
Biostatistics (2020), 0, 0, pp. 1–17
doi:10.1093/biostatistics/r3-supplementary

Supplementary material:

Estimating diversity in networked ecological

communities

AMY D. WILLIS AND BRYAN D. MARTIN

In this document we investigate the performance of the proposed method under simula-

tion. All code to reproduce the simulations is available at https://github.com/adw96/DivNet_

supplementary.

S1. Simulation study: Correct model specification

In this section we compare the performance of our proposal to estimates obtained from other

methods, simulating W from the data generating procedure described in Section 4.2. We sim-

ulate from this model by specifying Z ∈ Rn×Q and M ∈ Rn. Since the DivNet estimator was

developed for this data generating process, we expect DivNet to outperform other methods in

these simulations.

To construct the matrix of latent relative abundances Z, we can specify Yi for all i = 1, . . . , n

then set Ziq = φ−1(Yiq). Since our model specifies that Yi ∼ N (µi,Σ), we therefore can specify

µi and Σ and simulate Yi for all i to obtain Z. We set X = (1Tn , (0n/2,1n/2)T ), and simulate a

2× (Q− 1)-dimensional matrix γ with independent N (0, σ2
γ) entries (γrq

iid∼ N(0, σ2
γ) for r = 1, 2

and q = 1, . . . , Q − 1), and set µ = Xγ ∈ Rn×(Q−1). µi is then the ith row of µ. To constrain

the number of simulations we choose σ2
γ = 1 throughout. Note that the true relative abundance

vector for sample i is Zi = φ−1(µi), and the true diversity estimands are calculated based on Zi.

c© The Author 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
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To construct Σ, we simulate a matrix A ∈ R(Q−1)×(Q−1) with elements drawn from a

Uniform(−1, 1) distribution, and construct a diagonal matrix D with diagonal elements form-

ing an arithmetic sequence of length Q beginning at σmax and decreasing to a minimum of σmin.

We then set Σ = ATDA. Specifying Σ in this way allows us to compare the performance of our

method across various Σ, but also to control the strength of network relationships between taxa

via the parameter σmax.

For each of the 4 diversity indices that we consider (Shannon, Simpson, Bray-Curtis, and Eu-

clidean), we obtain an estimate under the multinomial model and using the proposed estimation

procedure. The procedure of Arbel et al. (2016) can be applied when p = 2, and so we set p = 2

and choose X = (1Tn , (0n/2,1n/2)T ) for all simulations (noting that our method can accommo-

date both discrete and continuous covariates). The R package iNEXT (Hsieh et al. 2016) applies to

estimating Shannon and Simpson α-diversity indices, but not to estimating β-diversity indices.

Note that many of the Shannon diversity estimates are almost identical to the Multinomial MLE

for large values of Mi (Mi is commonly 105 or greater in microbiome studies), including the

estimates of Chao & Shen (2003) and Miller (1955), and for this reason we do not compare them

here. For the same reason we also do not show the Simpson diversity estimate of Zhang & Zhou

(2010). We use the simulator (Bien 2016) to manage the simulation study.

In all of the simulations that follow, we run the proposed method with tuning = "fast",

which runs 6 iterations of the EM algorithm and 500 Metropolis-Hastings steps, of which 250 were

discarded as burn-in. We chose these values because they gave a reasonable balance of precision

and speed (see Section S4 for justification). Note that the default behavior of the software in

mode tuning = "careful" is 10 EM steps and 1000 MC steps (500 discarded as burn-in), and

this is the mode that we recommend for data analysis. We ran iNEXT with the default behavior

of 40 knots and 50 bootstrap iterations. While the default behavior of Arbel et al. (2016) is 10

MC iterations (80% are discarded as burn-in), we chose 500 MC iterations for the simulations
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that follow (80% are discarded as burn-in), since we found that this was sufficient to achieve

convergence of the Monte Carlo chain when n = 40 and Q = 100 (the largest values of n and

Q that we investigated under simulation). We performed a sensitivity analysis and found that

increasing the number of MC iterations in the method of Arbel et al. (2016) did not reduce its

MSE. See Section S4 for a comparison and discussion of the computation times of DivNet and

the method of Arbel et al. (2016).

