Maternal Diabetes-Mediated RORA Suppression in Mice Contributes to Autism-Like Offspring through Inhibition of Aromatase

Hong Yu^{1,*}, Yanbin Niu^{2,*}, Guohua Jia^{3,*}, Yujie Liang⁴, Baolin Chen¹, Ruoyu Sun¹, Min Wang³, Saijun Huang¹, Jiaying Zeng¹, Jianpin Lu⁴, Ling Li^{3,#}, Xiaoling Guo^{1,#}, Paul Yao^{1,3,#}

Supplemental Information

Supplementary Table 1. Sequences of primers for the real time quantitative PCR (qPCR)

Gene	Species	Analysis	Forward primer $(5' \rightarrow 3')$	Reverse primer $(5' \rightarrow 3')$
β-actin	Human	mRNA	gatgcagaaggagatcactgc	atactcctgcttgctgatcca
RORA	Human	mRNA	ggagaagtcagcaaagcaatg	gacattcggccaaattttaca
CYP19A1	Human	mRNA	gactcgagtttttccccaaac	gtgtaacgaggatggctttca
SOD2	Human	mRNA	gcctacgtgaacaacctgaac	tgaggtttgtccagaaaatgc
OCT3/4	Human	ChIP	tcctgaagcagaagaggatca	ccgcagcttacacatgttctt
CYP19A1	Human	ChIP	cacttgctgaggtcttttgct	catgacctcctctggaatgag
RORA	Human	ChIP	cctaggaaagggcatttgaca	ccagccacaaagaatgaggta
β-actin	Mouse	mRNA	tcttgggtatggaatcctgtg	atctccttctgcatcctgtca
RORA	Mouse	mRNA	attggacatcaatgggatcaa	tttggatatgttctgggcaag
CYP19A1	Mouse	mRNA	tatgaacgatccgtcaaggac	ttctctttcgtcaggtctcca
SOD2	Mouse	mRNA	ggcctacgtgaacaatctcaa	tcaggtttgtccagaaaatgg
SYP	Mouse	mRNA	ttcgctttcatgtggctagtt	aagtcacagggtccctcagtt
loxP	Mouse	Genotype	ttgtgtataccaccacaagtgcacc	agtacaggacacttcggtgtctacc
Cre	Mouse	Genotype	cttgggctgccagaatttctc	cccagaaatgccagattacg

Supplementary Table 2. Histological verification record of cannula placemer	it for
amygdala injection by postmortem injection of 0.5 µl of India ink	

Mouse #	CTL/P-VEH	STZ/P-VEH	STZ/P-↑RORA	CTL/P-shRORA
1	Pass	Pass	Pass	Pass
2	Pass	Pass	Pass	Fail
3	Pass	Pass	Fail	Pass
4	Pass	Pass	Pass	Pass
5	Fail	Pass	Pass	Pass
6	Pass	Pass	Pass	Pass
7	Pass	Pass	Fail	Pass
8	Pass	Fail	Pass	Pass
9	Pass	Pass	Pass	Fail
10	Pass	Pass	Pass	Pass

Supplementary Table 3. Participant characteristics in the ASD case-control study (Mean ± SD)

	Autistic Case	TD Control	Statistic	Р
	group (n=121)	group (n=118)	(t or χ² value)	value
Age (years)	4.67 ± 1.08	4.84 ± 1.16	0.911 (t-Test)	0.381
Sex (m/f)	102/19	99/19	0.000	0.876
			(χ² test, df=1)	
Full scale IQ	103.14 ± 11.41	104.21 ± 11.62	1.398 (t-Test)	0.154
Performance IQ	102.87 ± 13.57	103.66 ± 9.57	1.047 (t-Test)	0.281
Verbal IQ	102.91 ± 12.49	103.18 ± 11.96	1.149 (t-Test)	0.247

Note: m/f= male/female ratio; df: degrees of freedom; TD= typically developing; IQ= intelligence quotient

Supplementary Figure 1. Representative pictures of full blots for Western Blotting. (a) Full blots for Figure 1e. (b) Full blots for Figure 2i. (c). Full blots for Figure 4c. (d) Full blots for Figure 5i. (e) Full blots for Figure 6c.

