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Supplementary Methods 

1 SARS-CoV-2 transmission model 

1.1 Synthetic population 

We adopted the algorithm used for modeling contact patterns in European populations 1 to 
build a synthetic population of about 500,000 individuals. The modelled population mimics 
the sociodemographic structure of the actual Italian population in terms of age structure, 
household size distribution and within-household age composition, school attendance 
rates, school size distribution, class size distribution, and the number of teachers per 
students. 

Each single individual is explicitly represented in the model as an agent. The network of 
contacts between individuals can be described by three different layers accounting for 
contacts between household members, between schoolmates (and classmates within each 
school), and all other contacts occurring in the general community (i.e., contacts related to 
leisure activities, use of transportation means, and contacts occurring among work 
colleagues, etc.). Households are defined as n! disconnected components (i.e., the total 
number of households ) grouping a number of individuals sampled from the actual Italian 
household size distribution 2. In the model, individuals’ age is determined by an algorithm 
tailored to reproduce realistic age-gaps between household members for a given household 
size and to match the actual Italian age distribution 1, 2.  

Similar to the household layer, schools of different types (primary, middle, and high 
schools) are defined as n" (i.e., the total number of schools) disconnected components with 
size sampled from the Italian distribution of school size. Individuals are assigned to 
different schools taking into account age-specific school enrollment rates and the teacher-
to-student ratio associated to each school type, as reported in the official statistics. Briefly, 
students are randomly assigned to one single class and one single school using a heuristic 
approach that allows us to mirror the average, minimum, and maximum class size reported 
in the official records, and the age composition within classes. Teachers of each school are 
randomly sampled from the individuals of the synthetic population based on age 
distribution of teachers in Italy. 

The general community layer is represented by one single fully connected component 
consisting of all individuals in the population and aims at representing the network of all 
contacts occurring outside households and schools. 

1.2 Transmission model 

In the synthetic population, SARS-CoV-2 transmission is simulated using a discrete-time 
stochastic Markov process. We consider that each individual can be characterized by one 
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of five mutually exclusive epidemiological states (corresponding to the states of the 
Markov process): susceptible (i.e., individuals who may acquire infection after exposure 
to SARS-CoV-2 infected individuals), infectious pre-symptomatic (i.e., individuals who 
are not showing any clinical sign or symptom but that are able to transmit the infection and 
will develop symptoms in the future), infectious symptomatic (i.e., individuals who 
developed symptoms and are able to transmit the infection), infectious asymptomatic (i.e., 
individuals who are able to transmit the infection, but that will not developed symptoms), 
and removed (i.e., individuals who recovered from the infection gaining immunity against 
re-infection).  

In the model, SAR-CoV-2 transmission occurs upon contacts between susceptible and 
infectious individuals taking place in one of four transmission settings (household h, school 
s, class c within the school, and the general community r). At each time step t 
(corresponding to one day), the probability that a susceptible individual i is infected 
through a contact with an infectious individual j in setting 𝑙 is modeled as: 

p[$→&](t) = 𝛽(𝛿(𝑎))χ(s$)/𝑛((+)                                                      1.1 
where: 
� 𝛽(  is the daily per contact transmission rate, shaping the risk of infection due to 

interactions with an infectious individual (day-.) in setting 𝑙, 𝑙 ∈ {ℎ, 𝑠, 𝑐, 𝑟}. 
� 𝑛((+) is the number individuals in the household (𝑙 = ℎ), school (𝑙 = 𝑠), class (𝑙 = 𝑐) 

where individual j belongs to. Since all individuals are potentially in contact in the 
community, for 𝑙 =r, 𝑛((+)  corresponds to the total number of individuals in the 
population. 

� 𝑎) is the age of individual i. 
� 𝛿(𝑎)) is relative susceptibility to SARS-CoV-2 infection at age 𝑎)  (Supplementary 

Table 1). 
� s$  is dummy variably identifying whether individual j is symptomatic/pre-

symptomatic or asymptomatic. To determine whether the infectious individual of age 
𝑎) will develop clinical symptoms or not, we draw a random sample from a Bernoulli 
distribution with probability 𝑠(𝑎))  at the time when i acquires the infection 
(Supplementary Table 2). 

� χ(s$) is the relative infectiousness of asymptomatic to symptomatic individuals. 
 

After the latent period, infected individuals are infectious before developing symptoms 
(pre-symptomatic stage, which is assumed to last 2 days on average3,4). The incubation 
defines the time interval between acquiring the infection and the development of symptoms; 
in the model, the incubation period is sampled from a Gamma distribution of mean 6.3 
days and SD 4.33. The incubation period is key in our analysis, as the syndromic 
surveillance is based on the detection of symptomatic individuals (either at school or in the 
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community). The time from the day of symptom onset to recovery is assumed to follow an 
exponential distribution, whose mean value (M) is estimated so that the generation time 
inferred from model simulations matches empirical estimates of 6.6 days5,7. 

According to the estimates reported in previous studies, we assume that the infectiousness 
of pre-symptomatic, symptomatic, and asymptomatic individuals is the same, χ = 1 3. 
However, we performed a sensitivity analysis to explore how model outcomes change 
when asymptomatic individuals are assumed to be half as infectious compared to 
symptomatic and pre-symptomatic cases (i.e., χ=0.5). 

Supplementary Table 1. Summary of model parameters. 

