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Theory of Phase-shifting holography with a SU(1,1) nonlinear in-

terferometer

General equations

The experimental set-up is depicted in Fig. 2 of the main text. The bandwidth (∆DC)

of paired photons generated in parametric down-conversion (PDC) is much larger than the

bandwidth of the pump beam (δp). The Rayleigh length (LR = k0
pw

2
p/2) of the pump

beam is much larger than the crystal length (L � LR). wp is the pump beam waist and

k0
p = 2πnp/λ

0
p is the pump beam wavenumber. In this scenario we can describe the spatio-

temporal characteristics of parametric down-conversion using the CW and plane pump beam

approximation.

In the low parametric gain regime, the Bogoliuvov transformations that relate the quantum

operators as and ai at the output face of the nonlinear crystal to the quantum operators at

the input face of the nonlinear crystal (bs and bi) are [42, 43]

as(q,Ω) = Us(q,Ω) bs(q,Ω) + Vs(q,Ω) b†i (−q,−Ω) (S1)

ai(q,Ω) = Ui(q,Ω) bi(q,Ω) + Vi(q,Ω) b†s(−q,−Ω) (S2)

where

Us,i(q,Ω) = exp [iks,i(q,Ω)L]

Vs,i(q,Ω) = −i (σL) sinc
∆kL

2
exp

{
i
[
k0
p + ks,i(q,Ω)− ki,s(−q,−Ω)

] L
2

+ iϕp

}
(S3)

q = (qx, qy) designates the transverse wavenumber of signal/idler photons, Ω is the frequency

deviation from the corresponding central frequency and ϕp is the phase of the pump beam.

The nonlinear coefficient σ is

σ =

(
h̄ωpωsωi[χ

(2)]2F0

8ε0c3Snpnsni

)1/2

. (S4)

F0 = P0/(h̄ωp) is the flux rate density of pump photons (photons/s), S is the area of the

pump beam and P0 is the pump power. The low parametric gain regime corresponds to a

gain G = σL� 1.

The signal and idler beams fulfill the paraxial approximation, so we can expand the

corresponding wavenumbers in a Taylor series as ks,i = k0
s,i + DsΩ − |q|2/(2k0

s,i). Ds,i



are inverse group velocities. We assume phase matching at the central frequencies, i.e.,

k0
p = k0

s + k0
i ± 2π/Λ where Λ is the period of the poling of the nonlinear crystal. The phase

matching function is thus

∆k = DΩL− |q|2
[

1

2k0
s

+
1

2k0
i

]
(S5)

with D = Ds − Di. Under these conditions, the functions Us,i and Vs,i are invariant un-

der changes qx,y =⇒ −qx,y, a feature that we will use later on to simplify the expressions

obtained.

In the first pass by the nonlinear crystal signal (s1) and idler (i1) beams are generated

(beam paths b and c, respectively, in Fig. 2 of the main text). The corresponding quantum

operators are as1(q,Ω) and ai1(q,Ω). The signal beam traverses a 4f system with focal

length f with a mirror located in the middle of the imaging system. After traversing this

system the signal beam is injected back into the nonlinear crystal. There might be losses rs

in the signal path. The transformation of the quantum operator as1 is

as1(qx, qy,Ω) =⇒ rsas1(qx,−qy,Ω) exp(iϕs) + fs (S6)

with ϕs = 4k0
sf + ∆ϕ. ∆ϕ is a phase that introduces a phase difference between signal and

idler beam paths and that will be important to perform Phase shifting digital holography.

The operators fs, that fulfill the commutation relationship [fs, f
†
s ] = [1− |rs|2], take into

account losses in the signal path [44]. Notice that the transformation qy −→ −qy in Eq.

(S6), that only affects the y component of the wavenumber, is due to the peculiar 4f system

that we are considering. It includes back-propagation caused by the presence of a mirror,

which makes it different from other commonly considered 4f systems.

The idler beam i1 traverses a 4f system with focal length f with an object with transmission

function t(x) = |t(x)| exp [iθ(x)] in the middle. The transformation of the quantum operator

ai1 is

ai1(qx, qy,Ω) =⇒ t

(
λif

2π
qx,−

λif

2π
qy

)
ai1(qx,−qy,Ω) exp(iϕi) + f

(
λif

2π
qx,−

λif

2π
qy

)
(S7)

The phase is ϕi = 4k0
i f . The operators f(q), that fulfill the commutation relationship

[f(q), f †(q′)] =
[
1− |t(q)|2

]
δ(q− q′), (S8)

take into account the spatially-dependent losses induced by the transmission function.