Supplementary Figure 2. Potential effect of hyperglycemia and SOD2 expression on DNA methylation on the RORA promoter. The ACS-5003 neurons were treated by either 4-day LG plus 4-day LG (LG(4d)+LG(4d)), 4-day HG plus 4-day LG (HG(4d)+LG(4d)). The cells were infected with SOD2 lentivirus (HG(4d)+LG(4d)/SOD2 \uparrow) on day 4, and the cells were then used for analysis of DNA methylation on the RORA promoter. (a) Quantitation of DNA methylation by qPCR, n=7. (b) Representative pictures for methylation and unmethylation in PCR products. (c) Quantitation of methylation products for (b), n=7. Data were expressed as mean \pm SEM.

Supplementary Figure 3. Potential effect of hyperglycemia and SOD2 expression on histone modifications on the RORA promoter. The ACS-5003 neurons were treated with either 4-day LG plus 4-day LG (LG(4d)+LG(4d)) or 4-day HG plus 4-day LG (HG(4d)+LG(4d)), or the cells were infected on with SOD2 lentivirus ($HG(4d)+LG(4d)/\uparrow$ SOD2) on day 4. The cells were then used for ChIP analysis. (a) Histone H4 methylation on the RORA promoter, n=4. (b) Histone acetylation on the RORA promoter using H3K9,14,18,23,27ac and H4K5,8,12,16ac antibodies, n=4. Data were expressed as mean ± SEM.

Supplementary Figure 4. Amygdala-specific *RORA*^{-/-} null mice (Otp^{Cre}-*RORA*^{fl/fl}) showed decreased RORA expression not only in the medial amygdala, but also in the lateral and basolateral amygdala. *RORA* wild type (WT) or *RORA* null (*RORA*^{-/-}) mice were crossbred with Otp^{Cre} mice to generate amygdala-specific *RORA*^{-/-} null mouse (Otp^{Cre}-*RORA*^{fl/fl}), and different parts of amygdala, including the medial, lateral and basolateral sections, were isolated for *RORA* mRNA analysis by qPCR, n=4. *, *P*<0.0001, vs WT group. Data were expressed as mean ± SEM.

Supplementary Figure 5. Potential effect of prenatal RORA deficiency on maternal diabetes-induced gene expression in offspring. The *RORA* wild type (WT) or *RORA* null (RORA-^{*I*-}) background were used to generate either control (CTL) or STZ-induced diabetic (STZ) pregnant dams. The subsequent 7-8 week-old male offspring were sacrificed and tissues for the hypothalamus and hippocampus were isolated for mRNA analysis. (a) mRNA levels in the hippothalamus, n=4. (b) mRNA levels in the hippocampus, n=4. ***, *P*<0.0001; **, *P*<0.001; N/S, no significance. Data were expressed as mean ± SEM.

Supplementary Figure 6. Potential effect of prenatal RORA deficiency on maternal diabetes-induced gene expression in offspring. The *RORA* wild type (WT) or *RORA* null (*RORA-^{-/-}*) background were used to generate either control (CTL) or STZ-induced diabetic (STZ) pregnant dams. The subsequent 7-8 week-old male offspring were sacrificed and the tissues for the cerebral cortex, ventral striatum and cerebellum were isolated for mRNA analysis. (a) mRNA levels for *RORA*, n=4. (b) mRNA levels for *SOD2*, n=4. Data were expressed as mean ± SEM.

Supplementary Figure 7. Prenatal RORA deficiency and maternal diabetes have no significant effect on total motor activity in offspring. The *RORA* wild type (WT) or *RORA* null (RORA^{-/-}) background mice were used to generate either control (CTL) or STZ-induced diabetic (STZ) pregnant dams, and the subsequent 7-8 week-old male offspring were used for analysis of total motor activity, n=9. Data were expressed as mean ± SEM.

