

where the first term on the right-hand side is the log-likelihood function and C comes from a
normalization constant. A maximum a posteriori probability (MAP) estimate, defined as the mode
of the posterior distribution was obtained using a MATLAB optimization function (fminunc)
(Supplementary Fig. S5C). As a measure for the parameter-estimation uncertainty, we computed
25 and 75 percentiles of the marginalized posterior distribution of each parameter (P(Gx|D),
P(tx|D), and P(t,,|D)) obtained by a Markov chain Monte Carlo algorithm, slice sampling *’.

The population-level representative value of each parameter was defined as the median of the MAP
estimates, and the uncertainty of the value was evaluated using the median absolute deviations
(MAD) from the population’s median parameter values:

_ 1.4826 x median(|X; — median(X)|)

V NData

where X = {X1,X5, ..., Xn,,.,} 1S the MAP estimates of each parameter. The MAD in the

numerator equals the standard deviation of X when it is Gaussian distributed, but is robust to
outliers.

SE

(194)

Section 17: Estimating noise statistics parameters

One of the first direct measurements of the fluctuation of the chemotaxis signaling pathway, or
signaling noise, showed that the dynamics approximately follow an Ornstein-Uhlenbeck (OU)
process. The OU process is specified by two parameters, t,, and D,,, and obeys the following
Langevin equation

dx

1
E:—;x+ﬁf(t) (195)

where &(t) is a Gaussian white noise with average zero and a delta correlation in time

(@) =0, ((@®)E(E)) =6(t—1t), (196)

and &(t) is the Dirac delta function.

Following preceding work 26, we modeled the signaling noise measured by FRET (Supplementary
Fig. S6A) as an OU process, and estimated the process parameters (and their uncertainties) using
a Bayesian filtering-based method “¢. To introduce some notation, the measurements were
conducted at time points t4, t,, ..., ty, and we obtained a series of observables (i.e., FRET signals)
Vi.r = {¥1, Y2, -, Y7}, Which are noise-corrupted measurements of the true, hidden state of the
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system xy.r = {xq, X5, ..., X7}, Which obeys Eqgn. (195) with unknown parameters 8 = {7, D,,}.
Using the framework of a state-space model, the parameter-estimation problem can be written in
the form

0 ~p(0)
197
Xk ~ (X |xk-1,6) (197)

Vi ~ Wi lxx)

where p(0) is the prior distribution of the parameters 0, p(x|x,_1, @) the transition probability
distribution specified by the dynamical model, and p(y, |x;) is the measurement model.

Our goal is to evaluate the posterior distribution of the parameters @ given the data y,.7, p(@|y;.7).
Using Bayes’ rule, this can be written as

p(0lyi.r) x p(y1.r|0) p(0), (198)

where p(y;.r|0) is the likelihood function. The likelihood function can be written as

T T
p0ur10) = [ [p0iliis @ = | [ pOrl0pCorlyises O (199
k=1 k=1

where we define p(y;|y1.0,0) = p(y1]0). The predictive distribution of the state p(xy |v1.k—1, @)
can be written as

p(xXkly1k-1,0) = Jp(xklxk—lf O)p(Xp-11Y1.k-1,0)AXp 1. (200)

The posterior distribution of the hidden state in the integral p (x4 _1|y1..—1, @) can be written, using
Bayes’ rule, as
P Vil Xi)P Xk |Y1:k-1, 0)

Clyin, 0) = : 201
PRk ik PV |Vik-1,0) (201)

where we use p(Vilxk, Vi.k-1) = P(Vi|x)). Given the predictive distribution of the state at the
initial time point p(x,|@), using the Eqns. (200) and (201) recursively, the predictive distributions
at the following time points {t; } can be computed, which then gives the likelihood function using
Eqgn. (199).

