
 

 

Supplementary Table 1 

Reference 
publication 

Training and validation Evaluation 

Training 
and 

valid-
ation 
scans 

(COVID 
scans)1 

Authors 
collect 

original 
COVID 
scans for 
training 

Authors 
report 
timing 

between 
CXR 

and RT-
PCR 

Internal 
5-fold 
CV1 

Internal 
holdout 
test set1 

Internal 
testing scans 

(COVID 
scans)1 

Authors 
assess 

generaliz
-ability 

with 
external 
testing 

Authors 
compare 

model 
perform-
ance to 

that of a 
radiol-
ogist 

Authors 
publicly 

share 
code 
with 

trained 
model1 

Current 
study 

11,599 
(2,360) 

✔ ✔ ✔ ✔ 
287 

(199) 

✔  
200 (72 
COVID-
19) scans; 
800 (200 
COVID-
19) scans  

✔ ✔ 

Li, X. et al.1 429  
(143) 

✘ ✘ ✘ ✔ 
108 
(36) ✘ ✘ ✔ 

Luz, E. et 
al.2 

13,569 
(152) 

✘ ✘ ✘ ✔ 
231  
(31) ✘ ✘ ✔ 

Bassi, P. and 
Attuz, R.3 

2,724 
(159) 

✘ ✘ ✘ ✔ 
180 
(60) ✘ ✘ ✘ 

Heidari, M. 
et al.4 

8,474 
(415) 

✘ ✘ ✘ ✔ 
848 
(42) ✘ ✘ ✘ 

Zhang, R. et 
al.5 

5,236 
(2,582) 

✔ ✔ ✘ ✔ 
5,869  

(3,223) ✘ ✔ ✘ 

Zhang, R. et 
al.6 

386  
(150) 

✘ ✘ ✘ ✔ 
101 
(39) ✘ ✘ ✘ 

Wang, Z. et 
al.7 

3,522 
(204) 

✘ ✘ ✘ ✔ 
61 

(20) ✘ ✔ ✘ 

Tsiknakis, N. 
et al.8 458 (98) ✘ ✘ ✔ ✘ 

114 
(24) ✘ ✘ ✘ 

Malhotra, A. 
et al.9 

24,724 
(348)1 

✘ ✘ ✘ ✔ 
6,174  
(125)1 ✘ ✘ ✘ 

Rahaman, 
M. et al.10 

720  
(220) 

✘ ✘ ✘ ✔ 
140 
(40) ✘ ✘ ✘ 

Tamal, M. et 
al.11 

378  
(226) 

✘ ✘ ✘ ✔ 
165 

(115) ✘ ✘ ✘ 

1 These columns are from a published comparative study15 except for Malhotra et al.9, where figures have been updated to reflect 
the actual number of COVID-19 training images before augmentation. Studies that have been withdrawn, that did not indicate 
sample sizes for development and testing, or that did not report model performance have been excluded. 

Differentiation of proposed study: Diagnosis. The table above compares the current study to 
other published papers that have developed and evaluated machine learning models for COVID-
19 diagnosis from CXRs. CV, cross-validation; CXR, chest x-ray; RT-PCR, reverse transcription 
polymerase chain reaction; COVID, coronavirus disease 2019 



 

 

Supplementary Table 2 

Reference 
publication 

Prognosis type1 

Training 
and 

validation 
COVID 

sample size1 

Authors 
collect 

original 
COVID 
scans for 
training 

Internal 
holdout test 
set (COVID 

scans)1 

Authors 
assess 

generaliz-
ability with 

external 
testing? 
(COVID 
scans)1 

Authors 
publicly 

share code 
with trained 

model1 

The 
current 
study 

Severity and time to 
first critical event 

1,468 
patients 

✔ 
✔ 
(366 

patients) 

✔  
(475 

patients) 
✔ 

Li, M. et 
al.12 Severity 354 scans ✔ 

✔ 
(108 scans) 

✔ 
(111 scans) 

✘ 

Li, M. et 
al.13 Severity 314 scans ✔ 

✔ 
(154 scans) 

✔ 
(113 scans) 

✘ 

Cohen, J. 
P. et al.14 

Lung opacity and 
extent of lung 

involvement with 
grand glass opacities 

47 patients ✘ 
✔ 

(47 patients) 
✘ ✔ 

1 These columns are from a published comparative study15. Studies that have been withdrawn, that did not indicate sample sizes 
for development and testing, or that did not report model performance have been excluded. 

