1 Supplemental Information

2 **Supplemental Materials and Methods**

3 Treatment, sample preparation and next generation sequencing

The backbone of the treatment regimen is identical for all patients treated according to the 4 protocols NHL-BFM 95, LBL Registry, trial EURO-LB02 and NHL-BFM Registry 2012. All 5 protocols are based on the most successful clinical trial for pediatric patients with 6 lymphoblastic lymphoma, the trial NHL-BFM 90¹. There were only minor changes in the 7 8 subsequent protocols. The main difference between NHL-BFM 95 and subsequent protocols LBL Registry, EURO-LB 02 and NHL-BFM Registry 2012 are: i) the dose of. E. 9 coli asparaginase in induction which was 5,000 U/m² compared with 10,000 U/m² in 10 11 subsequent protocols and ii) the recommendation of two additional doses of intrathecal methotrexate in induction for all patients independent of their CNS status at diagnosis. 12 The vast majority of the treatment protocols was identical. The trial EURO-LB 02 13 14 addressed two randomized questions². Both questions could not be evaluated on confirmatory statistics due to the early stop of patient recruitment. Descriptive statistics 15 did not show a difference in outcome according to randomization arm. The randomization 16 results for randomized questions are detailed in the supplemental Table 1. 17

Genomic DNA from primary (n=122) and relapse samples (n=9) was isolated from fresh frozen cells (pleural effusions (n=79), tumor biopsies (n=42), bone marrow (n=4) and pericardial effusions and malignant effusions (n=5)). Samples were selected based on the availability of sufficient tumor material, blast count/pathological cells (80-90%).

22

Out of 131 samples three samples TP30, TP31, TP55 failed for targeted sequencing 24 25 because of the poor quality of DNA and TP100 was excluded as it did not have enough blast count. 127 evaluable samples were analyzed which included 118 primary samples 26 that included 21 (~18%) primary samples that suffered relapse, 9 relapse samples 27 (supplementary Figure 1A). 68% of the samples overlap with the published T-LBL cohort³ 28 and 32% of the samples were newly added from patients registered between 2012-2018 29 30 in the NHL-BFM center and have not been analyzed for molecular characterization so far. Genomic DNA was isolated (using QIAamp DNA Mini Kit or QIAamp Blood DNA Mini Kit 31 as per the manufacturer's instructions. Genomic DNA was sequenced as paired-end run 32 33 (2x 150 bp) on an Illumina NextSeq 500 (Illumina, San Diego, USA). After enzymatic fragmentation of the DNA and pre-capture amplification of the previously selected regions 34 (RefSeq exons of selected genes + 25 bp of the intronic regions) were enriched by pre-35 pooling hybrid-capture technique. Following hybridization, unique barcodes for sample 36 identification were added by a post-capture amplification. For these steps, the Agilent 37 SureSelectQXT protocol was used (Agilent Technologies, Santa Clara, USA). Quality 38 controls during the protocol and for the final and pooled libraries were performed on a 39 TapeStation (Agilent). Raw data quality was checked using the Illumina Sequencing 40 41 Viewer (Illumina) and an in-house pipeline.

42

43 Targeted sequencing

A targeted panel for T-LBL was designed based on the data obtained from WES of 16 patient samples. The selected genes from WES data for the panel displayed non synonymous somatic mutations and were predicted to be pathogenic or damaging in the functional prediction software tools like PROVEAN (http://provean.jcvi.org/index.php).

Also some genes that were relevant for T-ALL pathogenesis based on literature were also included in the panel.^{4,5} Three different versions of the panel were used which had slight variation either as addition or exclusion of very few genes. Version T-LBLv1 was used for analysis of samples from batch 1, T-LBLv2 was used for analysis of samples from batch2 and T-LBLv3 for batch 3, 4 and 5.

53

54 Sanger sequencing

PCR products were amplified with forward and reverse primers for respective genes and were treated using ExoSap IT (USB Corporation) and sequenced with ABI Prism BigDye terminator v3.1 (Applied Biosystems). Sequencing reactions were run on an ABI-3730 automated sequencer (Applied Biosystems). All sequences were analyzed using CodonCode Aligner software to identify mutations.

For *BCL11b*, three hotspots spanning exon2⁶ and exon4⁷ were amplified and sequenced
to identify mutations. Detailed information on the primer sequences and mutations
identified is provided the supplement Table 6 and supplemental Table 7.

63

64 Analysis of WES and targeted sequencing samples

Sequencing data was aligned to the reference genome GRCh37.67 using BWA mem (Li,
2013). For WES Duplicate reads were removed using Picardtools
(http://broadinstitute.github.io/picard/).

For WES somatic SNV calling SomaticSniper ⁸ was used, using a high-confidence filter (mapping quality >40, somatic score >40). For somatic indel calling Strelka⁹ was used with the default quality filter settings. Variant calling was performed with the two tools based on their performance in the review articles by Roberts et al.¹⁰ and Xu et al.¹¹

To increase sensitivity and specificity of the results, two post-processing steps were 72 applied on the raw variant calling output. 1) Variants with evidence in any germline sample 73 were removed. All variants with minimum VAF of 0.02, minimum number of alternate reads 74 of 2, minimum overall coverage of 10 and minimum base quality of 15 (SNVs only) were 75 considered. This filter allows to remove germline calls that initially have been mislabeled 76 as somatic due to low coverage in the matching germline samples. 2) Variants present in 77 78 only one, either the primary tumor sample or the relapse sample, were re-evaluated with increased sensitivity (minimum VAF of 0.02, minimum number of alternate reads of 2, 79 minimum overall coverage of 25 and minimum base quality of 15 (SNVs only)). This re-80 evaluation enabled to detect variants that were present with very low VAF at one of the 81 two time points that were considered. 82

Subsequently, all calls were annotated with SnpEff¹² using annotations based on RefSeq 83 (hg19). All calls annotated as 3'- or 5'UTR variant, downstream or upstream, intergenic-, 84 intron- or non-coding exon variant, or splice region variant (additionally annotated as 85 intron) were excluded. For the remaining calls, exemplary validation experiments were 86 performed. All samples - germline, tumor and relapse - were re-analyzed by targeted 87 sequencing, analyzing 76-80 genes that were frequently mutated in the WES data and/or 88 89 were known to be associated with T-LBL. Additionally, few selected set of calls were analyzed with Sanger sequencing. 90

Altogether, 111 calls were validated as somatic mutations by targeted sequencing and/or Sanger sequencing. Sixty-six calls were identified as being false positive calls (artifacts or germline calls). Based on these validation results, two quality filters were applied on the preliminary results.