The quantum operator that describes the signal beam s2 is:

as2(qx, qy,Ω) = rsUs2(q,Ω)as1(qx,−qy,Ω) exp(iϕs) + Us2(q,Ω)fs

+Vs2(q,Ω)t∗
(
−λif

2π
qx,

λif

2π
qy

)
a†i1(−qx, qy,−Ω) exp(−iϕi)

+Vs2(q,Ω)f †
(
−λif

2π
qx,

λif

2π
qy

)
= rsUs2(q,Ω)

[
Us1(q,Ω)bs(qx,−qy,Ω) + Vs1(q,Ω)b†i (−qx, qy,−Ω)

]
exp(iϕs)

+Vs2(q,Ω)t∗
(
−λif

2π
qx,

λif

2π
qy

)
×
[
U∗i1(q,−Ω)b†i (−qx, qy,−Ω) + V ∗i1(q,−Ω)bs(qx,−qy,Ω)

]
exp(−iϕi)

+Vs2(q)f †
(
−λif

2π
qx,

λif

2π
qy

)
+ Us2(q,Ω)fs

= [rsUs2(q,Ω)Us1(q,Ω) exp(iϕs)

+Vs2(q,Ω)V ∗i1(q,−Ω)t∗
(
−λif

2π
qx,

λif

2π
qy

)
exp(−iϕi)

]
bs(qx,−qy,Ω)

+ [rsUs2(q,Ω)Vs1(q,Ω) exp(iϕs)

+U∗i1(q,−Ω)Vs2(q,Ω)t∗
(
−λif

2π
qx,

λif

2π
qy

)
exp(−iϕi)

]
b†i (−qx, qy,−Ω)

+Vs2(q,Ω)f †
(
−λif

2π
qx,

λif

2π
qy

)
+ Us2(q,Ω)fs . (S9)

Spatial shape of the flux rate of signal photons s2

We measure the spatial distribution of the photon flux density corresponding to the signal

beam s2 with the help of a 2f system with focal length fd. The flux rate of signal photons

s2 detected at time t is

〈N(x, t)〉 =

∫
dΩ1dΩ2 exp [i(Ω1 − Ω2)t]

〈
a†s2

(
2π

λsfd
x,Ω1

)
as2

(
2π

λsfd
x,Ω2

)〉



After the 2f system we use an imaging system with magnification M = −1. We obtain

〈N(x, t)〉 =

(
2π

λsfd

)2 ∫
dΩF (Ω)

∣∣∣∣Vs1 ( 2π

λsfd
x,Ω

)∣∣∣∣2
{

1−
∣∣∣∣τ (−λiλs ffdx, λiλs ffdy

)∣∣∣∣2
+

∣∣∣∣rsUs2 ( 2π

λsfd
x,Ω

)
exp(iϕs + iϕp1)

+U∗i1

(
2π

λsfd
x,−Ω

)
τ ∗
(
−λi
λs

f

fd
x,
λi
λs

f

fd
y

)
exp(−iϕi + iϕp2)

∣∣∣∣2
}

=

(
2π

λsfd

)2 ∫
dΩF (Ω)

∣∣∣∣Vs2 ( 2π

λsfd
x,Ω

)∣∣∣∣2
×
{

1 + r2
s + rsUs2

(
2π

λsfd
x,Ω

)
Ui1

(
2π

λsfd
x,−Ω

)
τ

(
−λi
λs

f

fd
x,
λi
λs

f

fd
y

)
× exp(iϕs + iϕi + i∆ϕp) + rsU

∗
s2

(
2π

λsfd
x,Ω

)
U∗i1

(
2π

λsfd
x,−Ω

)
×τ ∗

(
−λi
λs

f

fd
x,
λi
λs

f

fd
y

)
exp(−iϕs − iϕi − i∆ϕp)

}
(S10)

where ∆ϕp = ϕp1 − ϕp2 . rs designate losses in the signal path and we have included the

effect of filtering by means of the function F (Ω). If we make use explicitly of the modulus

and phase of the transmission coefficient τ(x, y) = |τ(x, y)| exp [iθ(x, y)], we have

〈N(x, t)〉 =

(
2π

λsfd

)2 ∫
dΩF (Ω)

∣∣∣∣Vs1 ( 2π

λsfd
x,Ω

)∣∣∣∣2{1 + r2
s + 2rs

∣∣∣∣τ (−λiλs ffdx, λiλs ffdy
)∣∣∣∣

× cos

[
ϕ0 +DΩL−

(
2π

λsfd

)2

L

(
1

2k0
s

+
1

2k0
i

)
|x|2 + θ

(
−λi
λs

f

fd
x,
λi
λs

f

fd
y

)]}
(S11)

where ϕ0 = ϕs + ϕi + ∆ϕp + k0
sL+ k0

iL is a constant phase.