Under the assumption that the sequential states x;.; follow an OU process with parameters 8, we
can write the transition probability distribution as
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p(xlxk—1,0) = N (xp; Xp—1v, Vi), (202)
_tgmtg—a ] . o ] .
wherev=e = ,V,=D,t,(1—7v2),and N (x;u, 0?) isa Gaussian distribution with mean
u and variance ¢2. Also, assuming that the measurement noise follows the Gaussian with zero
mean and variance ¢;, we can write the measurement model as

PWrlxy) = N(Yk;xk,(fr%t)- (203)

Under these assumptions, one can find closed-form expressions for Eqns. (199)-(201) “8.
Specifically, the likelihood function (Eqn. (199)) can be written as
T

p(Y1.r|0) = nfp(yklxk)p(xklylzk—l' 0)dx),
k=1

. (204)
= l_[N(yk;u(xkle),Grzn + V(xk|9)) )
k=1

where u(x,|@) and V(x,|@) are the mean and variance of the predictive distribution
p(xx|y1.k-1, @). Evaluating Eqn. (200), the predictive distribution is written as

p(xk|y1:k-1,0) = N(xk; u(xi|9), V(xk|9)) (205)
206

= fp(xk|xk—1» O (xXpk—1|y1:6-1, 0)dxy_q (206)

= IV (xp; v’ (x3-110), Ve + 2V (x2110)), (207)

where ' (x,_110) and V'(x,_,|@) are the mean and variance of the posterior distribution of the
state xy_1, P(Xk—11Y1.k-1,@). Evaluating Egn. (201), the posterior distribution p(xy|y;.x, @) is
written as

Pk |10 0) = N (x4 1’ (x,c10), V' (xc10)) (208)
_ POlxi)p Xk |11, 0) (209)
P(VklY1:k-1,0)
— n(x _v}’k—1V(xk|9) +u(x |0z o7V (x,]0) (210)
o o2 + V(x,|0) 02 +V(x|0))

which is dependent on the mean and variance of the predictive distribution p(xy|y1.k-1, ). As the
predictive distribution at the initial time point, p(x;|0), we chose

p(x110) = 6(x; — y1). (211)

In the above formulation, we assumed that the variance of the measurement noise o2, was known.
In our case, since the measurement noise is dominated by the shot noise of fluorescent signals,
even after the photobleaching correction, ¢ can slowly increase as more fluorescent proteins
photobleach over the course of measurement, ¢ = o2 (tx). To estimate o2 (t;), we first
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segmented the FRET time series into short 12 segments of identical length (100-sec interval with
1 sec sampling interval) and estimated the measurement noise in each segment aﬁu- assuming that
the noise level is approximately constant within the segment. The measurement noise at each
segment was estimated by

T
g =C(T=0)—Ae B, (212)

where C(7) is the autocorrelation function computed from the (mean-subtracted) raw FRET time

seriesand A e B isafitto C(t) over the range of 0 < 7 < 10 s (note we exclude the zero lag time
point T = 0). This gives an estimation of the variance of shot noise because C(t = 0) estimates

the sum of the shot noise and biological noise at lag time zero, while A e B|,_, estimates the

biological noise at lag time zero. In fitting A e "B to C(t), we only used the first 10 seconds because
the statistical uncertainty of C(7) is relatively large for T > 10 s. Once the measurement noise of
each segment is obtained, we then estimated the measurement noise level at each time point a2, (t;)
by fitting a linear function 62 (t,) = a t; + b to ({£;},{c2,}) (segments i = 1, ...,12), where
is the center of the time interval of segment i.