1) Analysis of base quality distribution revealed that artifacts were characterized by a
significantly lower Phred-score compared to somatic mutations. Density estimation
revealed an optimum threshold of 24.94. All calls with average base quality below this
threshold were filtered as artifacts. As base quality can only be determined for SNVs, all
indels were inspected manually.

2) Germline calls were usually characterized by being present in common polymorphism 100 101 databases, while somatic mutations were often present in common mutation databases. Analysis was performed for the presence of every call in the polymorphism databases 102 ESP6500 (http://evs.gs.washington.edu/EVS/), 1000 Genomes (The 1000 Genomes 103 Project Consortium, 2015), ExAC¹³, dbSNP (build 138 excluding sites after 129)¹⁴ and 104 ClinVar (common and no known medical impact, 03.02.2016).¹⁵ Additionally, dbSNP 105 (build 138), ClinVar (common and clinical, 03.02.2016) and Cosmic were considered.¹⁶ 106 Also the type of the mutation, the VAF and the coverage in the tumor- and germline sample 107 were taken into consideration. All calls present in at least one of the polymorphism 108 databases were manually evaluated by two independent experts. Targeted sequencing 109 data was analyzed using the appreci8 pipeline using default parameters.¹⁷ In addition to 110 automatic classification of the variant calls - as either pathogenic mutations, 111 polymorphisms or artifacts - by the pipeline, we manually investigated all variant calls. 112

113 Genotyping Analysis

Genotypes were generated using Illumina's Infinium HumanOmni2-5Exome BeadArray following the manufacturer's automatized workflow. Arrays were scanned using the iScan BeadArray scanner and analyzed by GenomeStudio 2011.1 software both produced by Illumina, San Diego, US. The quality control checked the process controls in GenomeStudio's Control Dashboard and standard performance parameters as call rate,

B allele frequency plots, and excess of heterozygosity. Genotypes were exported in Illumina forward allele designation, positions based on GRCh37.2 genome. Copy number analysis was performed applying Illumina's CNV-Partition v3.1.6 algorithm.

122

123 Methylation Arrays

Methylation arrays were performed on 22 T-LBL samples (n=16 primary+6 relapse) representing 16 cases along with corresponding germline samples with Infinium MethylationEPIC BeadChip Kit¹⁸ produced by Illumina, San Diego, US. DNA samples were processed following the manufacturers guidelines for the automatized workflow. Bisulfite conversion was performed using Zymo Research, Freiburg, DE, EZ-96 conversion kits. Quality control was performed using Illumina's GenomeStudio 2011.1, checking process control probes and for probes failing detection p-value thresholds.

131

132 Methylation Data Filtering, Imputation and Normalization

Probes were filtered on satisfying any one of the following criteria: probes with a detection 133 p-value above 0.01 in at least 20% of samples; Probes with a beadcount < 3 in at least 134 5% of samples; non-CpG probes (CpA, CpT, and CpC); Probes with single nucleotide 135 polymorphisms (SNPs) as identified in¹⁸; Probes that align to multiple locations as 136 identified in¹⁹; Probes on the X or Y chromosome. Most of these criteria are default 137 settings of ChAMP package for probe filtering²⁰. All "not available" (NA) values after 138 139 filtering were imputed by KNN (k-nearest neighbors, k = 3) algorithm. BMIQ (Beta MIxture Quantile dilation) function²¹ was applied for normalization. Probe filtering, imputation and 140 normalization were done using ChAMP package. 141

143 DMP Analysis and Hierarchical Clustering

Limma powers differential expression analysis and Benjamini-Hochberg (BH) p-value adjustment method from ChAMP's champ. DMP() function was used for detection of differentially methylated position (DMP). Details of Limma package and Limma analysis has been described by Ritchie ME et al.²² Beta values of detected DMPs or most variant probes based on variance were used to plot heatmap using pheatmap package, sorted by hierarchical clustering. For hierarchical clustering, euclidean distance and complete linkage were used.

151

152 *Multidimensional Scaling*

Non-metric multidimensional scaling was used to discriminate the differential methylation
 of germline and tumor sample groups. Euclidean distances calculated from beta values of
 detected DMPs were used to perform Kruskal's non-metric multidimensional scaling with
 the isoMDS() function in R.

157

158 **MLPA**

159 LOH6q analysis

LOH6q analysis was performed for the newly added T-LBL samples with SALSA MLPA P200 reference 1 in combination with custom made probes and SALSA MLPA EK1 reagent kit-FAM (MRC Holland) as described in Rohde M, et. al.²³ Briefly, ~50 ng of genomic DNA from the tumor samples, genomic DNA from healthy individuals as reference samples and samples from LOH6q positive samples identified from previous analysis was used as positive controls and MLPA reactions were performed as per the manufacturer's instruction. The data was evaluated using Coffalyser.Net MLPA analysissoftware (MRC-Holland).

168

169 **PTEN deletions**

Genomic DNA (~50 ng) isolated from fresh frozen tumor (pleural effusions, bone marrow, 170 lymph nodes) or from peripheral blood from healthy individuals were used as controls 171 (DNeasy Blood and Tissue kit: Qiagen, Hilden, Germany). The commercial panel, SALSA 172 MLPA probemix P383T-A2 T-ALL (MRC-Holland; Amsterdam, The Netherlands) was 173 used to screen PTEN deletions. The MLPA assay was performed as per the 174 175 manufacturer's instructions. The probe mix includes 4 probes for PTEN gene spanning exon 1(1probe), exon 7(2 probes) and exon 9(1probe). The data was evaluated using 176 Coffalyser.Net MLPA analysis software (MRC-Holland). The results were normalized and 177 compared with reference samples which included positive controls (genomic DNA from 178 the cell line (CEM, T-ALL cell line) or patient samples which were identified to have 179 deletions in PTEN) and DNA from healthy individuals. The samples which were positive 180 for deletions were analyzed one additional time to reconfirm the results. 181