Throughout this section we evaluate α-diversity estimates using the mean squared error (MSE)

over all samples. The MSE of the kth simulation is MSEα(D̂(k)) = 1
n

∑n
i=1(D̂

(k)
i −Di)

2 where i

indexes the estimates for each of the n samples. We similarly evaluate the β-diversity estimates:

MSEβ(D̂(k)) = 1
n(n−1)/2

∑
i<j(D̂

(k)
ij −Dij)

2.

S1.1 Estimation error decreases with sample size

In this section we setQ = 20, σmin = 0.01, σmax = 5, andMi = 105 for all i, and performK = 200

simulations for each choice of n. The performance of the proposed method for estimating diversity

when data are simulated under this model is illustrated in Figure 1. For all values of n and all

diversity estimands, the 25%, 50%, and 75% quantiles of {MSE(D̂(k))}k are uniformly lower for

our proposed method compared to all other methods. The improvement is especially pronounced

for the β-diversity indices.

We find that the estimation error decreases as the sample size n increases for the proposed

method and the method of Arbel et al. (2016), but not for the Multinomial MLE and the iNEXT

method (Figure 1). This is unsurprising, since neither the plug-in nor iNEXT estimates use in-

formation contained in the covariate matrix X in their estimates of diversity. Therefore, the

additional information afforded by larger values of n is not leveraged by the plug-in nor iNEXT

estimates, even when experimental replicates are available.

The results shown in Figure 1 are based on fitting our model with t = 6 EM steps and r = 500
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Fig. 1. A comparison of the error of different estimators for α- and β-diversity for microbial communities
when the taxa are networked. When the network is ignored by the estimation procedure (e.g., Chao &
Shen (2003), Hsieh et al. (2016) and the widely used “plug-in” estimate (multinomial MLE)), the error in
estimating diversity can be substantial. The proposed estimation procedure, which specifically accounts
for networks, outperforms other estimates for any sample size n. The distribution of mean squared errors
(MSEs) is shown for 200 simulated datasets. In this simulation, there are M = 105 microbes observed
per sample, p = 2 predictors and Q = 20 taxa.
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Fig. 2. A comparison of the computing time of different estimators of diversity indices. Our parallelized
EM-MH algorithm for estimation under a network model is competitive with closed-form estimates, and
is substantially faster to compute than the rarefaction-extrapolation approach of iNEXT (Hsieh et al.
2016) and the nonparametric Bayesian approach of Arbel et al. (2016). The computation time of the 200
datasets used to produce Figures 1 (left) and the computation time of the 100 datasets used to produce
Figures 4 (right) are shown.
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MH draws per EM step. For these choices, we show computation time in Figure 2. Fitting our

model with t = 6 EM steps and r = 500 is more computationally expensive than calculating the

plug-in estimate, but less computationally expensive than fitting the model of Arbel et al. (2016)

(with 500 Monte Carlo iterations) or using the package iNEXT (with 40 knots and 50 bootstrap

resamples). We note that our implementation leverages the R package parallel (R Core Team

2017) for parallelizing the MH algorithm employed at each E-step of the EM algorithm. See

Section S4 for a full comparison of speed and MSE with varying numbers of E-steps for the

proposed method and Monte Carlo steps for Arbel et al. (2016).

S1.2 Estimation error is stable across networked communities

We now investigate the effect of varying the co-occurrence structure. To vary the covariance

structure in a systematic way, we vary σmax, the largest eigenvalue of Σ. We now set n = 20,

Q = 20, σmin = 0.01, Mi = 105 for all i, and perform K = 100 iterations for each choice

of σmax. The results are shown in Figure 3. We see that estimating the diversity in microbial

communities with strong occurrence structures is more challenging than estimating diversity in

communities with co-occurrence structures similar to that of a multinomial model. However, the

proposed method has lower MSE than all other methods that were investigated. Additionally, even

when microbial abundances are simulated under a model with strong co-occurrence relationships,

the proposed method can estimate the diversity with small MSE (Figure 3). In contrast, the

estimation error increases as the co-occurrence relationships strengthen for all other methods.