The log posterior distribution logp(8|y,.r) = logp(y1.710) + logp(@) + Const.  was
approximated by using a Markov chain Monte Carlo method, a slice sampling (45), and the mode
(i.e., MAP estimate) and 25 and 75 percentiles of the posterior distribution of each parameter was
estimated (Supplementary Fig. S6C). The prior distributions used were

P(Tn) = ulin(Tn; 0, 102)
(213)
P(Dn) = ulin(Dn; 0, 10_2)

where U, (x; a,b) = ﬁ for a < x < b and Uy, (x; a, b) = 0 otherwise. The autocorrelation

function of the Ornstein-Uhlenbeck process Coy(t) = D,, T, e~*/™ with the MAP estimates of
the parameters t,, and D,, closely match the autocorrelation function C(z) directly computed from
the FRET time series. The representative value of each parameter in the population and its
uncertainty was evaluated in the same way as those for the signaling-response parameters.

Section 18: Cell detection

Movies of swimming cells were recorded to measure their behavioral parameters, run speed,
rotational diffusion coefficient, and chemotactic drift in varying gradients. All but the chemotactic
drift measurements were recorded with a 4X objective, whereas the chemotaxis measurements
were recorded with a 10X objective (Methods). All movies were recorded at 20 frames per second
by phase-contrast imaging for 1000 seconds. All of the steps and parameters used below were
applied to trajectories recorded with both the 10X and 4X objectives, unless noted otherwise. In
the chemotaxis experiments, each movie’s frames were rotated slightly to align the x-axis with the
direction of increasing concentration.

Movies were analyzed using custom MATLAB code. To detect cells in each frame of the movie,
first, 5-second blocks of frames were loaded at a time, and the pixel-wise median of those frames
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was computed as a background image. The background image was then subtracted from each
frame in the block. Most of the pixels did not contain a cell; therefore, the histogram of pixel
intensities was fit in the vicinity of its peak with a Gaussian distribution to extract the mean and
standard deviation of the noise pixel intensities. Since cells appear as dark spots in phase contrast
imaging, each frame was subtracted from the background image, making cells become bright spots
in the background-adjusted images. Each background-adjusted frame was then smoothed with a
weak Gaussian filter, the standard deviation of which depended on the objective used for imaging.
The pixel size of the 10X objective is ~0.65 um, and the filter’s standard deviation was set to 1
pixel; The pixel size of the 4X objective is ~1.62 um, and the filter’s standard deviation was set to
0.4 pixels. All pixel intensities in the block that were less than 2 noise standard deviations above
the noise mean were set to zero. This left patches of non-zero pixels in each frame, most of which
contained cells. Patches consisting of one non-zero pixel were set to zero intensity, because cells
typically occupy several pixels. Patches in which the highest-intensity pixel was less than 25 (or
15) noise standard deviations above the noise mean at 10X (at 4X) were also set to zero, only
leaving pixel patches that contained cells in focus. In case more than one cell fell within a pixel
patch, we used MATLAB’s imregionalmax function to find local intensity peaks after smoothing
each frame again with a Gaussian filter of standard deviation 0.5 pixels, and each local intensity
maximum was considered a different cell. Finally, the cells’ positions were refined to sub-pixel
resolution using the method in *°.

Section 19: Cell tracking

Linking cell detections into tracks was also done using custom MATLAB code. Before linking,
detections were pruned for quality. If two detections occurred within v, At of each other, both
detections were removed. For tracking purposes, v, was set to 50 um/s and At = 50 ms was the
time between frames. In some movies, a cell became immobilized and spun in place, causing it to
still be visible after background subtraction. Therefore, pixels in each movie with >15 times more
detections than the median number of detections per pixel (among pixels that contained detections)
were identified. Detections within 7 (or 3) pixels of these high-detection pixels at 10X (at 4X)
were removed.

As a first pass, starting from the first frame, for each detection in the frame, the closest detection
in the next frame within a distance of r = v, At was found. Then, for each detection in frame i,
the closest detection in frame i + 1 within distance r was considered the same cell. This process
was repeated for each cell in the frame, and then for all frames, in chronological order. After this,
tracks that lasted only one frame were considered false positive detections and were removed.