182

183 **ABD analysis**

Single tube multiplex TRG PCR was performed as described by Derrieux C et. al.²⁴ The multiplex PCR assay includes primers for all conserved regions involved in rearrangements in T-cell lymphoid malignancies. PCRs were performed with ~100 ng of genomic DNA isolated from either pleural effusions, tumor biopsy, bone marrow and peripheral blood samples, 1U Ampli*Taq* gold (Life Technology 4317742), MgCl2 and dNTPs were added at final concentrations of 5mM and 0.2mM, respectively. Denaturation

of DNA was performed at 94°C for 8 minutes, followed by 35 cycles comprising of following 190 191 steps; denaturation for 45 seconds, primer annealing for 1 minute at 57°C, and extension for 1 minute 30 seconds at 72°C. Depending on the sensitivity of the instrument, PCR 192 products were diluted to receive optimal peak heights. PCR products were mixed with Hi-193 Di formamide and LIZ size standard, denatured at 95°C for 3 minutes and were size 194 separated on a high resolution analysis on an ABI PRISM 3130 GeneScan (Perkin-Elmer 195 Applied Biosystems). The .fsa files are imported and analyzed with the help of software 196 GeneMapper[™] (Thermo Fisher Scientific) or "Microsatellite analysis" tool on Thermo 197 Fisher Connect, a cloud-based analysis platform (Thermo Fisher Scientific). The 198 199 Microsatellite Analysis tool provides all the functions required visualizing the peak pattern for ABD analysis. 200

The PCR products obtained are in the range of 159-207 bp. The ABD positive samples display a single peak and ABD negative samples display two peaks. Occasionally polyclonal peaks are also detected in ABD positive samples, in these cases the tumor content is checked and confirmed to be of significant percentage.

205

206

208 Supplemental Tables

210 Supplemental Table 1. List of patient samples

Sample.	Protocol	sex	Sample	EURO-LB 02
ID			material	Randomization R1 / R2
TP1	EURO-LB 02	male	PL	Dexamethasone / 24 months
TP2	EURO-LB 02	male	PL	Prednisone
TP3	LBL Registry	female	PL	
TP4	EURO-LB 02	male	TU	Prednisone
TP5	EURO-LB 02	male	PL	
TP6	LBL Registry	male	PL	
TP7	EURO-LB 02	male	PL	Dexamethasone / 24 months
TP8	LBL Registry	male	PL	
TP9	EURO-LB 02	female	PL	Prednisone
TP10	LBL Registry	female	PL	
TP11	EURO-LB 02	male	PL	Prednisone / 24 months
TP12	LBL Registry	male	EX	
TP13	LBL Registry	male	TU	
TP14	LBL Registry	male	PL	
TP15	EURO-LB 02	male	PL	
TP16	NHL-BFM Registry 2012	male	TU	
TP17	NHL-BFM Registry 2012	male	PL	
TP18	NHL-BFM Registry 2012	male	PL	
TP19	NHL-BFM Registry 2012	male	TU	
TP20	NHL-BFM Registry 2012	male	TU	
TP21	NHL-BFM Registry 2012	male	TU	
TP22	NHL-BFM Registry 2012	male	TU	
TP23	NHL-BFM Registry 2012	female	PL	
TP24	NHL-BFM Registry 2012	male	PL	
TP25	NHL-BFM Registry 2012	male	PL	
TP26	NHL-BFM Registry 2012	male	PL	
TP27	NHL-BFM Registry 2012	male	TU	
TP28	NHL-BFM Registry 2012	male	TU	
TP29	NHL-BFM Registry 2012	female	PL	
TP30	EURO-LB 02	male	TU	
TP31	EURO-LB 02	male	TU	
TP32	NHL-BFM 95	female	PL	
TP33	EURO-LB 02	female	PL	Prednisone
TP34	NHL-BFM 95	male	PL	

Supplemental Table 1 cont.					
Sample. ID	Study	sex	Sample material	EURO-LB 02 Randomization R1 / R2	
TP35	NHL-BFM 95	male	PL		
TP36	NHL-BFM 95	female	PL		
TP37	EURO-LB 02	male	TU	Dexamethasone	
TP38	EURO-LB 02	female	PL		
TP39	EURO-LB 02	male	PL	Dexamethasone / 24 months	
TP40	EURO-LB 02	female	PL	Prednisone / 18 months	
TP41	EURO-LB 02	male	TU	Dexamethasone / 24 months	
TP42	EURO-LB 02	male	PL	Prednisone	
TP43	LBL Registry	female	PL		
TP44	NHL-BFM 95	female	PL		
TP45	NHL-BFM 95	male	PL		
TP46	NHL-BFM 95	female	PL		
TP47	EURO-LB 02	male	TU	Prednisone / 24 months	
TP48	NHL-BFM 95	female	TU		
TP49	NHL-BFM 95	male	PL		
TP50	NHL-BFM 95	male	PL		
TP51	NHL-BFM 95	female	PL		
TP52	NHL-BFM 95	male	TU		
TP53	EURO-LB 02	male	PL		
TP54	LBL Registry	male	PL		
TP55	LBL Registry	female	PL		
TP56	LBL Registry	male	PL		
TP57	LBL Registry	female	PL		
TP58	LBL Registry	female	TU		
TP59	EURO-LB 02	female	TU	Dexamethasone / 24 months	
TP60	EURO-LB 02	female	TU	Dexamethasone / 24 months	
TP61	EURO-LB 02	male	TU	Prednisone / 18 months	
TP62	NHL-BFM 95	female	PL		
TP63	LBL Registry	male	TU		
TP64	NHL-BFM 95	male	TU		
TP65	EURO-LB 02	male	TU	Dexamethasone / 18 months	
TP66	NHL-BFM 95	female	PL		
TP67	LBL Registry	male	PL		
TP68	LBL Registry	male	PL		
TP69	LBL Registry	male	PL		
TP70	LBL Registry	female	TU		
TP71	LBL Registry	male	PL		