Co-occurrence relationships in microbial ecosystems are well documented (Faust & Raes 2012),

indicating that a diversity estimation method tailored to networked ecosystems is of practical

utility.
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Fig. 3. Diversity estimates that incorporate network structure dominate estimators that do not incor-
porate network structure in the presence of a strong co-occurrence network. However, network-based
estimates perform well even when there is a very weak network structure. As σmax → 0, the network
model converges to the multinomial model. However, we see that the proposed network model performs
equally as well or better than estimates based on the multinomial model for all choices of σmax. This
appears to be the case for estimating both α- and β-diversity.
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S1.3 Estimation error is stable across large communities

Finally, since microbial communities often contain many taxa, we wish to confirm the performance

of our estimator in large communities. We set n = 20, σmax = 5, σmin = 0.01, Mi = 105, and

perform K = 100 simulations. In Figure 4, we see that the estimation error for the proposed

method remains low even as the size of the community increases, while all other methods have

increasing estimation error. In particular, we note that this is true even though the simulated

communities are networked (σmax = 5), and the number of taxa exceeds the number of samples

(n = 20). We therefore conclude that the procedure is appropriate for analyzing the diversity of

microbial communities.
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Fig. 4. Diversity estimates that incorporate network structure dominate estimators that do not incor-
porate network structure over communities of any size. While most estimators have increasing error
for larger communities, the proposed estimator’s error does not. In this simulation, we set n = 20 and
σmax = 5.
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S2. Simulation study: Temporally correlated data

In Section S1 we investigated the performance of DivNet when counts are simulated according

to the model described in Section 3.1 of the paper. Since DivNet was developed for this data

generating process, this amounts to the most favorable case for estimation. We now investigate

the performance of DivNet when data is generated according to the stochastically-perturbed

discrete-time Lotka-Volterra model of Fisher & Mehta (2014). The discrete-time Lotka-Volterra

model is a population dynamics model that states that the absolute abundance of taxon q at

time t + δt, which we call Vq(t + δt), is proportional to the absolute abundance of taxon q at

time t, and each taxon’s abundance is affected by a matrix of “interaction coefficients” {cij}

that model the effect that taxon j has on the abundance of taxon i. Fisher & Mehta (2014)

generalized this model by introducing an additional stochastic perturbation ηq(t) to reflect noise

in the measurements. The dynamics of the stochastically-perturbed discrete-time Lotka-Volterra
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model are given by the equation

Vq(t+ δt) = ηq(t)Vq(t) exp

δt Q∑
q′=1

cqq′(Vq′(t)− Ṽq′)

 , (S2.1)

where Ṽq′ is the steady-state absolute abundance of taxon q′.

Let W (t) = {W1(t), . . . ,Wq(t)} denote the counts observed from taxa 1, . . . , q at time t, and

let Z(t) = {Z1(t), . . . , Zq(t)} denote the latent relative abundances of the taxa at time t. In this

simulation we will simulate data from (S2.1) and evaluate the error of our DivNet estimator for

the steady-state Shannon diversity αShannon(Ṽ ).

We simulated count data W (t) ∼ Multinomial(105, Z(t)), where the latent relative abun-

dance of taxon q is Zq(t) = Vq(t)/
∑Q
q′=1 Vq′(t), and the true absolute abundances {Vq(t)} are

simulated according to the stochastically-perturbed discrete-time Lotka-Volterra model. We con-

sider t = 0, 1, . . . , T and q = 1, . . . , Q for varying T and Q. The distributions of the parameters

of the model are the same as those investigated by Fisher & Mehta (2014), which were based

on a longitudinal study of the human gut microbiome. Specifically, log(Ṽq)
iid∼ N (0, σ = 0.1),

ηq(t)
iid∼ N (0, σ = 0.01), and the interaction matrices c were constructed as follows:

1. Initialize the matrix c with all zero interactions

2. Assign diagonal entries according to cqq
iid∼ Uniform(−1.9/Ṽq,−0.1/Ṽq).

3. Choose a random off-diagonal position {k, l}. Draw

ckl ∼ |ckk| × ((2×Beta(shape = 1, scale = 1))− 1) .

Then, simulate {V (1), . . . , V (T )} according to the current interaction matrix c. If any Vq(t)

exceeds 231 − 1, repeat Step 3 until a stable c is found.