This assignment procedure could leave gaps in the track of a given cell if it disappeared from view
for more than one frame, for example by swimming vertically out of the depth of field. Linking
tracks across these gaps increases the average time we observe a given cell, allowing us to better
estimate its behavioral parameters or drift speed. To close these gaps, we looped over tracks from
longest to shortest for a given gap size k, in frames. For each track, we searched for tracks that
started k frames after (before) the current one within a distance (k) = min (v, At k, VD At k) of
the current track’s end (start). For tracking, we set D = 300 um?/s. If nearby tracks were found,
the closest ones were linked to the current track. The loop then continues to the next track. Tracks
for which links were made are then revisited. Once no more links were made at gap size k, the gap
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size was increased by 1 frame. This process was repeated up to a maximum of 10 frames (0.5 s).
Following this procedure, tracks that lasted only two frames were considered false positives and
were removed.

When two cells came close to each other, it was possible that we misassigned their identities after
that event. To try to identify and “untangle” these crossings, we first found all events in which two
trajectories came within 5 um of each other. We then generated the hypothetical trajectories
resulting from swapping the assignments of the trajectories for all time after the event. Splines
were fit to the original two trajectories and the hypothetical trajectories within +0.2 s of the event.
Then, the average acceleration magnitude along the splines of the original trajectories and along
those of the hypothetical trajectory assignments were computed. If the average acceleration of the
hypothetical trajectory assignments was less than 90% of the original ones, we performed the
swap—doing so preferred trajectory assignments with fewer sharp turns, which could indicate a
misassignment, but had a slight preference against making swaps. This process identified sharp
turns when two trajectories came close, which could indicate two trajectories crossing each other
almost perpendicularly but that were misassigned, and then it attempted to correct those
misassignments. This process was repeated for all events when two trajectories came close, in
chronological order. The same cell’s trajectory could be swapped with other trajectories at multiple
points in the movie.

Trajectories were smoothed by convolving their x- and y-positions, separately, with a Gaussian in
time of width At/2. Velocities in the x and y directions were computed using first-order central
differences: v, (t;) = (x(t; + At) — x(t; — At))/(2 At) (likewise for v, (t;)). The swimming
speeds projected onto the x-y plane (the z-direction being the objective point of view) at each time
point were computed from the magnitudes of the velocity vectors at that time. Projected angular
velocities were computed by calculating the angle between the vector incoming and outgoing at
each position—i.e. the angle between (x(t;) —x(ti_1),y(t) —y(ti—1)) and (x(tiy1) —
x(t), y(tiy1) — y(t;))—and divided by At. These were then corrected so that the branch cuts at
7 and — did not lead to artificially large angular velocities.

Section 20: Tumble detection

Tumbles were detected using a variant of the algorithm introduced by Masson et al. 1. We did not
use a speed criterion to detect tumbles, only a criterion based on the projected angular speed. This
is because we only see a projection of the cell’s trajectory; therefore, if rotational diffusion turns
the cell’s heading towards or away from the viewing direction, artificial speed variations could be
observed. Angular speed is still useful for detecting tumbles because the likelihood of a tumble
not causing a change of heading in the x- or y-direction is very small. Briefly, we found each peak
in the angular speed of a cell’s trajectory and its surrounding troughs in angular speed. The peak
angular speed of a tumble had to be greater than 25 rad/s, and the troughs of angular speed
surrounding a tumble had to be less than 15 rad/s. For any points within this segment of time to
be considered a tumble, the cumulative absolute change in angle from trough to trough had to be
larger than S /D, At, where B = 4, D, = 0.1 rad?/s (only for tumble detection), and At was the
time between the troughs. The beginning and end of the tumble were chosen to be the times when
the angular speed fell below the smaller of 1/2 the peak angular speed or 15 rad/s, and all points
in between were set to the tumble state. Runs that lasted one frame were set to tumbles.
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Section 21: Estimating behavioral parameters, run speed, and rotational diffusion