Supplemental Table 1 cont.						
Sample. ID	Study	sex	Sample material	EURO-LB 02 Randomization R1 / R2		
TP72	LBL Registry	female	PL			
TP73	LBL Registry	male	PL			
TP74	EURO-LB 02	male	PL	Prednisone / 18 months		
TP75	LBL Registry	male	PL			
TP76	LBL Registry	female	PL			
TP77	EURO-LB 02	male	TU	Dexamethasone / 24 months		
TP78	EURO-LB 02	male	TU	Dexamethasone		
TP79	EURO-LB 02	male	TU	Prednisone		
TP80	EURO-LB 02	male	TU	Dexamethasone / 18 months		
TP81	EURO-LB 02	male	PL	Dexamethasone / 18 months		
TP82	EURO-LB 02	male	PL	Prednisone / 24 months		
TP83	EURO-LB 02	male	PL			
TP84	EURO-LB 02	female	PK	Prednisone / 24 months		
TP85	LBL Registry	male	TU			
TP86	LBL Registry	male	PL			
TP87	LBL Registry	female	PL			
TP88	LBL Registry	male	PL			
TP89	LBL Registry	male	PK			
TP90	LBL Registry	male	PL			
TP91	LBL Registry	male	PL			
TP92	LBL Registry	female	PL			
TP93	LBL Registry	female	PL			
TP94	LBL Registry	female	TU			
TP95	LBL Registry	male	PL			
TP96	EURO-LB 02	female	TU			
TP97	LBL Registry	male	PL			
TP98	NHL-BFM Registry 2012	male	PL			
TP99	NHL-BFM Registry 2012	male	PK			
TP100	NHL-BFM Registry 2012	male	GL			
TP101	NHL-BFM Registry 2012	male	PL			
TP102	NHL-BFM Registry 2012	male	PL			
TP103	NHL-BFM Registry 2012	male	PL			
TP104	NHL-BFM Registry 2012	male	PL			
TP105	NHL-BFM Registry 2012	male	PL			
TP106	NHL-BFM Registry 2012	male	TU			
TP107	NHL-BFM Registry 2012	male	TU			

Supplemental Table 1 cont.						
Sample. ID	Study	sex	Sample material	EURO-LB 02 Randomization R1 / R2		
TP108	NHL-BFM Registry 2012	male	TU			
TP109	NHL-BFM Registry 2012	female	PL			
TP110	NHL-BFM Registry 2012	male	TU			
TP111	NHL-BFM Registry 2012	male	TU			
TP112	NHL-BFM Registry 2012	male	TU			
TP113	NHL-BFM Registry 2012	male	PL			
TP114	NHL-BFM Registry 2012	male	TU			
TP115	NHL-BFM Registry 2012	male	PL			
TP116	NHL-BFM Registry 2012	male	TU			
TP117	NHL-BFM Registry 2012	male	PL			
TP118	NHL-BFM 95	male	PL			
TP119	NHL-BFM Registry 2012	male	PL			
TP120	EURO-LB 02	male	TU			
TP121	NHL-BFM Registry 2012	male	PL			
TP122	NHL-BFM Registry 2012	male	PL			
TR11	EURO-LB 02	male	PL	Prednisone / 18 months		
TR12	LBL Registry	male	EX			
TR13	LBL Registry	male	TU			
TR14	LBL Registry	male	PL			
TR15	LBL Registry	male	TU			
TR16	NHL-BFM Registry 2012	male	BM			
TR17	NHL-BFM Registry 2012	male	BM			
TR18	NHL-BFM Registry 2012	male	BM			
TR19	NHL-BFM Registry 2012	male	BM			

Supplemental Table 1. List of patient identification (ID), study protocol and sample
material of the analyzed cases. PL: pleural effusion (n=79), TU: tumor biopsy (n=42), PK:
pericardial effusion (n=3), Ex: malignant effusion (n=2), BM: bone marrow (n=4), GL: germ
line. The number of cases from different studies in the analyzed cohort are as follows:
NHL-BFM 95, n=16; EURO-LB 02, n=35; LBL Registry, n=39; NHL-BFM Registry 2012,
n=41.

224 Supplemental Table 2. List of genes from the targeted panel

	T-LBLv1	T-LBLv2	T-LBLv3
	batch 1	batch2	batch3,4,5
1	ABCC6	ABCC6	ABCC6
2	AGO2	AGO2	AGO2
3	ANXA2	ANXA2	ANXA2
4	ASS1	ASS1	ASS1
5	BRAF	BRAF	BRAF
6	CAM2G	CAM2G	CAM2G
7	CCNC	CCNC	CCNC
8	CDC27	CDC27	CDC27
9	CDKN1B	CDKN1B	CDKN1B
10	CCND3	CCND3	CCND3
11	CHFR	CHFR	CHFR
12	CISH	CISH	CISH
13	CPEB3	CPEB3	CPEB3
14	CREBBP	CREBBP	CREBBP
15	CSMD1	CSMD1	CSMD1
16	CTCF	CTCF	CTCF
17	DDX3X	DDX3X	DDX3X
18	DNM2	DNM2	DNM2
19	DNMT3A	DNMT3A	DNMT3A
20	EHBP1	EHBP1	EHBP1
21	FBXW7	FBXW7	FBXW7
22	FZD9	FZD9	FZD9
23	GNAI2	GNAI2	GNAI2
24	НСК	HCK	HCK
25	HLA-DRB5	HLA-DRB5	HLA-DRB5
26	HNRNPK	HNRNPK	HNRNPK
27	JAK2	JAK2	JAK2
28	JAK3	JAK3	JAK3
29	KDM3A	KDM3A	KDM3A
30	KDM6B	KDM6B	KDM6B
31	KMT2C	KMT2C	KMT2C
32	KMT2D	KMT2D	KMT2D
33	KRAS	KRAS	KRAS
34	MAPK3	MAPK3	MAPK3
35	MCM10	MCM10	MCM10
36	MCM9	MCM9	MCM9
37	MDC1	MDC1	MDC1
38	MED12	MED12	MED12