4. Repeat Step (3) until 10 interactions (k 6= l) have been specified.

A timeseries of length 60 for 20 taxa is shown in Figure 5 (top panel). Solid lines indicate the

taxa abundances, dashed lines indicate the steady-state abundances, and each colour represents a
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single taxon. Note that the distribution of cqq′ ’s as following a Beta distribution was not described

in the manuscript of Fisher & Mehta (2014); this information is contained in Line 646 of Fisher

& Mehta (2014)’s Supporting Information Code S1, a Mathematica script.

We consider the MSE for estimating αShannon(Ṽ ) of a single community sampled longitu-

dinally. The data that each estimator has available is a time series Vq(t) of T + 1 observations

(t = 0, 1, . . . , T ) of Q taxa.

We contrast the performance of four estimators of αShannon(Ṽ ). In this section, the plug-in es-

timator is 1
T

∑T
t=0 α̂plugin(W (t)), where α̂plugin(W (t)) is the plug-in Shannon diversity estimator

based on the counts observed at time t. Stated differently, the plug-in estimator of the steady-

state Shannon diversity is the mean of the plug-in Shannon diversities at each of the timepoints

t = 0, 1, . . . , T . Similarly, in this section the Chao-Shen estimator is the mean of the Chao-Shen

estimators at each time t, and the iNEXT estimator is the mean of the iNEXT estimators at each

time t. The DivNet estimator takes
(
W = (W (0), . . . ,W (t))

T
, X = 1T

)
. In this simulation, since

there are no covariates, we do not fit the estimator of Arbel et al. (2016).

The DivNet estimator is misspecified in two fundamental ways under this data generating

process. Firstly, the data generating process is a perturbed Lotka-Volterra model, in which species

interactions occur on the absolute abundance scale. Furthermore, the relative abundances are

temporally correlated, while the DivNet estimator is built for the setting where observations are

independent.

Our simulations show that the performance of the Chao-Shen, iNEXT and plug-in estimators

for estimating αShannon(Ṽ ) are similar across all simulations (Figure 5), but that the performance

of DivNet varies with Q and T . In the lower left panel, we show the distribution of squared errors

when Q = {15, 30, 45} and T = 80. We see that all estimators’ estimation errors are negatively

affected by larger Q, which is consistent with the view that more diverse communities are more

challenging to model. DivNet has the lowest 1st, 2nd and 3rd quartiles of squared error when
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Q = 15. In contrast, the median squared error is approximately the same for all methods when

Q = 30, but the squared error of DivNet has more variance than its competitors. DivNet performs

poorest out of all methods when Q = 45, with the highest median squared error. We conclude

that the performance of DivNet depends on the number of taxa when data is generated according

to the perturbed Lotka-Volterra model. DivNet may have advantages when the community has

few taxa, but the advantages diminish for larger numbers of taxa and other methods may be

preferable for very diverse communities. We contrast this with DivNet’s strong performance with

an increasing number of taxa when the model is correctly specified (Figure 4).

In the lower right panel of Figure 5 we show the distribution of squared errors whenQ = 20 and

T = {20, 60, 100}. The estimation error of all estimators improves with T , which is consistent with

our intuition that longer time series lead to lower estimation error. DivNet has lower estimation

error than competitors when T = 60 and T = 100, but not when T = 20. This suggests that

users should be cautious when applying DivNet to short, highly correlated timeseries data, but

can expect superior performance to other methods over longer time series.

We conclude that the performance of DivNet is negatively affected by model misspecification,

and the degree to which it is negatively affected depends on the dimension of the data, both with

respect to number of taxa and number of observations in a longitudinal sampling setting.

S3. Simulation study: Non-linear trends

We now consider the performance of our proposed method when taxa respond non-linearly to

covariates. We explore two scenarios: one in which the log-ratio-transformed relative abundance

of one taxon follows a quadratic function and another in which the relative abundance of one

taxon follows an exponential function. In this simulation we fix n = 20 and Q = 100, and vary

the degree of non-linearity in the relative abundance of one taxon.