Behavioral parameters 8 = {Ago, @, B} and run speed v, were extracted from trajectories of
wild-type (RP437) E. coli swimming in the absence of a gradient and recorded with a 4X objective.
Our goal was to estimate the parameters of a typical cell. Previous work has shown that behavioral
parameters in E. coli are correlated with their tumble bias 2>°%%!, TB = 1 — P.,,,,, and therefore
correlated with PB.,,. Therefore, we binned tracks by B.,, (bin size 0.02), and then computed
average behavioral parameters within each bin. The average trajectory duration among all cells
was 4.7 seconds, and the total trajectory time was 6.3 x 10° seconds. Cells in bins P.,,, = 0 and
P..» = 1 were excluded; these were trajectories for which we could not infer B.,,,,.

To estimate the median “run bias” B.,,, in the population, we first computed the single-cell run
biases from B.,,, = frun___ Here, tun aNd tompie are the total time that the cell spent in the

trunttiumple

run and tumble states, respectively. Then, we computed the time-weighted distribution of B.,,,,, or
the fraction of total trajectory time corresponding to cells of phenotype B.,,,,. This is necessary to
get an unbiased phenotype distribution because cells with high diffusivity (large B.,,, for example)
enter and leave the field of view more frequently that cells with low diffusivity, whereas cells with
low diffusivity spend more time in the field of view but enter less frequently. As a result, the raw
counts of each phenotype over the whole movie are biased samples of the population’s phenotype
distribution, over-counting high-diffusivity phenotypes. However, the distribution of phenotypes
in a given frame is unbiased. Therefore, one could average the distribution of phenotypes seen in
each frame over all frames of the movie, but this is equivalent to weighting each phenotype by the
total time it was observed.

The swimming speed during runs v, was computed by taking the average of the speed during runs
among cells with B.,,,, near the population-median value, with each cell given weight proportional
to its duration. This estimate alone would be biased by our projected viewpoint. Assuming that in
shallow gradients the headings are uniformly distributed over all possible directions, v, is expected
to be underestimated by a factor of /4. Therefore, to correct for the projection bias, we multiplied
the computed value of v, by 4/m. This v, was used to compute v, /v, in Fig. 3C of the main text.
Mean speeds in the behavior experiments (v, = 22.61 + 0.07 um/s) were comparable to those in
the gradient experiments (v, = 21.9 + 0.2 um/s).

The persistence of tumbles @ was computed from the average of the cosine of the angle between
cells’ projected headings before and after tumbles. Since we observe projections of the true
headings, this slightly overestimates the true value of a. We consider a model to correct for this
bias. In the absence of a gradient, cells don’t have a preference for one direction over another, so
the distribution of new headings after a tumble must be centered around the heading before the
tumble. This is encoded in a model by making the distribution of post-tumble headings i, given
the pre-tumble heading u, depend only on u - . Celani and Vergassola®® used the tumble angle

distribution P(#iju) = ﬁ(l + u - @), which is the simplest approximation of a general tumble

angle distribution that could have more complex dependence on w - . In this model, the true
directional persistence is @ = (u - @) = 1/3, but if only projected trajectories are observed, the
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observed value is @ = w2 /32 (~0.31). Therefore, we multiplied our computed value of a by 1/3 =
32/m? to correct for projection biases.

We estimated the mean tumble rate Az, in two ways. First, assuming exponentially-distributed
runs, the probability that a cell tumbles in time step dt iS Prympie,ar = Aro At, Where At = 50 ms
is the frame interval of the movie. We calculated p;ympie @S the total number of tumbles observed
divided by the total number of cell-frames in which runs were observed, again only among cells
with PB.,, near the population-median. Then we compute the mean tumble rate from Az, =
Deumbte,at/At, giving Ago~0.893 + 0.003 s~1. This was the value used to compute F(0) in the

efficiency and g in the information rate I,_,,. Another method was to compute the mean tumble
rate from the median PB.,,, and average tumble time = over cells with P,.,,,, near the median, using
PT'U.TL ~ 1/(1 + /‘lT‘O TT), WhiCh gave AR0~0'912 i 0-003 S_l.