Differentiation of proposed study: Prognosis. The table above compares the current study to 
published papers that have developed and evaluated machine learning models for COVID-19 
prognosis from CXRs.  CV, cross-validation; CXR, chest x-ray; RT-PCR, reverse transcription 
polymerase chain reaction; COVID, coronavirus disease 2019 

  



 

 

Supplemental Discussion 

Several notable differences between the proposed and prior studies are the sheer size of the 
study’s training and validation sample (Supplementary Tables 1 and 2), including the COVID-19 
images, relative to prior studies, as well as the procedures to mitigate sources of bias, including: 

Diversity of disease origins, severities, and complexities 
Original images were collected from an actual influx of ED patients, contributing to a diverse 
dataset of clinical findings that represent a real-life distribution of disease origins, severities, and 
complexities. Most prior studies (Supplementary Tables 1 and 2), however, relied on public 
repositories, which often are pieced together to represent an unrealistic sample and often exhibit 
an overrepresentation of severe disease cases as unusual or severe presentations are more likely 
to be uploaded online. 

RT-PCR timing with CXR 
Radiology reports were leveraged in conjunction with RT-PCR results to detect COVID-19 
pneumonia, increasing the confidence that images within the positive class indeed demonstrate 
COVID-19 pneumonia-related findings. Additionally, the authors considered the timing between 
CXR acquisition and RT-PCR administration to confirm the validity of ground truth labels. 
Almost 90% of original CXR scans within the training set were collected within one day of RT-
PCR administration, while all CXRs within the test sets were collected within 24 hours of RT-
PCR administration. Most prior studies relied on public repositories, which often assign binary 
values with no supporting documentation, such as RT-PCR data, radiology reports, or patient 
charts, to validate these findings. As there are often no restrictions for contributors to share 
COVID-19 CXRs to public datasets, there is no guarantee that positive cases indeed represent 
COVID-19 disease findings15. 

Selection bias mitigation via cross-validation 
The study employed 5-fold cross-validation to minimize selection bias and increase its sample 
size for training and validation. As such, the model comprises an ensemble of five models tested 
on a unique outside fold, mitigating the likelihood of selecting a fortuitously favorable internal 
validation set. This technique, as demonstrated in Supplementary Table 1, was not observed in 
prior studies, exposing them to additional sources of potential bias. 

Multiple external test sets 
The ability for the model to generalize was evaluated on various external test sets for the 
diagnosis and prognosis components of the triage pipeline. The study demonstrates that the 
pipeline can accurately output predictions on unseen data and is not overfitted to the training 
data. As prior studies often do not employ external testing to assess model generalizability, they 
are likely subject to overfitting and overly optimistic results for two notable reasons. First, most 
prior studies were trained on public repositories that are likely to have more severe cases of 
COVID-19, impairing their models’ ability to detect early stage disease findings. Second, prior 
studies mostly relied on the COVID-19 Image Data Collection, which has been demonstrated to 
exhibit distinct image artifacts16. Even with preprocessing techniques, such as lung segmentation, 
and visualization techniques, such as Grad-CAM, it is impossible to fully discern whether a 



 

 

given model is basing predictions from actual COVID-19 findings or inherent image artifacts 
without external validation.  

Performance comparison to radiologists 
The authors compared the performance of the models to those of radiologists. The authors 
demonstrate that the diagnosis model was able to outperform the average radiologist by a 
statistically significant margin and correctly detect COVID-19 from 17 of 38 CXRs that were 
originally marked as normal by the original radiologist, as well as most radiologists from the 
study. The study, thus, addresses the increasing evidence that COVID-19 at an early stage can be 
difficult to discern, exemplifying the value of an AI solution in actual clinical workflows.  

Public code and model sharing 
The authors have published their code (Supplementary Tables 1 and 2), as well as the trained 
models they have developed. By publicly sharing the code and model files, as well as deploying 
the prediction models as web applications, the authors invite other researchers to replicate the 
study’s findings and share their advancements in medical image analysis. 

While the study leverages several well-known deep learning methodologies to develop an 
automated pipeline for rapid triage of COVID-19 patients, the authors have designed a study that 
has addressed notable risks of biases from prior studies that comprise data integrity and clinical 
viability of their proposed models. Combined with the value of its associated dataset, the 
proposed AI and informatics pipeline has immense value as a clinical tool that can streamline 
COVID-19 triage and improve patient outcomes. 
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