Param Description Value (or range) / Procedure Sensitivity 
analysis Reference  

Natural history 

- Incubation period (days) Gamma distribution with 
mean=6.3 days, sd=4.3 

Gamma 
distribution 
(mean=5.2, 

sd=4.3) 

Hu et al. 3 

T! Generation time (days) 6.6 days [95%IQR: 0.7-19.0] - Cereda et al. 5 
Lavezzo et al. 7 

R Reproduction number (when 
schools are open) 1.3, 1.5, 1.7, 1.9 - ISS 8 

- Initial immunity 5% 10%, 15%, 
20% Marziano et al. 9 

Parameters related to the infection transmission process 

β" Transmission rate in 
household 

Set to obtain a household 
secondary attack rate of 51.5% 

according to Poletti et al. 10 
- Derived 

β# 
Transmission rate in the 
community 

Set to obtain the desired value 
of R when schools are closed - Derived  

β$ 
Transmission rate between 
schoolmates 

Set to obtain the desired value 
of R when schools are open - Derived  

β% 
Transmission rate between 
classmates  

β% = β$ ∗
&!
&"

 where N% = 6.3 
(mean daily number of 

contacts by students with 
classmates) and N$ = 1.5 

(mean daily number of 
contacts by students with 
schoolmates) according to 

Litvinova et al. 11 

- Derived 
 

𝛿' Susceptibility to infection 
by age a 

𝛿' = 0.56, 𝑎 < 20;  
𝛿' = 1,		𝑎 ≥ 20 

𝛿'=1 for all 
ages Viner et al. 12 

c 
Transmissibility of 
asymptomatic relative to 
symptomatic individuals 

100% 50%, 25% Hu et al. 3 

Reactive school closure 

 Number of days of class 
closure 14 days - ISS 13 

PCR test 



 
 

6 
 

𝛼( 
Probability of being tested if 
symptomatic for students 95% 80% Assumed  

𝛼) 

Probability of being tested if 
symptomatic for non-
students (passive 
surveillance) 

45% 20%, 70% Assumed  

𝜙) 
Sensitivity of PCR test 
given the delay between 
symptom onset and test 

Variable over time  
(values taken from the 

reference) 
- Kucirka et al. 14 

TST Delay from symptom onset 
to sample collection 2 1, 4 ISS 15 

TTR Delay from sample 
collection to PCR results 2 1, 4 ISS 15 

Rapid test 

n* 

Daily number of positive 
individuals in the population 
to trigger the student 
screening strategy 

1 0, 5 Assumed 

T 

All students are tested every 
T days, if the number of 
positive individuals in the 
population is ≥ n* 

3, 7, 14 - Assumed 

𝛼+ Probability of complying 
with the screening 100% 50%, 75%, 

90% Assumed 

𝜙' Sensitivity of antigen test# 0.69 Variable 
over time* 

Meta-analysis of 
sensitivity 
(Supplementary 
Fig. 1) 

Routine quarantine 

q 
Probability of quarantine the 
household if one member 
tested as positive 

0.95 - Assumed 

# The result of the test is available on the same day the test is performed. 
* Same temporal trend of used for the PCR test. 
 
Supplementary Table 2. Age-specific parameters regulating COVID-19 disease burden. 

Age 
group  
(years) 

Probability that an 
infected individual will 

develop respiratory 
symptoms and/or fever 

10  
(mean, 95% CI) 

Probability that an 
infected individual 

will require 
hospitalization 16 
(mean, 95% CI) 

Probability that an 
infected individual 
will develop critical 

illness 10 
 (mean, 95% CI) 

Infection 
fatality risk 17 

(mean, 95% CI) 

0-14 18.1% 
(13.9-22.9%) 

2.5% 
(1.0-5.1%) 

0.0% 
(0.0-1.3%) 0.0% 

(0.0-1.94%) 15-19 18.1% 
(13.9-22.9%) 

7.4% 
(0.9-24.3%) 

0.0% 
(0.0-12.8%) 

20-39 22.4% 
(18.9-26.2%) 

5.3% 
(3.5 -7.5%) 

0.4% 
(0.0-1.4%) 0.0% 

(0.0-0.9%) 40-49 30.5% 
(27.7-33.5%) 13.0% 

(11.0-15.2%) 
0.9% 

(0.4-1.7%) 50-59 30.5% 
(27.7-33.5%) 

0.4% 
(0.0-2.0%) 

60-69 35.5% 17.2% 2.6% 0.9% 
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(32.2-38.8%) (14.0-20.8%) (1.4-4.5%) (0.1-3.2%) 

70-79 35.5% 
(32.2-38.8%) 

27.5% 
(22.8-32.6%) 

7.2% 
(4.6-10.5%) 

5.6% 
(2.5-10.7%) 

≥ 80 64.6% 
(56.6-72.0%) 

43.0% 
(35.2-51.1%) 

18.4% 
(12.7-25.3%) 

8.1% 
(3.3-16.1%) 

1.3 Reproduction number  

A fundamental epidemiological parameter measuring the potential spread of infection is 
represented by the reproduction number R, which is defined as the number of secondary 
cases generated by a typical infector in a partially immune population. In our simulations, 
we explore scenarios of R ranging from1.3 to 1.9, therefore encompassing estimates of R 
associated to SARS-CoV-2 transmission dynamics observed in fall of 2020 in Italy. 