Supp.Table 2 contd.				
	T-LBLv1	T-LBLv2	T-LBLv3	
	batch 1	batch2	batch3,4,5	
39	MFHAS1	MFHAS1	MFHAS1	
40	MIB2	MIB2	MIB2	
41	MLH1	MLH1	MLH1	
42	MTRR	MTRR	MTRR	
43	MYCBP2	MYCBP2	MYCBP2	
44	NEK1	NEFM	NEFM	
45	NOS3	NEK1	NEK1	
46	NOTCH1	NOS3	NOS3	
47	NOTCH3	NOTCH1	NOTCH1	
48	NRAS	NOTCH3	NOTCH3	
49	NT5C1A	NRAS	NRAS	
50	NT5C2	NT5C1A	NT5C1A	
51	PCDH7	NT5C2	NT5C2	
52	PHF6	PCDH7	PCDH7	
53	PIAS3	PHF6	PHF6	
54	PIK3CA	PIAS3	PIAS3	
55	PTEN	PIK3CA	PIK3CA	
56	PTPRT	PTEN	PTEN	
57	RIN1	PTPRT	PTPRT	
58	ROR2	RIN1	RIN1	
59	RPL22	ROR2	ROR2	
60	RUNX1	RPL22	RPL22	
61	SETD1B	RUNX1	RUNX1	
62	SON	SETD1B	SETD1B	
63	STAT5B	SON	SON	
64	STK39	STAT5B	STAT5B	
65	TAL1	STK39	STK39	
66	TCF3	TAL1	TAL1	
67	TP53	TCF3	TCF3	
68	TRAF7	TFAP4	TFAP4	
69	TTN*	TP53	TP53	
70	UCK2	TRAF7	TRAF7	
71	USH2A	TTN	UCK2	
72	WT1	UCK2	USH2A	
73	XIST*	USH2A	WT1	
74	TRAF6	WT1	ZBTB24	
75	MUC4	ZBTB24	XIST*	
76	LAMA2	XIST*	USP24*	

Supp. Table 2 contd.						
	T-LBLv1	T-LBLv2	T-LBLv3			
	batch 1	batch2	batch3,4,5			
77	ZNF208		USP7			
78	ZNF91		IL7R			
79			KDM6A			
80			ZNF91			
Samples	TG1-TG16 TP1-TP16	TG17-TG29 TP17-TP29 TR11-TR16	TP30-TP122 TR116, TR123 and TR124			

Supplemental Table 2. List of genes from the different versions of the targeted panel (v1,

v2 and v3) used for the targeted sequencing of the extended cohort. (* indicates that for

some of the large genes only selected regions were included to design the probes).

Supplemental Table 3. Mutation rates of samples analyzed by whole exome

233 sequencing

Sample	Mutations	Target size	Mutation rate/Mbp	VAF<0.15	%	VAF>=0.15	%
TP1	21	65343296	0.32	4	19.05	17	80.95
TP2	27	65343296	0.41	0	0.00	27	100.00
TP3	20	65343296	0.31	0	0.00	20	100.00
TP4	12	65343296	0.18	1	8.33	11	91.67
TP5	17	65343296	0.26	1	5.88	16	94.12
TP6	28	65343296	0.43	1	3.57	27	96.43
TP7	3	65343296	0.05	0	0.00	3	100.00
TP8	37	65343296	0.57	0	0.00	37	100.00
TP9	23	65343296	0.35	2	8.70	21	91.30
TP10	42	65343296	0.64	0	0.00	42	100.00
TP11	30	65343296	0.46	0	0,00	30	100.00
TR11	56	65343296	0.86	1	1.79	55	98.21
TP12	15	65343296	0.23	1	6.67	14	93.33
TR12	14	65343296	0.21	2	14.29	12	85.71
TP13	16	65343296	0.24	0	0.00	16	100.00
TR13	59	65343296	0.90	0	0.00	59	100.00
TP14	17	65343296	0.26	1	5.88	16	94.12
TR14	518	65343296	7.93	3	0.58	515	99.42
TP15	24	65343296	0.37	1	4.17	23	95.83
TR15	189	65343296	2.89	18	9.52	171	90.48

235 Supplemental Table 3. Mutation rates of samples from the cases of "limited cohort"

screened by whole exome sequencing.

239 Supplemental Table 4. Top-10 significant genes as reported by MutSigCV

gene	expr	reptime	hic	N_Non silent	N_ silent	N_non coding	n_non silent	n_ silent	n_non coding	nnei	x	x	р	q
NOTCH1	1489379	212	43	364840	103160	0	16	1	0	50	1	1275080	1,53E-07	2,88E-03
FBXW7	117295	501	51	122080	32720	0	6	1	0	50	2	1348780	4,66E-04	1
CDKN1B	791330	136	44	28480	7820	0	2	0	0	50	0	1141080	2,87E-03	1
ZSCAN22	1621097	406	-25	69200	19840	0	2	0	0	50	0	1116840	3,06E-03	1
NRAS	600650	472	11	28140	7260	0	3	0	0	50	2	1181460	3,10E-03	1
STAT5B	2101162	190	31	115400	30760	0	5	0	0	50	0	1214200	8,28E-03	1
PIK3R6	423397	636	11	108020	32380	0	2	0	0	50	0	1162080	8,33E-03	1
DCAF7	934619	247	-1	49440	13800	0	2	0	0	50	0	994720	9,47E-03	1
CNFN	792230	218	42	16500	4560	0	1	0	0	50	1	1377000	1,51E-02	1
HMGN2	1003175	167	31	14140	3440	0	1	0	0	50	2	1095960	1,64E-02	1

241

242 Supplemental Table 4. Top-10 significant genes as reported by MutSigCV.

Details of the column names: N_nonsilent, number of covered sequenced bases containing non-silent mutations; N_silent, number of covered sequenced bases containing silent mutations; N_noncoding, number of covered sequenced bases containing noncoding mutations; n_nonsilent, number of non-silent mutations; n_silent, number of silent mutations; n_noncoding, number of noncoding mutations; nnei, number of neighboring genes; x, number of mutated bases in neighboring genes; X total number of bases related to neighboring genes; p, p-value; q, q-value, i.e. adjusted p-value. Note. The table is provided as excel files separately

Supplement Table 5. Mutational status of KMT2D, PTEN, NOTCH1 and FBXW7 248 KMT2D PTEN NOTCH1 FBXW7 Sample TP1 0 0 1 1 TP2 0 0 0 0