Supplementary Figure 9. Maternal diabetes and postnatal manipulation of RORA in the amygdala have no effect on total motor activity in offspring. Male offspring from either the control (CTL) or maternal diabetes (STZ) groups received either vehicle (P-VEH) or lentivirus infusion for either RORA expression (P- \uparrow RORA) or RORA knockdown (P-shRORA) at 6 weeks old, and the subsequent 7-8 week-old male offspring were used for analysis of total motor activities, n=9. Data were expressed as mean ± SEM.

Supplementary Figure 10. Epigenetic modifications on the RORA promoter in human PBMC. 3 ml of peripheral blood was withdrawn from either typical developing (TD) and ASD children (2-6 years old). The PBMC were isolated and combined PBMC (n=30) from the TD or ASD groups, respectively, were used for ChIP analysis, n=4. *, P<0.0001, vs TD group. Data were expressed as mean ± SEM.

	a	nates of the (Curve	<u>כ</u>			C			d	l .		e	9		
	Test Result Variable(s): ASD2		.737050	.966	.645	1.209250	.814	.364		2.316000	.619	.124	4.848350	.314	.000	
1	Positive if			.755350	.958	.636	1.275550	.805	.355		2.320850	602	.124	4.935150	.305	.000
	Greater Than			.760300	.958	.628	1.279650	.805	.347		2.341000	.593	.124	5.075450	.297	.000
	or Equal To*	Sensitivity	1 - Specificity	.765200	.958	.620	1.296250	.797	.347		2.356550	.585	.124	5.210850	.288	.000
	858100	1.000	1.000	773350	958	603	1.350300	.797	.339		2.370450	.585	.116	5.284350	.280	.000
	.210650	1.000	.992	.782200	.958	.595	1.390850	./9/	.331		2.377000	.576	.116	5.334550	.271	.000
	.2/9/00	1.000	.983	.790900	.958	.587	1.461550	799	322		2.395600	.5/6	.107	5.375150	.263	.000
	206700	1.000	.975	.792200	.958	.579	1.502350	780	322		2.412250	.508	.107	5.446900	.254	.000
	304900	1 000	959	.793650	.958	.570	1.530050	.771	.322		2 483300	559	099	5.541350	.246	.000
	.330800	1.000	.950	.796850	.958	.562	1.540900	.763	.322		2.532200	.559	.091	5.634000	.237	.000
	.352350	1.000	.942	.800000	.958	.554	1.548300	.754	.322		2.554950	.559	.083	5.687700	.229	.000
	.366000	1.000	.934	.804950	.949	.554	1.555850	.754	.314		2.566600	.551	.083	5.751400	.220	.000
	.382800	1.000	.926	.810000	.949	.545	1.560800	.754	.306		2.570350	.542	.083	5.805750	.212	.000
	.396550	1.000	.917	827150	.545	537	1.562400	.746	.306		2.575150	.542	.074	5.840750	.203	.000
	.411000	1.000	.909	.834100	.932	.537	1.503300	./40	.298		2.617550	.534	.074	5.893150	.195	.000
	.428400	1.000	.901	.837800	.932	.529	1.602600	729	298		2.701700	.534	.066	5 91 94 50	186	000
	.444400	1.000	.893	.843050	.924	.529	1.626850	.720	.298		2.752800	.534	.058	5 961600	178	000
	.454200	1.000	.884	.863250	.924	.521	1.650950	.712	.298		2.763050	.020	.058	6.022000	160	000
	499150	1.000	969	.881150	.915	.521	1.661250	.712	.289		2.770400	509	.058	6.060450	161	.000
	496900	1 000	860	.882400	.907	.521	1.676400	.712	.281		2.814900	508	050	0.000450	.101	.000
	.506150	1.000	.851	.883500	.907	.512	1.751750	.712	.273		2.838000	.500	.050	6.126100	.153	.000