We use a well-known relation 18 between the reproduction number, the distribution of the 
generation time, and the exponential epidemic growth rate r to estimate the reproduction 
number in model simulation:   

𝑅 =
𝒓

∑ 𝒚𝒊(𝒆-𝒓𝒂𝒊-𝟏 − 𝒆-𝒓𝒂𝒊)/(𝒂𝒊 − 𝒂𝒊-𝟏)𝒏
𝒊4𝟏

 

where 𝑎5, 𝑎.,…,	𝑎6, are the category bounds of the histogram of the generation time, 𝑦., 
𝑦7, …, 𝑦6 are the corresponding relative frequencies where the observed generation time 
are within these bounds, and r is the exponential growth rate derived from the analysis of 
the number of new cases over time in the simulated epidemics. 

1.4 Simulated intervention strategies 

Reactive class closure based on syndromic surveillance  

In this study, we explicitly model the case isolation, quarantine of contacts, and reactive 
class-closure policy as implemented in Italy since mid-September 2020. The strategy is 
based on identification of infections among symptomatic individuals in the population 
using reverse transcription polymerase chain reaction (RT-PCR) testing. The simulated 
strategy entails the following steps: 

- If an individual shows respiratory symptoms and/or fever, they are tested with RT-PCR 
with probability 𝛼8 = 0.45 if they are a non-student population or 𝛼9 = 0.95 if they 
are a student. The larger probability of being tested used for students stems from the 
routine temperature screening adopted in most Italian schools at the time. Other values 
of 𝛼9 and 𝛼8 are explored in the sensitivity analyses.  

- While waiting for sample collection (TST days after symptom onset, see Supplementary 
Table 1) and test result (TTR days after sample collection, see Supplementary Table 1), 
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the symptomatic individual is precautionarily quarantined in their place of residence, 
while the other members of their households are allowed to continue their normal 
activities.  

- If the result of the test is negative, the tested individual goes back to their normal 
activities. 

- If the result of the test is positive, then: 
o If they are a student, teaching activities for their class are suspended (while the 

other classes of their school remain open). Note that although their class is closed 
and thus their classmates cannot attend school, they are not quarantined and thus 
could potentially infect their household members and other individuals in the 
general population (should they be infectious). 

o Regardless of whether the positive individual is a student or not, they are isolated 
at home for 14 days starting with the date of laboratory confirmation. 

o Considering a compliance rate q=95%, the household members of a positive 
individual are tested with RT-PCR and are precautionarily quarantined at home 
for 2 weeks starting from the date of laboratory confirmation. 

§ If any of their household members is confirmed to be positive with RT-
PCR: 
• They remain in isolation at home for 14 days (starting from the date 

of laboratory confirmation). 
• Moreover, if they are a student, the teaching activities in their class 

are suspended (starting from the date of confirmation), while the 
other classes in their school remain open. Note that although their 
class is closed and thus their classmates cannot attend school, they 
are not quarantined and thus could potentially infect their household 
members and other individuals in the general population (should 
they be infectious). 

Symptomatic non-student individuals have 45% probability of being tested. This parameter 
is set so that in the model simulations the case ascertainment ratio for any symptomatic 
individual in the population is 31%, matching the value estimated for Italy19. 

It is important to stress that other (not individually targeted) social distancing measures 
were implemented in Italy (e.g., closure of gyms, limited size of gatherings, use of masks). 
All those interventions are taken into account in the model as an ensemble, by considering 
different values of the reproduction number (as estimated in the absence of the test-based 
interventions mentioned above).  
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Reactive class closure based on rapid antigen screening  

Antigen-based tests are commonly used in the diagnosis of respiratory pathogens, 
including influenza viruses and respiratory syncytial virus. The U.S. Food and Drug 
Administration (FDA) has granted emergency use authorization (EUA) for antigen tests to 
identify SARS-CoV-2 20. Antigen tests are immunoassays that detect the presence of a 
specific viral antigen, which implies current viral infection. Most of the currently 
authorized tests can be used at the point of care, return results in approximately 15 minutes, 
and are relatively inexpensive compared to RT-PCR tests. Antigen tests for SARS-CoV-2 
are generally less sensitive than RT-PCR for detecting the presence of viral nucleic acid.  

To estimate the sensitivity and specificity of antigen tests for SARS-CoV-2 through a meta-
analysis, we conducted a literature review in PubMed and Web of Science. Seven studies 
reporting the sensitivity and specificity of nine rapid SARS-CoV-2 antigen-detection tests 
were included: Chaimayo 2020 21; Diao 2020 22; Lambert‐Niclot 2020 23; Mertens 2020 24; 
Nalumansi 2020 25; Porte 2020 26; Weitzel 2020 27. The study by Weitzel et al. compared 
three antigen tests. The original sensitivity and specificity estimates extracted from the 
identified studies are summarized in Supplementary Table 3. We estimated the overall 
sensitivity and specificity through our meta-analysis. A random-effect model was used to 
estimate the pooled sensitivity and specificity, which resulted to be 69% (95%CI: 41%-
97%) and 99% (95%CI: 97%-100%), respectively (Supplementary Figure 1).  

To the best of our knowledge, no data is available about the sensitivity of antigen tests 
given the delay between the date of infection and the date of test. As such, we keep it fixed 
(at 69%) in the baseline analysis and perform a sensitivity analysis (Supplementary 
Material, Sec. 4.2) where we assume that the sensitivity of the antigen test follows the same 
temporal trend of the RT-PCR test, although with a lower absolute value. 