Behavioral parameters also appear in the up-gradient velocity autocorrelation function V (t), which
is used to estimate the information rate I,_,,. Although the cells were not swimming in a gradient,
their velocity statistics in the absence of a gradient are approximately the same as in shallow
gradients. Therefore, we estimated V' (t) by computing the autocorrelation of velocity along one
dimension, chosen arbitrarily to be the x-axis of our field of view, which is the gradient direction
in the gradient experiments, and averaged over cells within bins of P,.,,,. The resulting correlation
functions decayed roughly exponentially (Fig. 2C; Supplementary Fig. S2A), and we fit the
correlation function of the median bin of P.,,, with the functional form V(t) = a, e tt Itl py
nonlinear least squares using MATLAB’s fit function. In the fit, each time delay t was given
weight proportional to the number of samples observed at that time delay. The first few time points
of V(t) were excluded from the fit because they include sharp drops in velocity correlation that
result from tumbles inevitably having finite velocity that rapidly decorrelates. In the median bin
of P.,n, the average trajectory duration was 7.0 seconds, and the total trajectory time was
1.3 x 10* seconds. Comparing to the model for V (t) earlier, in theory, A;,r = (1 — a)Age + 2 D,

2
and a,, = ”?"Prun. The fit values were comparable to these theoretical expressions using estimates
of the individual parameters above and an estimate of D, (below): A,,; = 0.862 4+ 0.005 s 1,

2
compared to (1 — a)Age+2D, =093+0.01s1;, aq,=157.1+0.5 (%) , compared to

2 2
%"Prun =151+2 (%) . We directly used the fit values a,, and A;,¢ in V(w) when computing
the information rate I_,,.

Rotational diffusion was measured from trajectories of cells lacking the gene for cheY and
therefore shouldn’t be able to tumble. For these cells, 1z, = 0, SO we extracted the rotational
diffusion coefficient again by fitting their average velocity autocorrelation function. We filtered
out trajectories that were shorter than 5 seconds or that appeared to tumble. After filtering, the
average trajectory duration was 9.5 seconds, and the total trajectory time was 9.7 x 10* seconds.
The resulting velocity autocorrelation function was well-fit by a single decaying exponential
(Supplementary Fig. S2B), whose decay rate Ayo¢ achey = 2 D, Was consistent with a previously
reported? value for D, (here, D, = 0.0441 + 0.0001 rad?/s; previously D, = 0.062 rad?/s).
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Uncertainties in vy, a, and Az, and their dependence on B.,,,, were computed by bootstrapping
tracks from within each bin of B.,,,,, excluding cells with B.,,, = 0 or B.,,,, = 1 (bin size 0.02). The
bootstrapped sample for each bin was the same size as the number of tracks in the bin, and samples
were drawn with replacement 100 times. From each bootstrapped sample, the average of each
parameter was computed. The standard deviation of the average of each parameter among the
bootstrapped samples was taken to be the uncertainty. Uncertainties of the median B.,, were
smaller than the bin size and therefore were taken to be half the size of a bin. The uncertainties of
a,, A:0¢, and D,. were determined from the uncertainty of the exponential fit: the 68% confidence
interval of each parameter was determined from MATLARB’s fit function; dividing by 2 gave
uncertainties equivalent to one standard deviation, assuming normally-distributed parameter
uncertainties.

Section 22: Estimating population-average drift speeds

To compute the drift speeds, we first computed the average x-velocity among cells in each frame
of a given movie, (v,(t)). This time course of “ensemble average” (v,(t)) resembled an OU
process with correlation time of about 1.5 s, similar to the cells’ typical reorientation time 1/A;,;
(Fig S9). The drift speed v; was computed as the average of the time course (v, (t)). This is
equivalent to computing the drift speed of each cell and taking a weighted average, with weights
given by the duration of each cell’s trajectory. Time-weighted averaging like this is necessary to
get an unbiased estimate of the population average drift speed, even for a population without
diversity. This is because, with a finite depth of field, there should be disproportionately more
short trajectories swimming vertically, with small up-gradient displacement, than long up-gradient
trajectories. However, the distribution of swimming directions in a given frame is unbiased, and
time-averaging takes advantage of this.

