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1. Simulating data using subdistribution hazard and life tables

Haller and Ulm (2014) showed how to use pre-specified a subdistribution hazard (SDH) combined
with a cause-specific hazard (CSH) in order to simulate competing risks data in cause-specific
setting. Here, we show how we could adapt this approach to the relative survival setting in order
to use a SDH and life tables in order to describe cancer and the other causes, respectively.

The simulation algorithm has six steps:

1. Generate a certain population of individuals with desirable characteristics. These should
include all covariates of interest (X) in addition to those used to match the life table with
population (z)

2. Obtain the expected mortality λP from life tables which are stratified by z

3. Estimate the cancer-specific hazard λ1 through subdistribution hazard γ0 and λP

4. Derive individual survival times

5. Apply censoring (administrative/drop outs)

6. Determine final survival times
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Generate individual covariates

We start by generating a cohort with pre-defined characteristics such as demographic or other
information regarding treatment, disease stage, etc. These variables must include all covariates
of interest (X) in addition to those used to match the population with the life table, (z).

We may generate our own population with characteristics based on pre-defined distributions
or using an existing dataset based on real data. We do not need to use many populations; by
using the algorithm described below, the survival time and the event types for each individual
will differ from dataset to dataset despite individuals being exactly the same in each dataset.

Obtain expected mortality, λP

λP is usually obtained from life tables built by national statistics institutes and stratified on some
sociodemographic variables (such as age, sex, calendar year, deprivation and region). Expected
mortalities are changing annually hence, we assume that λP follows a piecewise exponential
distribution.

Estimate excess-hazard, λ1

We start by setting a model on SDH for the cause of interest (here denoted as γ0). A wide range
of models can be used to specify γ0, from simple to more advanced parametric models.

The estimation of λ1 can be later achieved based on γ0 and λP after adapting equation (9)
found in Haller and Ulm (2004) after assuming that λP := λ2. Thus, when λP (t|z) and γ0(t|X)
are specified (with zi ⊂Xi), then λ1(t|X) may be obtained via

λ1(t|Xi) =
γ0(t|Xi) exp(−Γ0(t|Xi) + ΛP (t|zi))

1−
∫ t
0
γ0(u|Xi) exp(−Γ0(u|Xi) + ΛP (u|zi))du

(1.1)

For this expression to hold, additional constraints should be satisfied (please see Section 3.2 from
Haller and Ulm (2004)).

Generate survival times, T

We choose to generate the individual survival times using the inversion method as shown below.
Let us suppose that Λ(t) =

∫ t
0

∑J
j=1 λj(u)du is the cumulative all-cause hazard, which is an

increasing and invertible function as is the distribution of survival time T . Without distinguishing
between causes, it holds that

F (t) = P (T 6 t) = 1− exp(−Λ(t))

If F−1 is the inverse of F and F (t) is uniformly distributed on [0, 1] and then,

P (F (T ) 6 u) = P (T 6 F−1(u)) = F (F−1(u)) = u, u ∈ [0, 1]

Assuming a random variable U with a uniform distribution on [0, 1], then F−1(U) has the
same distribution as T . Thus, all we need to do to generate survival times is to compute the
F−1(U) = Λ−1(ln(1 − U)). If we cannot find the Λ−1(t), then numerical inversion may be an
alternative (please see more details in Beyersmann et. al (2011)).
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Generate event types, ε

Using a Bernoulli experiment we determine the event type of each individual with probabilities
λ1(t|X)

(λ1(t|X)+λP (t|z)) for a cancer event and λP (t|z)
(λ1(t|X)+λP (t|z)) for other causes.

Apply a censoring mechanism, C

The censoring mechanism may be a combination of administrative censoring and a random drop-
out mechanism.

Determine final survival times and event types

The final survival times (TS) will be given as the min(T ;C). If the final survival time is equal to
the censoring time, then ε takes the value 0, otherwise it remains as it is.

Sample code

Sample code for the simulation described above can be found in https://github.com/pseudorel/

supp_material.

2. Estimation of least false parameters

Below we show how we estimated the LFP. The formulae described below were applied to the
large dataset (please see more details in Section 3.2) where we do not consider any drop outs. With
this proof we want to show that even if the calculations start from the leave-one-out estimator,
what is actually estimated is independent of the pseudo-observations.

In case of no censoring

F̂C(t) =

∫ t

0

ŜO(u−)dΛE(u)

=

∫ t

0

1

n

n∑
k=1

I(Tk > u)

∑n
k=1 dNk(u)−

∑n
k=1 Yk(u)dΛP (u, zk)

Y (u)

=
1

n

∫ t

0

n∑
k=1

I(Tk > u)

∑n
k=1 dNk(u)−

∑n
k=1 Yk(u)dΛP (u, zk)∑n

k=1 I(Tk > u)

=
1

n

∫ t

0

n∑
k=1

dNk(u)−
n∑
k=1

Yk(u)dΛP (u, zk)

=
1

n

n∑
k=1

∫ t

0

dNk(u)−
∫ t

0

Yk(u)dΛP (u, zk)

=
1

n

n∑
k=1

(
Nk(t)−

∫ t

0

Yk(u)dΛP (u, zk)

)

(2.2)
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Applying that to the leave-one-out estimator

F̃C,i(t) = n · F̂C(t)− (n− 1) · F̂ (−i)
C

= n ·

(
1

n

n∑
k=1

(
Nk(t)−

∫ t

0

Yk(u)dΛP (u, zk)

))
− (n− 1) ·

 1

n− 1

n∑
k=1
k 6=i

(
Nk(t)−

∫ t

0

Yk(u)dΛP (u, zk)

)
= Ni(t)−

∫ t

0

Yi(u)dΛP (u, zi)

(2.3)
Similarly for the other causes

F̂P,i(t) =

∫ t

0

ŜO(u−)dΛP (u)

=

∫ t

0

1

n

n∑
k=1

I(Tk > u)

∑n
k=1 Yk(u)dΛP (u, zk)

Y (u)

=
1

n

∫ t

0

∑n
k=1 Yk(u)dΛP (u, zk)

Y (u)

(2.4)

Hence, the pseudo-observation for the other CPr related to other causes is estimated as

F̃P,i(t) = n · F̂P (t)− (n− 1) · F̂ (−i)
P

= n ·

(
1

n

n∑
k=1

(∫ t

0

Yk(u)dΛP (u, zk)

))
− (n− 1) ·

 1

n− 1

n∑
k=1
k 6=i

(∫ t

0

Yk(u)dΛP (u, zk)

)
=

∫ t

0

Yi(u)dΛP (u, zi)

(2.5)


