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Supplemental Figure 1: Methyltransferase activity assay and DNMT73A4 mutant functional
assay using whole-genome bisulfite sequencing in methylation-deficient ESCs. (A) Targeted
methylation assay across Snrpn promotor region. DNMT3AWT-transduced cells (red)
demonstrated an increased methylation level compared to the vector-only negative control (blue).
(B) Methyltransferase activity assay. The graph depicts blue fluorescence intensity in the
DNMT3AWY?7Pel_transduced cells as measured by flow cytometry on day 0 (grey) and day 15
(blue). (C) Methyltransferase activity assay. The graph depicts blue fluorescence intensity in the
DNMT3AE5A transduced cells as measured by flow cytometry on day 0 (grey) and day 15
(blue). (D) Methyltransferase activity assay. The graph depicts blue fluorescence intensity in the
DNMT3AR2H_transduced cells as measured by flow cytometry on day 0 (grey) and day 15
(blue). (E) Schematic of experimental procedure. DNMT3A variants were fused to GFP in a
doxycycline-inducible lentiviral vector and expressed in DKO mESCs for 30 days prior to whole

genome bisulfite sequencing (WGBS). These ES cells were knocked out for Dnm¢3a/b and
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knocked down for Dnmt! to achieve very low background DNA methylation levels. DNMT1
expression was then restored (23) which allows DNA methylation to accumulate and stabilize
when de novo DNA methyltransferases are re-introduced. (F) Average DNA methylation ratio
across millions of CpGs measured by WGBS in DKO mESCs. (n=1) (G) The percentage of cells
positive for GFP-DNMT3A fusion protein measured by flow cytometry with three replicates. All
DNMT3A4 mutations shown here are compared to DNMT3A W by unpaired t test. Data are

presented as mean + s.e.m. * P<0.05, ** P<0.01 and *** P<(0.001.
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Supplemental Figure 2: Methyltransferase activity and protein stability assay around the
PWWP domain. (A) The graph depicts the methyltransferase activity of DNMT3A missense
mutations around the PWWP domain as measured by flow cytometry and as normalized with
BFP-negative % of DNMT3AYT infected cells at post-infection day 15. (B) The graph depicts
the protein stability represented by the ratio of normalized DNMT3A-GFP and DsRed
expression in the bicistronic construct. All DNMT3A4 mutations shown here were chosen from the
TBRS, CH and COSMIC databases and are compared to DNMT3A VT by unpaired t test. Data

are presented as mean + s.e.m. * P<0.05, ** P<0.01 and *** P< (0.001.
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Supplemental Figure 3: Methyltransferase activity and protein stability assay at the MTase
domain. (A) The graph depicts the methyltransferase activity of DNMT3A4 missense mutations
around the MTase domain as measured by flow cytometry and as normalized with BFP-negative
% of DNMT3AWT infected cells at post-infection day 15. (B) The graph depicts the protein
stability represented by the ratio of normalized DNMT3A-GFP and DsRed expression in the
bicistronic construct. SBM represents the substrate (S-adenosyl-L-methionine) binding motif; CL
represents the catalytic loop; 3LI represents the interface of DNMT3A-DNMT3L; ADDI
represents the interface between the ADD domain and the catalytic domain; TRD represents the
target recognition domain (TRD) and DMI represents the DNMT3A homodimer interfaces. All
DNMT3A mutations shown here were chosen from the TBRS, CH and COSMIC databases and
are compared to DNMT3A WT by unpaired t test. Data are presented as mean + s.e.m. * P<0.05,

** P<0.01 and *** P<0.001.
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Supplemental Figure 4: Methyltransferase activity and protein stability assay around the
ADD domain. (A) The graph depicts the methyltransferase activity of DNMT3A4 missense
mutations around the ADD domain as measured by flow cytometry and as normalized with BFP-
negative % of DNMT3AWT infected cells at post-infectoin day 15. (B) The graph depicts the

protein stability represented by the ratio of normalized DNMT3A-GFP and DsRed expression in
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the bicistronic construct. All DNMT3A4 mutations shown here were chosen from the TBRS, CH
and COSMIC databases and are compared to DNMT3A VT by unpaired t test. Data are

presented as mean + s.e.m. * P<0.05, ** P<0.01 and *** P<(.001.
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Supplemental Figure 5: Structural insights into DNM73A4 missense mutations causing
protein instability. (A) DNMT3A protein expression (by western blot) in lymphoblastoid cell
lines (LCLs) derived from acute myeloid leukemia (AML) patients. (B) Sanger sequencing
tracks showing the heterozygous knock-ins and the successful generation of unstable mutants
(Dnmt3aV?3PV | Dpmt3a98 1% and Dnmt3aR73?“'") and stable mutants (Dnmt3a¥7>*** and