Supplementary Table 3. Summary of the original sensitivity and specificity used in the 

meta-analysis. 
Study Sensitivity (mean, 95% CI) Specificity (mean, 95% CI) 
Chaimayo 2020 98% (91%, 100%) 99% (97%, 100%) 
Diao 2020 76% (69%, 81%) 100% (91%, 100%) 
Lambert-Niclot 2020 50% (40%, 61%) 100% (92%, 100%) 
Mertens 2020* 58% 100% 
Nalumansi 2020 70 % (60%, 79%) 92% (87%, 96%) 
Porte 2020 94% (87%, 97%) 100% (92%, 100%) 
Weitzel 2020 [A] 62% (51%, 72%) 100% (89%, 100%) 
Weitzel 2020 [B] 17% (10%, 17%) 100% (89%, 100%) 
Weitzel 2020 [C] 85 % (76%, 91%) 100% (89%, 100%) 

Note: *95% CI of the sensitivity and specificity is not available in this study. 
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Supplementary Fig. 1. Results of the meta-analysis about the sensitivity and specificity of antigen tests. 
A Sensitivity of antigen tests. The boxplots show the quantiles 0.025, 0.25, 0.5, 0.75, and 0.975 of the 
distribution. B As A, but for the specificity of antigen tests. 

Taking the advantage of the timeliness and cost of antigen tests, we propose a reactive class 
closure based on the periodic antigen screening on all students irrespectively of their 
symptoms or clinical signs. Note that the regular testing via PCR of symptomatic 
individuals in the population is considered to remain in place. According to this strategy, 
as soon as a student results positive to either a RT-PCR test performed within the 
syndromic surveillance or to an antigen test regularly applied to all students, the closure of 
the class of the infected student is imposed, following the same procedure already in place 
for reactive class closure (see previous section). 

In our analysis, we explored three different frequencies for antigen screening: every 3 days, 
every 7 days, and every 14 days. As rapid antigen tests give very timely results, we assume 
that laboratory diagnosis from these tests is obtained on the same day of the sample 
collection. 
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1.5 Model parametrization 

Initialization. We initialized the population to reflect the epidemiological conditions 
characterizing Italy in September 2020. We therefore assume that, at the beginning of our 
simulations, 5% of the Italian population is immune against SARS-CoV-2 infection. This 
percentage represents the proportion of the Italian population who experienced the SARS-
CoV-2 infection during the first-wave of COVID-19, in spring 2020 19. The same immunity 
level was assumed across different age groups. Alternative values of the initial fraction of 
immune population are explored as sensitivity analysis as well as to simulate an 
epidemiological situation closer to that of spring 2021. We also performed a sensitivity 
analysis where we consider immunity to be age dependent. Specifically, we considered that 
11.2% of individuals aged 18 years or less are immune and 22.4% of the rest of the 
population is immune (so that the total fraction of immune population is 20%). Simulations 
consider that newly infectious individuals are imported from outside the study area on a 
continuous basis. Specifically, at each time step of the simulation (1 day), we sample from 
a Poisson distribution of mean 1.34, based on the estimates reported by the national 
surveillance system (i.e., 0.027 imported cases per day per 10,000 individuals). We have 
conducted a sensitivity analysis where we consider the mean daily imported infectious 
individuals to be 0.25 and 4 times the value in the baseline. The sensitivity analysis shows 
little/no impact of the daily number of imported cases to the outcome of interest in this 
study (see Sec. 2.2).  

Model calibration. In Italy, after the first COVID-19 case was identified in February 2020, 
all teaching activities were completely suspended. All schools in the entire country 
remained closed until September 2020. In order to be consistent with epidemiological 
evidences characterizing the first epidemic wave in Italy, model parameters shaping the 
transmission potential of SARS-CoV-2 (Equation 1.1) and the relative contribution of 
households in the transmission of the infection were assumed in such a way to reproduce a 
reproduction number (R) of 1.1 8 and a household secondary attack rate (hSAR) of 51.5% 
10. In our simulation, we consider that after school reopening, R increases to values in the 
range of 1.3 to 1.9, as estimated in Italian regions 8. 

As direct quantitative estimates of the contribution of school (or school-related) activities 
to the increase in the overall transmissibility are unavailable, we consider three scenarios. 
In the first one we assumed that the increased transmission observed in Italy during 
September can be entirely ascribed to transmission in schools (F100). The other two 
scenarios (F50 and F25) account for the increase in the number of contacts in the general 
community related to the reactivation of teaching activities, such as contacts made on 
transportation means, extracurricular activities, etc.  



 
 

12 
 

In scenario F100, we kept the transmission rates in household and the community as 
estimated for the summer period and set the transmission in school to obtain the target 
value of the reproduction number, which corresponds to attributing 100% of the observed 
increase of the reproduction number in September/October to school transmission. We run 
the calibrated model and we estimated the fraction of infections generated in schools, 
which we denote as FS. In scenarios F50 and F25, we assume that the fraction of infections 
is 0.5*FS and 0.25*FS, respectively. To do so, we fixed the transmission rate in household 
as in F100, and we re-estimate the transmission rates in school and in the community to 
obtain the target value of the reproduction number and of the fraction of infections 
occurring in schools. The total school contribution to infections estimated by the model for 
the three scenarios (F25, F50, and F100) and different values of the reproduction number 
is shown in Supplementary Fig. 2. 

