Supplementary materials:

Single-cell 32-plex functional proteomic profiling

Cryopreserved bone marrow samples were thawed and cultured in complete RPMI medium (Fisher Scientific) supplemented with 10 ng/mL IL-2 (Biolegend) at a density of 1 X 10⁶ cells/mL in a 37°C, 5% CO₂ incubator overnight. After overnight recovery, viable T cells were purified from dead cells using Ficoll-Paque Plus medium (GE Healthcare). CD8+ then CD4+ T-cell subsets were sequentially enriched using anti-CD8 or anti-CD4 MicroBeads (Miltenyi Biotec) and resuspended in complete RPMI media at a density of 1 x 106/mL. An aliquot of 100 µL of CD4+ or CD8+ T cell suspension was seeded into a well of 96-well flat-bottom plate precoated with anti-human CD3 (clone OKT3, Thermo Fisher/Invitrogen, 10 ug/ml in PBS at 4°C, O/N) with a supplement of soluble anti-human CD28 (clone CD28.2, Thermo Fisher/Invitrogen) at a final concentration of 5 µg/mL. After cultured at 37°C, 5% CO2 for 24 hours, the cells were stained with Alexa Fluor 647-conjugated anti-CD4 or CD8 antibody (BioLegend) at room temperature for 10 minutes, rinsed once with complete RPMI and then resuspended in complete RPMI medium at a density of 1 x 10⁶/mL. Approximately 30 µL of CD4+ or CD8+ T cell suspension was loaded into an IsoCode Chip (IsoPlexis) and incubated at 37°C, 5% CO2 for additional 16 hours. Following this final incubation, subsequently secreted proteins from ~1000 single T cells were captured by the 32-plex antibody barcoded chip and analyzed by backend fluorescence ELISA-based assay. Polyfunctionality of T cells defined as a cell co-secreting 2+ cytokines was analyzed by the IsoSpeak software across the five functional groups(Supplementary Table 2). The polyfunctional strength Index (PSI) of T cells was computed using a pre-specified formula, defined as the percentage of polyfunctional cells, multiplied by the sum of the mean fluorescence intensity (MFI) of the proteins secreted by those cells^{7-10,19,21,22}.

$$PSI_{sample} = (\% \ polyfunctional \ cells \ in \ sample) \sum_{i=1}^{32} \textit{MFI of secreted protein } i \ of \ the \ polyfunctional \ cells$$

The functional groups of T cells were deconvoluted and visualized by 3D t-Distributed Stochastic Neighbor Embedding (3D-tSNE) and heatmap visualizations¹⁹⁻²². 3D t-SNE is a nonlinear dimensionality reduction tool used for visualizing multi-dimensional data in low-dimensional space (2D/3D) relying on computations based on algebraic topology and Riemannian geometry²⁰. Briefly, as the raw MFI data feeds into the t-SNE algorithm and is subsequently transformed/reduced, it calculates similarities between data points and then tries to optimize where the data point would end up in this 3D space. 3D t-SNE of all single cells was

analyzed in the IsoSpeak software by using the following hyperparameters: theta: 0.5; perplexity: 50; maximum iterations: 1000.

Supplementary Table 1

Characteristic	Overall, N = 16	NR, N = 11	Resp., N = 5	p-value1
Gender, n/N (%)				>0.9
F	4/16 (25%)	3/11 (27%)	1/5 (20%)	
M	12/16 (75%)	8/11 (73%)	4/5 (80%)	
Age (years)	67.2+/-11.9	66.5+/-12.2	68.6+/-12.4	>0.9
Cytogenetics, n/N (%)				>0.9
Complex, -5/-7	8/16 (50%)	5/11 (45%)	3/5 (60%)	
Diploid	1/16 (6.2%)	1/11 (9.1%)	0/5 (0%)	
Miscellaneous	7/16 (44%)	5/11 (45%)	2/5 (40%)	
Prior Hypomethylating				
Agents				
Yes	8/16 (50%)	7/11 (63.6%)	1/5 (20%)	
No	8/16 (50%)	4/11 (36.3%)	4/5 (80%)	
Total Nivolumab Doses				
Mean+/-SD	11.0+/-9.8	5.8+/-3.4	22.4+/-9.8	0.004
Bone marrow blasts,				
Mean+/-SD	44.1+/-29.3	44.9+/-27.5	42.4+/-36.4	0.7
Median Time to response				
(months)	N/A	N/A	4.07 [0.9-12.6]	N/A
Median Overall Survival			14.8 [9.4 –	
(months)	6 [2.4-21.5]	5.7 [2.4-7.6]	21.5]	<0.001
Median Event Free				
Survival (months)	4.6 [2.4-18.3]	4 [2.4-7.6]	12.6 [9.1-18.3]	<0.001
Median Duration of				
Response (months)	N/A	NA+/-NA	5.2 [0.5-14.7]	N/A

Supplementary Table 2

Functional Groups	Analytes
Effector	Granzyme B, TNF-a, IFN-g, MIP-1a, Perforin, TNF-b
Stimulatory	GM-CSF, IL-2, IL-5, IL-7, IL-8, IL-9, IL-12, IL-15, IL-21
Chemoattractive	CCL-11, IP-10, MIP-1b, RANTES

Regulatory	IL-4, IL-10, IL-13, IL-22, sCD137, sCD40L, TGF-b1
Inflammatory	IL-6, IL-17A, IL-17F, MCP-1, MCP-4, IL-1b