In the first simulation, we set µi1 = 1− γXi(Xi − 10) and µiq = 0 for all q 6= 1: this amounts
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Fig. 5. The relative advantages of the proposed method depend on the number of taxa in the community
and number of longitudinal observations when data is generated according to the model of Fisher &
Mehta (2014). We show an example timeseries of the absolute abundance of taxa in the top panel
(hyperparameters are described in the text). Solid lines indicate the taxa abundances, dashed lines
indicate the steady-state abundances, and each colour represents a single taxon. The lower panels show
the squared error in estimating the steady-state Shannon diversity of a community of Q taxa observed
over T timepoints. In the lower left panel T is fixed at T = 80, and in the lower right panel Q is fixed at
Q = 20. DivNet performs best relative to other methods when Q is small and T is high.
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to a non-monotone quadratic function for the expected log-ratio-transformed relative abundance

of taxon 1, and an equal expected relative abundance of the remaining taxa. We show how this

model changes the expected community composition and its diversity in Figure 6. The upper left

panel shows µi1 as a function of Xi: this is the scale on which the model is quadratic. The upper

middle panel shows Zi1 as a function of Xi: this shows how the relative abundance of taxon 1

increases from 0.02 to a maximum of approximately 0.25. The upper right panel shows how this
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change in the abundance of taxon 1 affects the Shannon diversity of the whole community. We

vary γ across {0.125, 0.25, 0.50} to control the degree of non-linearity in the log-ratio-transformed

relative abundance of taxon 1. This generative model for the Zi’s was chosen arbitrarily to give an

example of a non-linear quadratic function in which the relative abundance of one taxon increases

from low (∼ 2%) to high (∼ 25%) over the range of the covariates in such a way that the Shannon

diversity of the community also displays a non-linear trend.

In the second simulation, we set µi1 = 3 + 0.25eγXi and µiq = 0 for all q 6= 1: this amounts

to a monotone non-linear function for the log-ratio-transformed relative abundance of taxon 1,

and an equal relative abundance of the remaining taxa. We vary γ across {0.125, 0.25, 0.32} to

control the degree of non-linearity in the log-ratio-transformed relative abundance of taxon 1. This

generative model for the Zi’s was chosen arbitrarily to give an example of a non-linear function

in which the relative abundance of one taxon varies from low (∼ 8%) to high (∼ 18%) over the

range of the covariates such that the Shannon diversity also displays a non-linear trend. The

log-ratio-transformed relative abundance of taxon 1, relative abundance of taxon 1 and Shannon

diversity of the community are shown in the lower panels of Figure 6.

For both simulations, we simulate Wi ∼ Multinomial(105, Zi), where Ziq = φ−1(Yiq) and

Yi ∼ N (µi,Σ). µi1 = 1− γXi(Xi− 10) for simulation 1 and µi1 = 3 + 0.25eγXi for simulation 2,

µiq = 0 for all q 6= 1 in both simulations, and in both simulations, Xi =
{

0, 1× 10
19 , 2×

10
19 , . . . , 10

}
such that n = 20. In each simulation, Σ was drawn randomly as described in Section S1.1 with

σmin = 0.01 and σmax = 5.

In Figure 7 we illustrate the performance of all methods with respect to MSE for estimating

the true Shannon diversity of each community. We investigate the performance of two options

for our proposed method: one where it is fit with design matrix X =
(
1n, X̃, X̃

2
)

where X̃ =

(X1, . . . , Xn)
T

, and another where it is fit with design matrix X =
(
1n, X̃

)
. We call the former

“Proposed (Quadratic)” and the latter “Proposed (Linear)”. We compare these options with the
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plug-in (Multinomial) estimate, the Chao-Shen estimate, the iNEXT estimate and the Arbel et al.

(2016) estimate. The current implementation of Arbel et al. (2016) only accommodates p 6 2, and

so we investigate its performance with the covariates set to X =
(
1n, X̃

)
and to X =

(
1n, X̃

2
)

,

which we call “Arbel et al. (Linear)” and “Arbel et al. (Quadratic)”, respectively.

We see that DivNet performs well with respect to MSE for estimating the Shannon index

even in the presence of non-linear trends (Figure 7). In the presence of a quadratic trend (Figure

7, upper panel), the proposed method with a quadratic trend generally has the lowest median

squared error, though the proposed method fit with a linear trend has the lowest MSE in the

low curvature quadratic trend case (γ = 0.125). This is most likely because the low curvature

case can be well approximated by a linear trend, and fewer parameters need to be estimated in

the linear model. However, when the model is misspecified (a linear model is fit even though the

trend is quadratic), the error distribution can outperform (γ = 0.125), underperform (γ = 0.25)

or be comparable to other methods (γ = 0.5). This underscores the risks of omitting a relevant

covariate from the model.