 
Supplementary Fig. 2. Estimated fraction of infections by setting. A Fraction of infections linked to 
household transmission for different values of R and in the three school transmission contribution scenarios. 
The bar corresponds to the mean value, while the vertical line represents 95% quantile intervals. B As A, but 
for school. C As A, but for community. 
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2 Reactive class-closure strategy based on syndromic surveillance 

2.1 Additional results for the baseline analysis 

In addition to the primary results related to COVID-19-related burden reported in the main 
text (Fig. 1A and 1B), here we show other metrics (Supplementary Fig. 3). Specifically, 
we estimate that the relative burden of the number of symptomatic infections, hospitalized 
patients, and patients developing critical illness are similar to those estimated for infections 
and deaths.  

 

Supplementary Fig. 3. Impact of the reactive class-closure policy based on syndromic surveillance. A 
Relative burden of the cumulative number of symptomatic infections after one year as a function of the 
reproduction number and for different scenarios about school transmission contribution. The bars correspond 
to the mean value, while the vertical lines represent 95% quantile intervals; colors refer to the three scenarios 
F25, F50, F100. Parameters are as the baseline values reported in Supplementary Table 1 and 2. B As A, but 
for the number of hospitalized patients. C As A, but for the number of critical cases.  

In the main text, we showed the results of four sensitivity analyses considering changes in 
parameters regulating the implementation of the reactive class-closure strategy. In 
particular, we varied (i) the probability to test a symptomatic student at school, (ii) the 
probability to test a symptomatic (non-student) individual in the community, (iii) the time 
from symptom onset to sample collection, and (iv) the time from sample collection to 
laboratory diagnosis. Supplementary Fig. 4 shows the impact of these parameters on the 
proportion of infectious students in each open class of a school other than the class 
triggering the class closure. Under all the analyzed scenarios, for R>1.5, we estimate the 
median of this proportion to be around 5% with peak values exceeding 20%. This finding 
highlights that even quicker or more intense syndromic surveillance would not be able to 
identify infected students readily enough to prevent widespread school transmission before 
class closures are triggered. 
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Supplementary Fig. 4. Sensitivity of the class-closure strategy based on syndromic surveillance to 
changes in parameters regulating its implementation. A Proportion of infectious students in all the open 
classes of the school (i.e., excluding the class triggering the class closure) for different values of R at the time 
when a class closure is triggered for different values of the probability to test a symptomatic student at school. 
The boxplot indicates quantile 0.025, 0.25, 0.5, 0.75, and 0.975. The same definition of the boxplot is used 
throughout the manuscript. Parameters are as the baseline and explored values reported in Supplementary 
Tab. 1. Note also that R is estimated in the absence of the class-closure strategy and the scenario considered 
is F50. B As A, but for the probability to test a symptomatic (non-student) individual in the community. C 
As A, but for the time from symptom onset to sample collection. D As A, but for the time from sample 
collection to laboratory diagnosis.  
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2.2 Daily number of imported infections 

In the baseline analysis, we consider that, on average, 1.34 infections are imported per day. 
To explore the robustness of the results to this choice, we varied the mean daily number of 
imported infections by assuming two scenarios where the daily number of imported 
infections is 0.25 and 4 times that of the baseline (i.e., 0.34 and 5.36, respectively). We 
simulate the impact of the reactive class-closure strategy and found very consistent 
estimates of the relative change in COVID-19 burden in these 3 scenarios (Supplementary 
Fig. 5).  

  

Supplementary Fig. 5. Sensitivity of the class-closure strategy based on syndromic surveillance to 
changes in the mean daily imported infectious individuals. A Relative burden of the cumulative number 
of infections after one year as a function of the reproduction number and for different initial number of seeds. 
The bars correspond to the mean value, while the vertical lines represent 95% quantile intervals; colors refer 
to the baseline value (i.e., 1.34) and two alternative values (i.e., 0.34 and 5.36). Note that R is estimated in 
the absence of the class-closure strategy and the scenario considered is F100. B As A, but for the death. C 
Number of missed school days per student. The boxplot indicates quantile 0.025, 0.25, 0.5, 0.75, and 0.975. 
D As A, but for scenario F50. E As B, but for scenario F50. F As C, but for scenario F50.  
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2.3 Incubation period 

In the main analysis, we consider a gamma distributed incubation period with a mean of 
6.3 days (sd: 4.3) 3. Here we conducted a sensitivity analysis where one alternative mean 
duration of the incubation period, namely 5.2 days (sd: 4.3) was considered 6. The obtained 
results are very consistent with those obtained in the main analysis (Supplementary Fig. 6). 

 

 

Supplementary Fig. 6. Sensitivity of the class-closure strategy based on syndromic surveillance to 
changes in the duration of the incubation period. A Relative burden of the cumulative number of infections 
after one year as a function of the reproduction number and for two scenarios about incubation period. The 
bars correspond to the mean value, while the vertical lines represent 95% quantile intervals; colors refer to 
the two tested values of the incubation period (namely, 6.3 and 5.2 days). Note that R is estimated in the 
absence of the class-closure strategy and the scenario considered is F100. B As A, but for the cumulative 
number of deaths. C Number of missed school days per student due to the reactive class-closure strategy. 
The boxplot indicates quantile 0.025, 0.25, 0.5, 0.75, and 0.975. D As A, but for scenario F50. E As B, but 
for scenario F50. F As C, but for scenario F50. 
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2.4 Homogeneous susceptibility to infection by age  

In the main analysis, we considered age-specific susceptibility to infection (as estimated in 
the literature 12). Here we proposed additional sensitivity analyses where we assume a 
homogenous susceptibility to infection by age (i.e., 𝛿:=1 for all ages). All the obtained 
results are very consistent with those obtained in the main analysis (Supplementary Fig. 7).  