Dnmt3aV¥%®'")_ (C) The structural modeling depicts the unstable mutations (red) located in the
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PWWP domain (cyan). The structure of the PWWP domain was from PDB 3llr. (D) The
structural modeling depicts the unstable mutations (red) located in the methyltransferase domain
(MTD) (grey) interacting withDNMT3L (yellow). (E, F) The structural modeling depicts the
unstable mutations (red) located in the methyltransferase domain (MTD). The methyltransferase
domain is labeled in grey and the ADD domain is labeled in green. (G) The structural modeling
depicts the unstable mutations located in the ADD domain labeling as red. The zinc atoms are
labeled in grey and the ADD domain is labeled in green. The cysteine residues labeled in salmon
are essential for zinc finger formation. The structure of the MTase and DNMT3L was from PDB

4U7T. See also supplemental Figures 1-3.
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Supplemental Figure 6: DNMT3A variants conferring protein instability are associated

with increased clonal expansion in patients. (A) Inferred distribution of fitness effects for
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stable and unstable variants from the maximum likelihood fits after dividing fitness up into three
fitness classes (low <4% per year, moderate 4%-10% per year and high >10% per year). A
higher proportion of unstable variants confer moderate-to-high fitness (red) relative to stable
variants (grey) (B) Number of observed stable and unstable DNMT3A variants after controlling

for mutation rate shows that unstable variants are significantly enriched relative to stable variants

(p=2x 10_13, Poisson exact test followed by Fisher’s method, with 0.05 significance point at
p=0.0019 for 3 combined p-values). Error bars are one standard deviation assuming Poisson
sampling noise. (C) Fitness effects of 7 variants inferred from VAF-density histograms of
individual variants (29). Error bars represent 95% confidence intervals for the inferred fitness
effect (s). (D) The graph depicts the variant allele fractions (VAFs) in the blood of the cohorts of
the control group in two categories. DNMT3A mutations not affecting protein stability are
labeled in gray; DNMT3A4 mutations causing protein instability are labeled in red. (E) The graph
depicts a similar categorization of the variant allele fractions (VAFs) in the blood of the cohorts

of the pre-AML group (33).
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Supplemental Figure 7: Inhibitor of E1 ubiquitin-activating enzymes can rescue DNMT3A

mutant protein expression while HSP90i further destabilizes DNMT3A mutant protein

expression. All graphs depict the stability ratio of mean fluorescence intensity (MFI) of

DNMT3A-GFP versus MFI of DsRed with the indicated inhibitor treatments. Treated with in (A)

inhibitors of E1 ubiquitin-activating enzymes, in (B) with inhibitors of Cullin-RING E3 ubiquitin

ligases, in (C) with inhibitors of autophagy (CQ), in (D) with inhibitors of the unfolded protein

response, in (E) with a HSP70i inhibitor, in (F) with an HSP90i inhibitor. In all cases, flow

cytometry was performed 48 hours after transfection.
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Supplemental Figure 8: Active/weak enhancers, heterochromatin, poised promotor and
regions with repressed polycomb complexes were sensitive while regions closed to TSS and
transcribed regions were inert to proteasome inhibitors administration. All graphs depict
the methylation ratio of the indicated genomic regions: (A) 8869 active enhancer regions as
defined in the epigenomic roadmap project, (B) 15029 weak enhancer regions, (C) 13701 regions
with repressed polycomb complexes, (D) 101293 quiescent regions, (E) 6312 poised promotor
regions, (F) 6085 regions downstream of promotors, (G) 7870 transcribed and regulatory
promotor/enhancer regions, (H) 8904 5° preferentially transcribed enhancers, (I) 7231 3’
preferentially transcribed enhancers, (J) 35253 weak enhancers, (K) 7540 putative H3K27ac
enhancers, (L) 13756 active enhancer flanking regions, (M) 19613 transcribed and weak

enhancers, (N) 7053 bivalent promotors, (O) 15379 promotors upstream of the TSS, (P) 6305
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active TSS regions, (Q) 10492 promotors downstream of the TSS, (R) 2308 zinc finger genes
and repeats, (S) 17820 primary DNase sensitive regions, (T) 12003 regions with strong
transcription, (U) 52563 regions with weak transcription, (V) 22059 5’ preferential transcribed
regions, (W) 39659 3’ preferential transcribed regions. All regions were as defined in the

epigenome roadmap project.
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