TP3	0	0	0	1
TP4	0	0	1	1
TP5	0	0	0	0
TP6	0	0	1	0
TP7	0	0	1	0
TP8	0	0	1	1
TP9	0	0	1	0
TP10	0	0	1	1
TP11	0	0	1	0
TP12	0	0	1	0
TP13	0	0	1	0
TP14	0	0	0	0
TP15	0	0	0	0
TP16	0	1	1	0
TP17	0	0	1	0
TP18	0	0	1	0
TP19	0	0	0	0
TP20	0	0	1	1
TP21	0	0	1	0
TP22	0	0	1	1
TP23	0	0	1	0
TP24	0	0	0	1
TP25	0	0	0	1
TP26	0	0	1	1
TP27	0	0	1	0
TP28	1	0	1	0
TP29	0	0	0	0
TP30	2	2	2	2
TP31	2	2	2	2
TP32	0	0	0	1
TP33	0	0	1	1
TP34	0	1	0	0
TP35	0	0	0	0
TP36	0	0	0	0
TP37	0	0	1	0
TP38	1	0	1	1
TP39	0	0	1	0
TP40	0	0	0	0

Supp. Table 5 cont								
Sample	KMT2D	PTEN	NOTCH1	FBXW7				
TP41	0	1	1	0				
TP42	0	0	0	0				
TP43	0	1	1	0				
TP44	0	0	0	0				
TP45	0	0	0	1				
TP46	0	0	0	1				
TP47	0	1	1	0				
TP48	0	0	1	0				
TP49	0	0	1	1				
TP50	0	1	1	0				
TP51	0	0	1	1				
TP52	0	0	0	1				
TP53	0	1	0	0				
TP54	0	0	0	1				
TP55	2	2	2	2				
TP56	0	0	0	0				
TP57	0	0	0	0				
TP58	0	0	1	0				
TP59	0	0	0	0				
TP60	0	1	0	0				
TP61	0	0	0	0				
TP62	0	0	1	0				
TP63	0	1	1	0				
TP64	0	0	1	1				
TP65	0	0	1	1				
TP66	0	0	1	0				
TP67	0	0	0	0				
TP68	0	0	0	0				
TP69	0	0	1	1				
TP70	1	0	1	0				
TP71	0	0	1	1				
TP72	0	0	1	0				
TP73	0	0	1	0				
TP74	0	0	1	0				
TP75	0	0	0	1				
TP76	1	0	0	0				
TP77	0	0	0	0				
TP78	0	0	1	0				
TP79	0	0	0	0				
TP80	0	0	1	1				

Supp. Table 5 cont					
Sample	KMT2D	PTEN	NOTCH1	FBXW7	
TP81	1	0	1	0	
TP82	0	1	1	0	
TP83	1	0	0	0	
TP84	0	0	0	0	
TP85	0	0	1	0	
TP86	0	1	1	0	
TP87	0	1	0	0	
	0	0	1	0	
TP89	0	1	1	0	
TP90	0	0	0	0	
TP91	0	0	1	0	
TP92	0	0	1	0	
TP93	1	0	0	0	
TP94	0	1	0	0	
TP95	0	0	1	0	
TP96	0	0	1	0	
TP97	0	1	0	0	
TP98	0	1	0	0	
TP99	0	0	1	0	
TP100	2	2	2	2	
TP101	1	0	1	0	
TP102	0	0	0	0	
TP103	0	0	0	1	
TP104	0	0	1	0	
TP105	0	0	1	1	
TP106	0	0	0	0	
TP107	0	0	1	0	
TP108	0	0	0	0	
TP109	0	0	0	0	
TP110	0	0	0	0	
TP111	0	0	0	1	
TP112	0	0	1	1	
TP113	1	1	0	0	
TP114	0	0	0	0	
TP115	0	0	1	0	
TP116	1	0	0	0	
TP117	0	0	1	0	
TP118	0	0	1	0	
<u> </u>	0	0	0	0	
TP120	1	0	1	1	
TP122	0	0	1	0	

Supp. Table 5 cont					
Sample	KMT2D	PTEN	NOTCH1	FBXW7	
TR11	0	0	1	0	
TR12	0	0	0	0	
TR13	0	0	0	0	
TR14	1	0	0	0	
TR15	0	0	1	0	
TR16	0	1	1	0	
TR116	0	0	0	0	
TR123	0	1	0	0	
TR124	0	0	0	0	

253 **Supplemental Table 5.** Supplemental Table 5. Mutational status of *KMT2D, PTEN,* 254 *NOTCH1* (only exons 26, 27 and 34) and *FBXW7* (only exons 9, 10 and 12) in the 255 extended cohort. 0-not mutated, 1- mutated, 2-failed sequencing,

256 Purple represents *KMT2D*^{mut} (n=4) in *NOTCH1*^{wt} and/or *FBXW7*^{wt} (N/F^{wt}); pink represents

257 PTEN^{mut} in N/F^{wt} (n=7); green represents KMT2D^{mut} + PTEN^{mut} in N/F^{wt} (n=1); yellow

represents samples failed in targeted sequencing; orange represents relapse cases are

not included in the assessment of prognostic relevance

261 Supplemental Table 6. Primers used in the mutational analysis of BCL11B and ABD

- 262 analysis

No.	Name	Primer sequence	Reference
1	BCL11B_ex2_F	TGACCGCCTAAGCCCATCTCTAT	Provided by the Department of Immunology, Erasmus
2	BCL11B_ex2_R	GCCCCGGCTGGTGGCCCAGAGG	Provided by the Department of Immunology, Erasmus
3	BCL11B_ex4B_F	CAGTGCCTTCGACCGAGT	
4	BCL11B_ex4B_R	CGGCTCTCGTTCTCCAGTAG	
5	BCL11B_ex4C_F	GCATCAAGGTGGAGAAGGAC	K. De Keersmaecker Nat Med.2010
6	BCL11B_ex4C_R	CTCGGGTTTCCATAGGACTTC	K. De Keersmaecker Nat. Med.2010
7	TRGV1f	GGTTGTGTTGGAATCAGGAGTCA	Euroclonality Biomed-2 protocols
8	TRGV9	CGGCACTGTCAGAAAGGAATC	Euroclonality Biomed-2 protocols
9	TRGV10	AGCATGGGTAAGACAAGCAA	Euroclonality Biomed-2 protocols
10	TRGV11	TTGCTCAGGTGGGAAGACTA	Euroclonality Biomed-2 protocols
11	TRGJ1/J2_FAM	GTGTTGTTCCACTGCCAAAGAG	Euroclonality Biomed-2 protocols
12	TRGJP1/JP2_FAM	AGTTACTATGAGCYTAGTCCCTT	Euroclonality Biomed-2 protocols