Since the time course of (v, (t)) has a finite correlation time, the values of (v, (t)) at consecutive
time points are not independent. To compute the uncertainty of v,;, we first computed the
autocorrelation function of (v, (t)) in each movie and fit the result with a decaying exponential
a + b e~/ to get the correlation time of fluctuations 7. The effective number of independent

frames was then n; = n 3, where n is the total number of frames in the movie (minus

At+2 1,
outliers). The uncertainty (standard error) of v, in a given experiment i was then computed as
o; = 0, _/\/n;, where again o, was the variance of (v, (t)) in that experiment.

Then, we computed the weighted average of drift speeds v, ; in the same gradient steepness to
determine v,4(g). Each v, ; was weighted inversely proportional to its squared standard error
1/0?. To compute the uncertainty of this average, we first note that there were experiment-to-
experiment variations in the mean drift speeds v, ; that exceeded the typical within-experiment
uncertainty o;. This suggested that there was another random, experiment-to-experiment source of
variation. This could result from observing a different sample of phenotypes from the population
in each experiment. To account for these effects in the uncertainty of the average v,;(g), we assume
that a random effect is added to the drift speed in each experiment, with variance ¢;2. This random
effect is assumed to be uncorrelated with our measurement errors, and we estimated o2 using the
variance of v, ; among experiments with the same gradient steepness. Together, the uncertainty of
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the average v,(g) is then given by o2 =1/ (Zl ) o?, where N is the number of

(N 1)
experiments performed in that gradient condition. The first term results from weighting each v ;
in the mean by the inverse of its measurement variance. The second term results from averaging
over N realizations of the random effect, which all have the same statistics.

The average trajectory duration was 1.52 seconds, the average trajectory time per experiment was
2 x 10* seconds, and the total trajectory time was 5.5 x 10> seconds. Multiple experiments were
performed for each gradient condition (N > 5 each).

The gradient steepness g in each experiment was estimated from fluorescein fluorescence images
as follows. The background fluorescence intensity was measured by taking an image of a device
filled with water but no fluorescein. The average intensity of this image was similar to that of an
image with no sample mounted on the microscope. The average intensity of this background image
was subtracted from all of the fluorescein gradient images, making zero-intensity regions
correspond to regions where the MeAsp attractant concentration was 100 uM. To correct the
influence of relative depth variations across the width of the gradient region and for spatial
variations in illumination, an image of a device filled with fluorescein solution was taken. We will
refer to this as the “blank™ image. The average background intensity was subtracted from this
image, as well. Then, in each gradient image and the blank image, the average intensity in a
horizontal strip was computed (+300 pixels around row 1024; image size 2048 x 2048 pixels).
This produced fluorescence intensity profiles across the gradient region, I(x, t). The fluorescence
profile from the blank image, I, (x, t), was normalized to a maximum value of 1. The fluorescence
profiles at each time point of each experiment were aligned to the blank profile, and divided point
by point by the normalized blank profile: i(x,t) = I(x,t)/I,(x,t). We separately quantified the
effects of photobleaching by imaging a device full of fluorescein using the same protocol as a
gradient experiment. Changes in intensity due to photobleaching were negligible (<0.2%).