In the presence of an exponential trend, both the linear and quadratic proposed models

outperform other methods with respect to MSE (Figure 7, lower panel). In both the exponential

and quadratic trend cases, we observe that the proposed method’s advantages over other methods

diminish as the amount of curvature increases.

This simulation illustrates that while the performance of the proposed method is generally

good even when the true data generating process is non-linear in the covariates, the specific shape

of the trend log-ratio relative abundance can affect the performance of the method. Therefore, we

recommend that the user exercises caution when the trend log-ratio relative abundances displays

high curvature across the range of covariates of interest. While the true relative abundances are

unknown, the sample log-ratio relative abundances can be easily plotted if the number of taxa is

not large. If the number of taxa is large, we recommend inspecting the log-ratio relative abun-
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Fig. 6. We investigate the performance of the method under model misspecification. We investigate
quadratic (top row) and exponential (bottom row) trends. In this figure we show the log-ratio-transformed
relative abundance of taxon 1 (left panels), relative abundance of taxon 1 (middle panels) and Shannon
diversity of the community (right panels). The parameter γ controls the degree of curvature, with greater
values of γ corresponding to greater curvature in the log-ratio-transformed relative abundance of taxon
1. n = 20 and Q = 100 in this simulation.
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dances for the most abundant taxa. An alternative approach is to fit both linear and quadratic

models to confirm that the obtained scientific results are robust to the selected model.

S4. Computation time of iterative procedures

The computational burden of our method increases with the number of iterations of the EM

algorithm. Similarly, the computational burden of method of Arbel et al. (2016) increases with

the number of Monte Carlo iterations. To compare these two methods with respect to speed and

accuracy, we simulate data according to the same data generating procedure as in Section S1

with n = 40, Q = 100, and σmax = 5 for each of 10 simulations. We compare the MSE and

computation time of the method of Arbel et al. (2016) with 250, 500, 1000, and 2000 Monte

Carlo iterations, with 80% of iterations discarded as burn-in (80% is the default burn-in fraction

for this method). We compare these results with our method with 6, 10 and 20 iterations in the
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Fig. 7. The estimation error for estimating the Shannon diversity depends on the data generating process.
The proposed method strongly outperforms competitors when curvature in the data generating process
is low (small values of γ), but the methods are more comparable as γ increases. This is true for both
quadratic (top) and exponential (bottom) trends in the log-ratio transformed relative abundances. n = 20
and Q = 100 in this simulation.

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

2

4

6

0.125 0.25 0.5
γ

M
S

E
: S

ha
nn

on

Quadratic trend

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

● ●

●

●

0

1

2

3

4

5

0.125 0.25 0.32
γ

M
S

E
: S

ha
nn

on

Exponential trend

Method

Proposed (Linear)

Proposed (Quadratic)

Multinomial MLE

Arbel et. al (Linear)

Arbel et. al (Quadratic)

Chao & Shen

iNEXT

EM algorithm.

We see that for this data generating process, 250 iterations is not sufficient for the Bayesian

sampler of Arbel et al. (2016) to converge, but 500 iterations is sufficient (Figure 8). However,

more than 500 iterations does not improve the MSE. Our method converges after 6 EM iterations,

which runs on a dataset of this size in a median of 6 seconds, compared to 89 seconds for the

method of Arbel et al. (2016) with 500 MC iterations. Therefore even though both procedures

are iterative, we believe that running 500 MC iterations for Arbel et al. (2016) and 6 iterations

for the proposed method allows for a fair comparison of computation time and MSE in Figures

1 and 2.
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Fig. 8. Both the procedure of Arbel et al. (2016) and the proposed method are iterative procedures. We
simulate 10 datasets from the data generating procedure described in Section S1 with n = 40, Q = 100,
and σmax = 5 and compare the proposed method with a varying number of EM iterations with the
method of Arbel et al. (2016) with a varying number of MC iterations. We see that the method of Arbel
et al. (2016) converges after 500 MC iterations, and our proposed method converges after 6 EM iterations.
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