Supplemental Table 6. Primers 1-6 were used for *BCL11B* mutational analysis and

266 primers 7-12 were used for ABD analysis

273 Supplemental Table 7. Detailed description of identified mutations in BCL11B

Sample ID	exon	DNA (NM_138576.4)	Codon change	Mutation type
ТР35	2	c.122_c.123insCCGTTTCG TCTTATAGATGGCAAGAC GAGGGTCTGGAGATAG AGGAGCC het	P41Pfs5*	frameshift
TP11	4	c.2561A>G het	Y854C	missense
TP18	4	c.1156_1165delinsTAAA CTTT het	N386*	nonsense
TP20	4	c.1284_1285insAAAATTT ACGGG	S428_C429insKIYG	indel
TP32	4	c.1089_1088insCCC	F363_S364insP	indel
TP34	4	c.1391G>A het	C464Y	missense
TP35	4	c.1483G>A het	A495T	missense
TP41	4	c.1378T>C het	C460R	missense
TP45	4	c.2655_2676delinsCCGTT GG het	V886Pfs106*	frameshift
TP51	4	c.1283_1284insACCTAGCC het	S428Sfs48*	frameshift
TP120	4	c.1349C>T het	T450M	missense
TR116	4	c.1483G>A het	A495T	missense

276 Supplemental Figures

277 Supplemental Figure 1. Overview of samples used in the current project

278

279

280 Supplemental Figure 1. Schematic overview of samples and mutational spectrum

- of T-LBL. Overview of samples used in the current project. In total 131 samples including
- 118 primary samples and 9 relapse samples (including 7 matched relapse samples
- 283 (TR11-TR17) and 2 single relapse samples (TR18 and TR19)).

284

Supplemental Figure 2. Mutational spectrum of T-LBL: Overview of recurrently mutated genes (VAF cutoff of>1%) and alterations in T-LBL. The samples are sorted in three sections; Primary samples from cases that did not suffer relapse, primary samples from cases that suffered relapse and third section includes relapse cases as indicated at the bottom of the panel. The frequency of mutations (Mut. Freq.) and name of pathways

is indicated on the left side of the panel. Name of the genes and the type of mutations are indicated on the right side. The number of mutations identified by targeted sequencing is displayed at the top of the plot as bar plots. TRG rearrangements (ABD), *PTEN* deletions (*PTEN*del) and LOH6q alterations are displayed in a sub-panel below. Colored boxes on the right side indicate the type of mutation. (*) indicates that *BCL11b* was not part of targeted panel and analyzed by Sanger sequencing. Samples that failed in targeted sequencing are represented in dark grey boxes.

300

302 Supplemental Figure 3. Overview of differential methylation between different

303 samples from the "limited cohort"

³⁰⁶

Supplemental Figure 3. (A) Non-metric multidimensional scaling (NMDS) analysis representing the variation in methylation epigenotypes between samples **(B)** Supervised hierarchical clustering conducted using 8045 probes that were significantly differentially methylated between germline (TG) and tumor samples (TP- primary and TR-relapse). *p* value=1e⁻¹². **(C)** Differential methylated genes between primary samples from relapse(-) and relapse(+) cases. *p* value=0.05. Array used: Infinium MethylationEPIC BeadChip '850K' 314 Supplemental Figure 4. Schematic display of localization and frequencies of

315 somatic mutations identified in *NOTCH1* and *FBXW7*

316

Supplemental Figure 4. Schematic display of localization and frequencies of somatic mutations identified for, **(A)** *NOTCH1* in relapse⁻ **(B)** *NOTCH1* in relapse⁺ samples **(C)** *FBXW7* in total samples Note: The data for mutations **(4 A-C)** from pediatric T-ALL was imported from St. Jude Pediatric Cancer Genomic data portal and are displayed at lower part of the protein/Gene and mutations identified in current T-LBL project are displayed on the upper part of the protein structure.

323

325 Supplemental Figure 5. Schematic display of localization and frequencies of

326 somatic mutations identified in candidate genes

327

Supplemental Figure 5. Schematic display of localization and frequencies of somatic mutations identified for (A) *BCL11B* (B) *PTEN* (C) *STAT5B* (D) *IL7R* in total samples Note: For figures (B-D) the mutations displayed are with VAF cutoff >1%. The data for mutations (5A-D) from pediatric T-ALL was imported from St. Jude Pediatric Cancer Genomic data portal and are displayed at lower part of the protein/Gene and mutations identified in current T-LBL project are displayed on the upper part of the protein structure.

335 Supplemental Figure 6 Gene relation plot

- **Figure 6.** Gene relation plot depicting correlation of mutated genes from the targeted
- 338 sequencing.

339

336

341 Supplemental Figure 7. Five year cumulative incidence of relapse (CIR) for Euro-

Supplemental Figure 7. Five year cumulative incidence of relapse (CIR) for (A) EuroLB02 vs extended cohort, (B) *NOTCH1* and/or *FBXW7* mutational status, (C) *PTEN*mutational status, (D) LOH6q status, (E) absence of biallelic T-cell receptor (TCR) deletion
(ABD) status (F) *PTEN*del status

350 Supplemental Figure 8. Five year cumulative incidence of relapse (CIR) for newly

351 identified potential candidate genes

- 352
- 353

Supplemental Figure 8. Five year cummulative incidence of relapse (CIR) for (A) *KMT2C* mutational status, (B) *NOTCH3* mutational status, (C) *TP53* mutational status, (D) *LEF1*

- 356 mutational status, **(E)** *BCL11b* mutational status **(F)** *PIK3CA* mutational status
- 357
- 358
- 359

Supplemental Figure 9. Modelling of *KMT2D* domain structures and comparison
 with the mutated domain structures.

Supplemental Figure 9. (A) Domain structure of PHD₇ of *KMT2D*^{wt} was generated using Phyre2, Cys₄–His-Cys₃- His motif is displayed in stick structures (yellow) and two zinc molecules (purple) were modeled into the structure using PyMOL. The two nonsense mutations at the respective positions (red) are indicated by (*). (**B**) Schematic display of Arginine residues (cyan) at respective positions near PHD₇ of *KMT2D*^{wt}. Mutations post PHD₇ at positions R5153P (cyan) and R5154Q (cyan), the latter identified in T-ALL, are represented in stick structures.