Amplitude and phase retrieval with phase shifting holography

We consider the measurement of 〈N(x, t)〉 for four values of the reference phase, ϕ0 =

0, π/2, π, 3π/2. Let us designate

ν =

(
2π

λsfd

)2

L

(
1

2k0
s

+
1

2k0
i

)
=

πL

(λsfd)2

(
λs
ns

+
λi
ni

)
(S12)



and r0 = 1 + r2
s . We can write

N0(x) = α

∫
dΩF (Ω)

∣∣∣∣Vs1 ( 2π

λsf
x,Ω

)∣∣∣∣2 (S13)

×
{
r0 + 2rs

∣∣∣∣τ (−λiλs ffdx, λiλs ffdy
)∣∣∣∣ cos

[
θ

(
−λi
λs

f

fd
x,
λi
λs

f

fd
y

)
+DΩL− ν|x|2

]}
Nπ/2(x) = α

∫
dΩF (Ω)

∣∣∣∣Vs1 ( 2π

λsf
x,Ω

)∣∣∣∣2 (S14)

×
{
r0 − 2rs

∣∣∣∣τ (−λiλs ffdx, λiλs ffdy
)∣∣∣∣ sin [θ(−λiλs ffdx, λiλs ffdy

)
+DΩL− ν|x|2

]}
Nπ(x) = α

∫
dΩF (Ω)

∣∣∣∣Vs1 ( 2π

λsf
x,Ω

)∣∣∣∣2 (S15)

×
{
r0 − 2rs

∣∣∣∣τ (−λiλs ffdx, λiλs ffdy
)∣∣∣∣ cos

[
θ

(
−λi
λs

f

fd
x,
λi
λs

f

fd
y

)
+DΩL− ν|x|2

]}
N3π/2(x) = α

∫
dΩF (Ω)

∣∣∣∣Vs1 ( 2π

λsf
x,Ω

)∣∣∣∣2 (S16)

×
{
r0 + 2rs

∣∣∣∣τ (−λiλs ffdx, λiλs ffdy
)∣∣∣∣ sin [θ(−λiλs ffdx, λiλs ffdy

)
+DΩL− ν|x|2

]}
where α is a constant that depends on the detection efficiency and F (Ω) describes the

frequency response of a frequency filter.

The phase of the transmission function can be evaluated with

θ

(
−λi
λs

f

fd
x,
λi
λs

f

fd
y

)
= tan−1 N3π/2(x)−Nπ/2(x)

N0(x)−Nπ(x)
+ ν|x|2 (S17)

We can get rid of the phase induced by the parametric process, i.e. ν|x|2, by subtracting

the phases calculated with and without object present.

The amplitude can be evaluated by

∣∣∣∣τ (−λiλs ffdx, λiλs ffdy
) ∣∣∣∣ =

1 + r2
s

rs

{
[N0(x)−Nπ(x)]2 +

[
Nπ/2(x)−N3π/2(x)

]2}1/2

N0(x) +Nπ/2(x) +Nπ(x) +N3π/2(x)
(S18)

We are not considering that pixels have a finite size S centered around the center po-

sition x0 of each pixel. We can take into account this effect making the substitutions

N∆ϕ(x0) =⇒
∫
S
dxN∆ϕ(x). As a result images of sharp edges will be seen as smoother

transitions.



Effect of the bandwidth of PDC in amplitude and phase retrieval: analytical approximation

To help understanding the effect of the bandwidth of PDC in phase shifting holography, we

notice that Eqs. (S14), (S15), (S16) and (S17) can be well approximated as

I = r0

∫
dΩ exp

[
−Ω2

B2
f

− γ2

(
DΩL

2
− ν|x|2

2

)2
]

+2rs|t|
∫
dΩ exp

[
−Ω2

B2
f

− γ2

(
DΩL

2
− ν|x|2

2

)2
]

cos
[
DΩL+ ϕ0 − ν|x|2 + θ

]
(S19)

We have assumed Gaussian filtering F (Ω) = exp(−Ω2/B2
f ) and we have approximated the

sinc function by an exponential: sinc2 x ∼ exp(−γ2x2) with the same FWHM (γ2 = 0.3588).