 

Supplementary Fig. 7. Sensitivity of the class-closure strategy based on syndromic surveillance to 
changes in susceptibility to infection by age. A Relative burden of the cumulative number of infections 
after one year as a function of the reproduction number and for two scenarios about susceptibility to infection. 
The bars correspond to the mean value, while the vertical lines represent 95% quantile intervals; colors refer 
to the age-specific susceptibility (i.e., baseline) and homogeneous susceptibility to infection by age. Note 
that R is estimated in the absence of the class-closure strategy and the scenario considered is F100. B As A, 
but for the number of deaths. C Number of missed school days per student due to the reactive class-closure 
strategy. The boxplot indicates quantile 0.025, 0.25, 0.5, 0.75, and 0.975. D As A, but for scenario F50. E As 
B, but for scenario F50. F As C, but for scenario F50. 
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2.5 Infectiousness of asymptomatic vs. symptomatic individuals 

In the main analysis, we considered the infectiousness of asymptomatic infected 
individuals relative to symptomatic one to be equal to 1 (as estimated in Hu et al. 3). Here 
we proposed a sensitivity analysis on the infectiousness, where we assume that 
symptomatic infected individuals transmit twice or four times asymptomatic ones. All the 
obtained results are very consistent with those obtained in the main analysis 
(Supplementary Fig. 8).  

 

Supplementary Fig. 8. Sensitivity of the class-closure strategy based on syndromic surveillance to 
changes in infectiousness of asymptomatic vs. symptomatic individuals. A Relative burden of the 
cumulative number of infections after one year as a function of the reproduction number and for two scenarios 
about relative infectiousness. The bars correspond to the mean value, while the vertical lines represent 95% 
quantile intervals; colors refer to three scenarios of the infectiousness of symptomatic relative to 
asymptomatic individuals. Note that R is estimated in the absence of the class-closure strategy and the 
scenario considered is F100. B As A, but for the number of deaths. C Number of missed school days per 
student due to the reactive class-closure strategy. The boxplot indicates quantile 0.025, 0.25, 0.5, 0.75, and 
0.975. D As A, but for scenario F50. E As B, but for scenario F50. F As C, but for scenario F50. 
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2.6 Initial fraction of immune population 

In the baseline analysis, we consider 5% of the population to be immune at the beginning 
of the simulation, according to modeling estimates for the Italian population in September 
2020 19. We performed a sensitivity analysis on the initial immunity of the population by 
increasing this fraction to 10% and 20%. The obtained results show that the relative change 
with respect to the simulations without school closure is not affected much by the initial 
fraction of immune population (Supplementary Fig. 9 A, B, D, and E). However, with the 
infection attack rate decreasing as the initial fraction of immune population increases, the 
number of missed school days due to the class-closure strategy remarkably decreases 
(Supplementary Fig. 9 C and F).  

 

Supplementary Fig. 9. Sensitivity of the class-closure strategy based on syndromic surveillance to 
changes in initial fraction of immune population. A Relative burden of the cumulative number of 
infections after one year as a function of the reproduction number and for three scenarios about initial fraction 
of immune population. The bars correspond to the mean value, while the vertical lines represent 95% quantile 
intervals; colors refer to three assumptions of the initial fraction of immune population, including 5% (i.e., 
the baseline), 10%, and 20%. Note that R is estimated in the absence of the class-closure strategy and the 
scenario considered is F100. B As A, but for the number of deaths. C Number of missed school days per 
student due to the reactive class-closure strategy. The boxplot indicates quantile 0.025, 0.25, 0.5, 0.75, and 
0.975. D As A, but for scenario F50. E As B, but for scenario F50. F As C, but for scenario F50.  
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In addition, we performed another sensitivity analysis assuming an age-dependent initial 
fraction of immune population. In particular, we considered that 11.2% of individuals aged 
18 years or less are immune and 22.4% of the rest of the population is immune (so that the 
total fraction of immune population is 20%). The obtained results show that the relative 
burden with respect to the simulations without school closure is not affected much by the 
age-dependent initial fraction of immune population (Supplementary Fig. 10 A, B, D, and 
E). However, we estimate that the number of missed school days per student in this scenario 
is slightly larger than that estimated for the baseline (Supplementary Fig. 10 C and F). 

 

Supplementary Fig. 10. Sensitivity of the class-closure strategy based on syndromic surveillance to age-dependent 
initial fraction of immune population. A Relative burden of the cumulative number of infections after one year as a 
function of the reproduction number and for two scenarios about the age-dependent initial fraction of immunity. The bars 
correspond to the mean value, while the vertical lines represent 95% quantile intervals; colors refer to two assumptions 
of the age-dependent initial fraction of immune population, including homogeneous (i.e., the baseline) and heterogeneous 
across all ages. Note that R is estimated in the absence of the class-closure strategy and the scenario considered is F100. 
B As A, but for the number of deaths. C Number of missed school days per student due to the reactive class-closure 
strategy. The boxplot indicates quantile 0.025, 0.25, 0.5, 0.75, and 0.975. D As A, but for scenario F50. E As B, but for 
scenario F50. F As C, but for scenario F50.   
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3 Reactive school-closure strategy based on syndromic surveillance 

We implemented and tested a reactive school-closure strategy that mirrors exactly the 
reactive class closure strategy used in the main analysis; the only difference is that once a 
closure is triggered, the entire school is closed (instead of the single class where a PCR 
positive student is confirmed).  