371

376

Supplemental Figure 10. Schematic representation of mechanism of regulation of 377 Notch target genes and altered pathways in pediatric T-LBL 378

(A) Schematic representation of mechanism of regulation of Notch target genes and tumor 379 suppressors via a dynamic interplay between the KMT2D co-activator complex and NCoR 380 381 repressor complex. In absence of loss of function mutations for KMT2D or posttranslational modification which can inactivate KMT2D and in presence of NCoR2 382 hypermethylation which might result in unstable repressor complex, the KMT2D co-383 activator complex binds the SHARP protein to activate Notch target genes and tumor 384 suppressors. (B) In case of loss of function mutations in *KMT2D* or post-translational 385 modification such as phosphorylation which can inactivate KMT2D presumably results in 386 binding of stable repressor complex to the SHARP protein to repress notch target genes 387 and tumor suppressors. (Figures 4A, 4B adapted from Oswald F, et. al. Nucleic Acids 388 389 Research 2016).

391 **References**

Reiter A, Schrappe M, Ludwig WD, et al. Intensive ALL-type therapy without local
 radiotherapy provides a 90% event-free survival for children with T-cell lymphoblastic
 lymphoma: a BFM group report. *Blood*. 2000;95(2):416-421.

Landmann E, Burkhardt B, Zimmermann M, et al. Results and conclusions of the
 European Intergroup EURO-LB02 trial in children and adolescents with lymphoblastic
 lymphoma. *Haematologica*. 2017;102(12):2086-2096.

Bonn BR, Rohde M, Zimmermann M, et al. Incidence and prognostic relevance of
 genetic variations in T-cell lymphoblastic lymphoma in childhood and adolescence. *Blood*.
 2013;121(16):3153-3160.

4. Liu Y, Easton J, Shao Y, et al. The genomic landscape of pediatric and young adult
T-lineage acute lymphoblastic leukemia. *Nat Genet*. 2017;49(8):1211-1218.

Ma X, Liu Y, Liu Y, et al. Pan-cancer genome and transcriptome analyses of 1,699
paediatric leukaemias and solid tumours. *Nature*. 2018;555(7696):371-376.

Kraszewska MD, Dawidowska M, Kosmalska M, et al. BCL11B, FLT3, NOTCH1
and FBXW7 mutation status in T-cell acute lymphoblastic leukemia patients (vol 50, pg
33, 2013). *Blood Cells Molecules and Diseases*. 2013;51(1):66-68.

408 7. De Keersmaecker K, Real PJ, Della Gatta G, et al. The TLX1 oncogene drives
409 aneuploidy in T cell transformation. *Nature Medicine*. 2010;16(11):1321-+.

410 8. Larson DE, Harris CC, Chen K, et al. SomaticSniper: identification of somatic point
411 mutations in whole genome sequencing data. *Bioinformatics*. 2012;28(3):311-317.

412 9. Saunders CT, Wong WS, Swamy S, Becq J, Murray LJ, Cheetham RK. Strelka:
413 accurate somatic small-variant calling from sequenced tumor-normal sample pairs.

414 *Bioinformatics*. 2012;28(14):1811-1817.

10. Roberts ND, Kortschak RD, Parker WT, et al. A comparative analysis of algorithms
for somatic SNV detection in cancer. *Bioinformatics*. 2013;29(18):2223-2230.

Xu H, DiCarlo J, Satya RV, Peng Q, Wang Y. Comparison of somatic mutation
calling methods in amplicon and whole exome sequence data. *BMC Genomics*.
2014;15:244.

12. Cingolani P, Platts A, Wang le L, et al. A program for annotating and predicting the
effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila
melanogaster strain w1118; iso-2; iso-3. *Fly (Austin)*. 2012;6(2):80-92.

423 13. Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic
424 variation in 60,706 humans. *Nature*. 2016;536(7616):285-291.

14. Sherry ST, Ward MH, Kholodov M, et al. dbSNP: the NCBI database of genetic
variation. *Nucleic Acids Res.* 2001;29(1):308-311.

Landrum MJ, Lee JM, Benson M, et al. ClinVar: public archive of interpretations of
clinically relevant variants. *Nucleic Acids Res.* 2016;44(D1):D862-868.

Forbes SA, Beare D, Gunasekaran P, et al. COSMIC: exploring the world's
knowledge of somatic mutations in human cancer. *Nucleic Acids Res.* 2015;43(Database
issue):D805-811.

432 17. Sandmann S, Karimi M, de Graaf AO, et al. appreci8: a pipeline for precise variant
433 calling integrating 8 tools. *Bioinformatics*. 2018;34(24):4205-4212.

18. Zhou W, Laird PW, Shen H. Comprehensive characterization, annotation and
innovative use of Infinium DNA methylation BeadChip probes. *Nucleic Acids Res.*2017;45(4):e22.

19. Nordlund J, Backlin CL, Wahlberg P, et al. Genome-wide signatures of differential
DNA methylation in pediatric acute lymphoblastic leukemia. *Genome Biol.*2013;14(9):r105.

20. Tian Y, Morris TJ, Webster AP, et al. ChAMP: updated methylation analysis
pipeline for Illumina BeadChips. *Bioinformatics*. 2017;33(24):3982-3984.

442 21. Teschendorff AE, Widschwendter M. Differential variability improves the
identification of cancer risk markers in DNA methylation studies profiling precursor cancer
lesions. *Bioinformatics*. 2012;28(11):1487-1494.

Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses
for RNA-sequencing and microarray studies. *Nucleic Acids Res.* 2015;43(7):e47.

Rohde M, Bonn BR, Zimmermann M, et al. Multiplex ligation-dependent probe
amplification validates LOH6q analyses and enhances insight into chromosome 6q
aberrations in pediatric T-cell lymphoblastic leukemia and lymphoma. *Leuk Lymphoma*.
2015;56(6):1884-1887.

24. Derrieux C, Trinquand A, Bruneau J, et al. A Single-Tube, EuroClonality-Inspired,
TRG Clonality Multiplex PCR Aids Management of Patients with Enteropathic Diseases,
including from Formaldehyde-Fixed, Paraffin-Embedded Tissues. *J Mol Diagn*.
2019;21(1):111-122.

455