Additional file 1

Association of metabolic syndrome traits with urinary biomarkers in Japanese adults

Table S1. Linear regression analysis between abdominal visceral fat area and

urinary biomarkers

Table S2. Logistic regression analysis between urinary biomarkers and abdominal

visceral obesity

	β (95%CI)	P-value
Albumin	0.003 (0.0003, 0.006)	0.034
A-megalin	0.002 (0.0007, 0.004)	0.004
C-megalin	0.004 (-0.001, 0.009)	0.166
Podocalyxyin	-0.001 (-0.004, 0.001)	0.268
α₁-microglobulin	0.004 (0.001, 0.006)	0.003
β2-microglobulin	-0.002 (-0.005, 0.002)	0.344
NAG	0.002 (0.0002, 0.004)	0.027

Table S1. Linear regression analysis between abdominal visceral fat area and urinary biomarkers

Abbreviation: NAG, *N*-acetyl-β-D-glucosaminidase.

Linear regression analysis was performed with each natural log-transformed urinary biomarker as a dependent variable.

	Crude		Demographic-		Multivariable-	
			adjusted		adjusted	
	Odds ratio	<i>P</i> -	Odds ratio	<i>P</i> -	Odds ratio	<i>P</i> -
	(95% CI)	value	(95% CI)	value	(95% CI)	value
Albumin	1.34	0.061	1.59	0.004	1.46	0.030
	(0.99, 1.81)		(1.16, 2.19)		(1.04, 2.06)	
A-megalin	1.74	<0.001	1.91	<0.001	1.82	0.002
	(1.26, 2.40)		(1.34, 2.73)		(1.26, 2.64)	
C-megalin	1.25	0.140	1.19	0.269		
	(0.93, 1.67)		(0.87, 1.63)			
Podocalyxyin	0.86	0.313	0.89	0.443		
	(0.65, 1.15)		(0.65, 1.20)			
α1-microglobulin	1.29	0.093	1.25	0.197		
	(0.96, 1.74)		(0.89, 1.74)			
β2-microglobulin	0.90	0.492	1.04	0.796		
	(0.67, 1.21)		(0.76, 1.43)			
NAG	1.40	0.032	1.56	0.014	1.20	0.361
	(1.03, 1.90)		(1.10, 2.22)		(0.81, 1.77)	

Table S2. Logistic regression analysis between urinary biomarkers and abdominal

 visceral obesity

Abbreviation: NAG, *N*-acetyl-β-D-glucosaminidase.

Each urinary biomarker is treated as a quartile. Abdominal visceral obesity is defined as having \geq 100 cm² abdominal visceral fat area. The demographic-adjusted model includes age (continuous) and male sex. The multivariable-adjusted model includes age (continuous), male sex, and eGFR (continuous).