Supplementary Fig. 11 shows the impact of reactive school-closure policy on the COVID-
19 burden and the number of missed school days per student due to the strategy. In the 
baseline analysis, 10% of initially immune population is used. As compared to the class-
closure strategy (Fig. 1 of the main text), the school-closure strategy leads to a remarkably 
higher reduction of COVID-19 burden (Supplementary Fig. 11 A and B). However, this 
strategy entails more than 80 missed school days per student (i.e., half of the school year) 
in most cases (Supplementary Fig. 11C).  

 

Supplementary Fig. 11. Impact of the reactive school-closure strategy based on syndromic surveillance. 
A Relative burden of the cumulative number of infections after one year as a function of the reproduction 
number and for different scenarios about school transmission contribution. The bars correspond to the mean 
value, while the vertical lines represent 95% quantile intervals; colors refer to the two scenarios F50 and 
F100. Parameters are as the baseline values reported in Supplementary Table 1 and 2. Note that R is estimated 
in the absence of the class-closure strategy. The relative burden is defined as the estimated number of 
infections after 1 year since the introduction of the first infected individual with the school-closure strategy 
implemented, relative to the estimated number without the implementation of the school-closure strategy. B 
As A, but for the number of deaths. C Number of missed school days per student due to the reactive school-
closure strategy. The boxplot indicates quantile 0.025, 0.25, 0.5, 0.75, and 0.975. 

We performed a sensitivity analysis on the initial immunity of the population by increasing 
the fraction of immune population to 15% and 20%. Supplementary Fig. 12 shows the 
impact of increased fraction of immune population on the COVID-19 burden and the 
number of missed school days per student due to the reactive school-closure strategy. As 
observed for the reactive class-closure strategy (Supplementary Fig. 9), the reduction of 
COVID-19 burden is not much affected by the initial fraction of immune population 
(Supplementary Fig. 12 A and B). However, the number of missed school days increases 
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with increases in immunity for low values of R, while it decreases for R=1.7 and 1.9 
(Supplementary Fig. 12 C).  

 

Supplementary Fig. 12. Sensitivity of the school-closure strategy based on syndromic surveillance to 
changes in initial fraction of immune population. A Relative burden of the cumulative number of 
infections after one year as a function of the reproduction number and for three different initial fractions of 
immune population. The bars correspond to the mean value, while the vertical lines represent 95% quantile 
intervals; colors refer to three assumptions of the initial fraction of immune population, including 10% (i.e., 
baseline), 15%, and 20%. Note that R is estimated in the absence of the class-closure strategy and the scenario 
considered is F50. B As A, but for the number of deaths. C Number of missed school days per student due 
to the reactive school-closure strategy. The boxplot indicates quantile 0.025, 0.25, 0.5, 0.75, and 0.975. 

 

4 Reactive class-closure strategy based on rapid antigen screening 

4.1 Additional results for the baseline analysis 

In addition to the primary results of COVID-19-related burden shown in Fig. 4A of the 
main text, Supplementary Fig. 13 shows more metrics related to the burden of COVID-19, 
including number of symptomatic infections, number of hospitalized patients, number of 
critical patients, and number of deaths. The results highlight that antigen-based class-
closure strategy is capable to prevent not only a large share of infections, but also a 
significant share of hospitalizations, critical cases, and deaths (Supplementary Fig. 13). In 
fact, this strategy allows a timely identification of infectious individuals as shown by the 
low fraction of infectious students in each open class of school (outside the class that 
triggers the closure) that are infectious at the time of class closure (Supplementary Fig. 14). 



 
 

23 
 

 

Supplementary Fig. 13. Impact of the reactive class-closure policy based on antigen screening. A 
Relative burden of the cumulative number of symptomatic infections after one year as a function of the 
reproduction number and for different scenarios about school transmission contribution. The bar corresponds 
to the mean value, while the vertical line represents the 95% quantile intervals; colors refer to the three 
scenarios F25, F50, F100. The fraction of immune population at the beginning of epidemic is set at 10%, the 
probability of testing a student at school with the antigen test is 100%, the frequency of the antigen screening 
is weekly; other parameters are as the baseline values reported in Supplementary Table 1 and 2. Note that R 
is estimated in the absence of the class-closure strategy. B As A, but for the number of hospitalized patients. 
C As A, but for the number of critical cases. D As A, but for the number of deaths. 
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Supplementary Fig. 14. Infectious students at the time when a class closure is triggered. A Distribution 
of the proportion of infectious students in other open classes when one class of the same school is closed for 
R=1.3. Parameters are as the baseline values reported in Supplementary Table 1 and 2. Note that R is 
estimated in the absence of the class-closure strategy. B As in A, but for R=1.9. 

  



 
 

25 
 

4.2 Sensitivity of antigen test 

In the main analysis, due to the lack of specific data, we considered the sensitivity of 
antigen tests being independent of the delay between infection and testing (Sec. 1.4). Here 
we assume that the sensitivity of the antigen test follows the same temporal trend of 
sensitivity of the RT-PCR test, although with a lower absolute value (i.e., 0.69). All the 
obtained results are very consistent with those obtained in the main analysis, although the 
relative burden is slightly increased when a time-varying sensitivity is considered 
(Supplementary Fig. 15). 