The bandwidth of PDC is Bdc = 4/[γ2(DL)2].

These integrals have analytical expressions and yield

I =

(
4πB2

f

4 + γ2(DL)2B2
f

)1/2

exp

{
−γ

2ν2|x|4

4
+

4B2
f

4 + γ2(DL)2B2
f

γ4(DL)2ν2|x|4

16

}
(S20)

+

{
r0 + 2rs|t| exp

(
−

B2
f (DL)2

4 + γ2(DL)2B2
f

)
cos

[
ϕ0 + θ − ν|x|2

(
1−

γ2(DL)2B2
f

4 + γ2(DL)2B2
f

)]}

Two main conclusions can be drawn from Eq. (S20). The first conclusion is that the

bandwidth of PDC makes that the amplitude measured with phase shifting holography is not

the real amplitude of the object (|t|) but an effective value |t|eff = |t| exp
(
− B2

f (DL)2

4+γ2(DL)2B2
f

)
.

For small bandwidths (Bf −→ 0) the correct amplitude |t| is retrieved However, for larger

bandwidth |t|eff exp
(
− 1
γ2

)
. Taking into account that

∫
dΩ exp

(
−γ

2(DL)2Ω2

4

)
[1 + cos(DΩL+ θ)] =

√
4π

γ(DL)

[
1 + exp

(
− 1

γ2

)
cos θ

]
(S21)

we notice that the factor exp(−1/γ2) = 0.06 is the loss of visibility that one would observe

in an interference experiment due to the finite bandwidth of the signal. We should highlight

that using the exact solution with the sinc function we would have obtained 0.

The second conclusion is that the phase induced by the PDC process is modified, i.e.,

ν|x|2 =⇒ ν|x|2
[
1−

(
γ2(DL)2B2

f

)
/
(
4 + γ2(DL)2B2

f

)]
. However when subtracting phases

measured with and without the object, the phase of the object θ can still be correctly

retrieved even for large bandwidths.



Influence of the spatial resolution on the interference amplitude

The modulation images shown in this paper have a visible modulation drop on places where

a step-like phase change is located (see Fig. S1). This behaviour is caused by the limited

spatial resolution. The interference patterns overlap partially in this areas, resulting in sum

to a new interference with lower amplitude. Figure S2 shows this behaviour simulated with

two interference patterns of the same base amplitude and phase-steps of the same value

as our samples. The phase-step with limited resolution was simulated by shaping the base

amplitudes as error-functions. The graph shows that we can expect amplitude drops to 28%

for a 0.82π phase-step and 56% for a 0.62π phase-step in the ideal case. In the case of

0.82π we could measure a drop to 38% of the amplitude. The difference may be caused by

measurement imperfections.
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Figure S1: Modulation drop profile.(a) Modulation image of the happy face target with a

phase-step of 0.82π. (b) Profile of the modulation in the marked are with visible drop due to

interference amplitude decrease.
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Figure S2: Simulated interference amplitude drop. The interference amplitude drops due to

overlapping interference patterns, caused by limited spatial resolution for (a) 0.82π and (b) 0.62π

phase difference.



Object dimensions

Figure S3: Dimensions of the sample objects. (top row) Miniaturized USAF and smiley

phase targets manufactured to introduce a 0.62π phase shift. (bottom row) Miniaturized USAF

and smiley phase targets manufactured to introduce a 0.82π phase shift. The phase shift introduced

is calculated from the path difference seen for light at 730 nm travelling through the different sample

thickness (height colorbar).



Measured phase and transmission noise
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Figure S4: Measured phase noise level. The noise is measured as the standard deviation of

the phase values at the high level of the phase step. Each points is an average of 15 image sets.

The color is in relation to the amount of image used for the calculation of one phase image (see

legend). The cross markers refer to a sample with a step size of 0.62π and the bullet markers refer

to a sample with 0.82π step.
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Figure S5: Measured transmission noise level. The noise is measured as the standard deviation

of the transmission values. Each points is an average of 15 image sets. The color is in relation

to the amount of image used for the calculation of one modulation image (see legend). The cross

markers refer to a sample with a step size of 0.62π and the bullet markers refer to a sample with

0.82π step.
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