	.508400	1.000	.843	.884450	.907	.504	1.814550	.712	.264		2.854650	.500	.041	6.236800	.144	.000
	.510150	1.000	.835	.903900 .920550 .927850	907	107 .488 107 .488 107 .479 107 .471 198 .471	1.843200	./03	.264		2.880250	.492	.041	6.333450	.136	.000
	.512400	1.000	.826		.907		1.871250	703	.256		2.906850	.492	.033	6.489100	.127	.000
Cut/Off	.516100	1.000	.818		.907		1 881450	695	240		2.955700	.492	.025	6.706600	.119	.000
Value	.524000	1.000	.810	.935800	.898		1.903550	.686	.248		3.001050	.483	.025	6.965250	.110	.000
	.530550	1.000	.802	.948050	.890	.471	1.962550	.686	.240		3.025250	.475	.025	7.217500	.102	.000
	.532750	1.000	.785	.977550	.890	.463	2.013100	.686	.231		3.075500	.466	.025	7.331050	.093	.000
	.535400	1.000	.///	1.002700	.881	.463	2.025400	.678	.231		3.113000	.400	.017	7.371450	.085	.000
	.561700	1.000	760	1.016400	.8/3	.463	2.033800	.678	.223		3.160350	449	.017	7.486000	.076	.000
	.583700	1.000	.752	1.029050	.073	.455	2.042650	.669	.223		3.162550	.441	.017	7.711500	.068	.000
	.601200	1.000	.744	1.032000	864	446	2.051650	.009	207		3.174050	.441	.008	7.925200	.059	.000
	.611500	1.000	.736	1.045200	.864	.438	2.074050	.669	.198		3.203400	.432	.008	8.026450	.051	.000
	.618300	1.000	.727	1.051400	.856	.438	2.088650	.661	.198		3.230050	.424	.008	8.175250	042	000
	.634150	1.000	.719	1.063450	.856	.430	2.095750	.661	.190		3.312100	.424	.000	8 458800	034	000
	.651500	1.000	.711	1.085500	.856	.421	2.105100	.653	.190		3.400400	.415	.000	0.147550	025	000
	.669500	.992	.711	1.099400	.856	.413	2.109500	.644	.190		3.431300	.407	.000	9.751400	.023	.000
	.683050	.992	.702	1.100850	.847	.413 .405	2.111200	.644	.182		3.483550	.398 .000	.000	9.751400	.017	.000
	.08/050	.983	.702		.847		2.120450	.644	.174		3.008100	.390	.000	9.937750	.008	.000
	702950	.903	.034	1.113600	.04/	.397	2.143000	.644	.105		3,809650	373	.000	11.055600	.000	.000
	710650	.975	.686	1.135500	.039	.388	2.104150	644	1/9		3.892850	.364	.000	a. The smallest	t cutoff value is	the minimum
	.716650	.975	.678	1,160500	.839	.380	2.238950	.636	.149		4.012950	.356	.000	observed tes	t value minus	1, and the
	.720150	.975	.669	1.192300	.839	.372	2.282150	.636	.140		4.153350	.347	.000	largest cutoff	value is the m	naximum
	.723650	.975	.661	1.201800	.831	.372	2.286650	.636	.132		4.372550	.339	.000	observed tes	t value plus 1.	All the other
	.725100	.975	.653	1.204650	.822	.372	2.293600	.627	.132		4.648800	.331	.000	cutoff values	are the average	es of two
	.729000	.975	.645	1.206250	.822	.364	2.306750	.627	.124		4.774250	.322	.000	consecutive	ordered obser	ved test
	.737050	.966	.645	1.209250	.814	.364	2.316000	.619	.124		4.848350	.314	.000	values.		

Supplementary Figure 11. Establishment of Cut/Off value for the diagnosis of ASD patients based on RORA mRNA expression. (a) The coordinates of the curve, part a. (b) The coordinates of the curve, part b. (c) The coordinates of the curve, part c. (d) The coordinates of the curve, part d. (e) The coordinates of the curve, part e. The number marked by the red arrow indicates the Pass/Fail Cut/Off value.