  

Supplementary Fig. 15. Sensitivity of the class-closure strategy based on antigen screening to the time-
varying sensitivity of the antigen test. A Relative burden of the cumulative number of symptomatic 
infections after one year as a function of the reproduction number when we use a constant sensitivity of 
antigen test or a sensitivity that depends on the delay between symptom onset and test. The bars correspond 
to the mean value, while the vertical lines represent 95% quantile intervals; colors refer to different 
performance of the strategy. Note that R is estimated in the absence of the class-closure strategy and the 
scenario considered is F50. B As A, but for the number of hospitalized patients. C As A, but for the number 
of critical cases. D As A, but for the number of deaths. E Number of missed school days per student due to 
the reactive class-closure strategy. The boxplot indicates quantile 0.025, 0.25, 0.5, 0.75, and 0.975. F 
Proportion of infectious students in open classes at the time when one class of the same school is closed due 
to the class-closure strategy. The boxplot indicates quantile 0.025, 0.25, 0.5, 0.75, and 0.975. 
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4.3 Antigen screening frequency 

In the main text we explored the impact of antigen screening frequency on the 
effectiveness of the strategy by performing a sensitivity analysis on screening frequency, 
where we decreased the screening frequency from once every 3 days, to once every 7 
days and once every 14 days. Here we show other metrics. Similar to the decrease in the 
number of infections shown in Fig. 4E (of the main text), the strategy impact on COVID-
19 burden (measured through the change in hospitalizations, critical cases, and deaths) 
tend to decrease with screening becoming less frequent (Supplementary Fig. 16 A-D). 
The effectiveness of the control over epidemic decreases mostly due to the low number of 
infectious students at the time the class closure is triggered as compared to strategy based 
on syndromic surveillance (Supplementary Fig. 16E vs. Fig. 2 of the main text).  

 

Supplementary Fig. 16. Sensitivity of the class-closure strategy based on antigen screening to changes 
in screening frequency. A Relative burden of the cumulative number of symptomatic infections after one 
year as a function of the reproduction number and for three scenarios about screening frequency (every 3, 7 
or 14 days). The bars correspond to the mean value, while the vertical lines represent 95% quantile intervals. 
Note that R is estimated in the absence of the class-closure strategy and the scenario considered is F50. B As 
A, but for the number of hospitalized patients. C As A, but for the number of critical cases. D As A, but for 
the number of deaths. E Proportion infectious students in open classes at the time when one class of the same 
school is closed due to the reactive class-closure strategy. The boxplot indicates quantile 0.025, 0.25, 0.5, 
0.75, and 0.975. 
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In the main text, we considered that the antigen test screening is performed when (at least) 
one positive individual is identified. Here we consider two alternative scenarios: one when 
the strategy is always in place (i.e., regardless of whether cases are identified) and another 
one where the strategy is in place only when 5 (or more) positive individuals are identified. 
As shown in Supplementary Fig. 17 A-E, the relative burden remarkably decreases when 
the antigen screening is always in place. However, this entails a much larger cost in terms 
of missed school days per student (Supplementary Fig. 17F). The proportion of infectious 
students in open classes at the time of a class closure is lower for all values of R 
(Supplementary Fig. 17G). 
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Supplementary Fig. 17. Sensitivity of the class-closure strategy based on antigen screening to the 
number of positive individuals in the population triggering the antigen screening in schools. A Relative 
burden of the cumulative number of infections after one year as a function of the reproduction number when 
0, 1+, or 5+ positive individuals trigger the antigen screening. The bars correspond to the mean value, while 
the vertical lines represent 95% quantile intervals; colors refer to different performance of the strategy. Note 
that R is estimated in the absence of the class-closure strategy and the scenario considered is F50. B As A, 
but for symptomatic infections. C As A, but for the number of hospitalized patients. D As A, but for the 
number of critical cases. E As A, but for the number of deaths. F Number of missed school days per student 
due to the reactive class-closure strategy. The boxplot indicates quantile 0.025, 0.25, 0.5, 0.75, and 0.975. G 
Proportion of infectious students in open classes at the time when a class of the same school is closed due to 
the class-closure strategy. The boxplot indicates quantile 0.025, 0.25, 0.5, 0.75, and 0.975. 
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4.4 Initial fraction of immune population 

In the analysis of the antigen-based class-closure strategy presented in the main text, we 
considered 10% of the population to be initially immune. We performed a sensitivity 
analysis by increasing the fraction of the initially immune population to 15% and 20%. For 
20% of initially immune population, the strategy averts 80% of the hospitalizations, critical 
cases, and deaths for R=1.5, and decreases them by almost 70% for R=1.7 (Supplementary 
Fig. 18 A-E). The cost in terms of missed education remarkably decreases (Supplementary 
Fig. 18 F) and the capacity of the strategy to timely identify infectious students increases 
(Supplementary Fig. 18 G).  

  
Supplementary Fig. 18. Sensitivity of the class-closure strategy based on antigen screening to changes 
in initial fraction of immune population. A Relative burden of the cumulative number of infections after 
one year as a function of the reproduction number and for three different initial fractions of immune 
population. The bars correspond to the mean value, while the vertical lines represent 95% quantile intervals; 
colors refer to three assumptions of the initial fraction of immune population, including 10% (i.e., baseline), 
15%, and 20%. Note that R is estimated in the absence of the class-closure strategy and the scenario 
considered is F50. B As A, but for symptomatic infections. C As A, but for the number of hospitalized 
patients. D As A, but for the number of critical cases. E As A, but for the number of deaths. F As A, but for 
number of missed school days per student due to the reactive class-closure strategy. G Proportion of 
infectious students in open classes at the time when a class of the same school is closed due to the class-
closure strategy. The boxplot indicates quantile 0.025, 0.25, 0.5, 0.75, and 0.975. 
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