At this point, we had fluorescence profiles that were corrected for background intensity,
illumination variations, and relative variations of device depth. What remained was to determine
the linear transformation from intensity, i(x, t), to MeAsp concentration, c(x, t), which could be
experiment-dependent due to variations in absolute dimensions of different devices. In addition to
knowing that i(x, t) = 0 corresponds to c¢(x, t) = 100 uM, we also know that the maximum value
of i(x,t), imax, COrresponds to c(x, t) = c;, where c; is the concentration of MeAsp in the high-
concentration reservoir. To estimate the maximum i(x, t) in each experiment, we used the earliest
fluorescein image from a given experiment, and used the value of i(x, t) at the location in the high-
concentration reservoir that was furthest from the gradient region. The reasoning for this was that
diffusion or flow between the reservoirs could transport fluorescein (and MeAsp) from the high-
concentration reservoir to the low one. The location furthest from the gradient region at the first
time point is least affected by diffusion or flow, providing the best estimate of the maximum i(x, t)
before any mixing between reservoirs occur. With this, we could estimate concentrations from

intensities using c(x, t) = ¢y + ( it z(x t), where ¢, = 100 puM.

Finally, we used this transformation to estimate the concentration of MeAsp in each reservoir in
the image taken just before the tracks movie and the time point just after it. We estimated g in
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. . 1 4 .
each image using gos = Og(cl""“)Axog(c"'e“), where ¢, oo and cq . are the estimated MeAsp

concentrations in the two reservoirs, and Ax = 1 mm is the width of the gradient channel (see
Methods). The final estimate of the gradient during the movie was the average of these two
estimates. We took the uncertainty of the estimate to be the difference between the estimates at the
two time points divided by two.

In all experiments, g..: < g; the estimated g was less than the intended one, consistent with
mixing between the reservoirs making the gradient shallower. The amount by which g,s; was
smaller than g scaled with g. This is consistent with the fact that diffusive and convective fluxes
scale linearly with concentration, so in the same amount of time (the typical time it took for the
gradient to form), steeper gradients should have proportionally more molecules of MeAsp
transported from the high reservoir to the low reservoir. The average percent reduction in gradient
steepness relative to the intended steepness was 4.4%.

The chemotactic coefficient was estimated by linearly fitting v, = x g to the scatter plot of v ;
Versus g.; from all gradient experiments, with each data point given weight inversely proportional
to the squared standard error of vy ;, 1/67, using MATLAB’s fit function. Since the error bars on
Jest Were small, performing the fit in a way that accounted for errors in both v, ; and g, had
little effect on the result. Allowing the y-intercept of the fit to be non-zero, i.e. fitting v; = a +
x g, only increases y by 3%, but increases its uncertainty by 70%.

Throughout, we were careful to estimate parameters of a median cell. But here, we are computing
the population-average drift speed. But drift speed depends nonlinearly on behavioral parameters,
and the average of a nonlinear parameter combination does not in general equal the nonlinear
function evaluated with median parameters. Therefore, the properties of the phenotype that
achieves the population-average drift speed could be different from the median phenotype. To
address this, we note that from theory (i.e. Egn. (17)), most of the dependence of the drift speed

: : 1-a)l N : .
on behavioral parameters is captured by vg% P,yn. From swimming trajectories, we
- RO r

computed the average of each parameter in bins of B, i.e. vo(Bun), Aro(Bun), €tC (see
Supplementary Fig. S1). Then, we computed this expression for each bin (Supplementary Fig. S9),
as well as the distribution of B.,,,,. Finally, we compared the average of this expression with respect
to the distribution of B.,,,, to the value one gets from plugging in the parameters corresponding to
the median B.,,. We find that these two are similar. the population average gives
2

<v§ (Prun) % Prun> ~375%+1 (%) , Whereas plugging parameters in the median bin of
2 (1-a)Apo

0 (1-a)Ago+2 Dy
average drift speeds to bounds quantified using a median cell’s parameters. Uncertainties in the
distribution of B.,,,, and in these quantities was determined by bootstrapping, as described in the
Section 21: Estimating behavioral parameters, run speed, and rotational diffusion section.

2
P Qives v Poyn ~410+3 (%) . This justifies our comparison of population-
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