### SUPPLEMENTAL MATERIAL

## Splicing machinery is impaired in Rheumatoid Arthritis, associated with disease activity and modulated by Anti-TNF therapy

Alejandro Ibáñez-Costa<sup>1</sup>\*, Carlos Perez-Sanchez<sup>1</sup>\*, Alejandra M. Patiño-Trives<sup>1</sup>\*, María Luque-Tévar<sup>1</sup>, Pilar Font<sup>1</sup>, Iván Arias de la Rosa<sup>1</sup>, Cristobal Roman-Rodriguez<sup>1</sup>, María Carmen Ábalos<sup>1</sup>, Carmen Conde<sup>2</sup>, Antonio González<sup>2</sup>, Sergio Pedraza-Arévalo<sup>3,4,5,6</sup>, Mercedes Del Río-Moreno<sup>3,4,5,6</sup>, Ricardo Blazquez-Encinas<sup>3,4,5,6</sup>, Pedro Segui<sup>7</sup>, Jerusalem Calvo<sup>1</sup>, Rafaela Ortega-Castro<sup>1</sup>, Alejandro Escudero-Contreras<sup>1</sup>, Nuria Barbarroja<sup>1</sup>, M.ª Ángeles Aguirre<sup>1</sup>, Justo P. Castaño<sup>3,4,5,6</sup>, Raúl M. Luque<sup>3,4,5,6</sup>, Eduardo Collantes<sup>#1</sup> and Chary López-Pedrera<sup>#1</sup>.

## **Patients and Methods**

# Blood sample collection, assessment of clinical and biological parameters, and B-mode ultrasound IMT measurements.

Peripheral blood leukocyte subsets including monocytes, neutrophils and lymphocytes were isolated from the peripheral blood of RA patients and HD, using Ficoll Hypaque gradient and specific cell separation commercial kits (Miltenyi Biotech) and an autoMACS Pro Separator (Miltenyi Biotech, Bergisch Gladbach, Germany) as previously described.<sup>14</sup>

In a subset of patients from the first RA cohort, mononuclear cells were also collected from both, synovial fluid and peripheral blood by Ficoll Hypaque gradient to perform matching studies.

In the second cohort, comprising RA patients treated with anti-TNF, blood samples were obtained before and after 3 and 6 months of treatment. To avoid blood composition changes promoted by diet and circadian rhythms, samples were always collected in the early hours of the morning and after a fasting period of 8 hours.

Radiological involvement was assessed by evaluating the presence and number of eroded joints, joint space narrowing, soft tissue swelling, or joint effusion among other manifestations, such as osteoporosis or the presence of subcutaneous rheumatoid nodules.

#### **B-Mode Ultrasound IMT Measurements**

RA patients and controls underwent B-mode ultrasound imaging for carotid intimae media thickness (CIMT) measurements as previously described9. B-mode ultrasound imaging of the carotid arteries was performed by using Toshiba equipment (Aplio platform) equipped with 7–10 MHz broadband linear array transducers.

Patients were examined in the supine position, with the head turned 45° contralateral to the side of scanning. Three carotid arterial segments were assessed: the common carotid (1 cm proximal to the bulb), the carotid bulb (between the dilatation and flow divider), and the internal carotid (1 cm distal to the flow divider). Of each segment, the near and the far walls of the left and right carotid artery segments were imaged at 2 different angles. The maximum distance of the intima-media thickness, defined as "maximum IMT" was calculated for each view. The plaque was defined as a focal structure that encroached into the arterial lumen of at least 0.5 mm or 50% of the surrounding IMT value or demonstrated a thickness >1.5 mm as measured from the media-adventitia interface to the intima-lumen interface.

# Analysis of splicing machinery components by qPCR dynamic array based on microfluidic technology

Total RNA from monocytes, neutrophils and lymphocytes was isolated using TRIsure (Bioline, Memphis, TX, USA) followed by a DNAse treatment (RQ1DNAse, Promega; Wisconsin, USA) ensuing manufacturer's instructions. RNA purity and concentration were evaluated using Nanodrop spectrophotometer (Thermo Scientific, Waltham, MA, USA). 1000 ng of total RNA were retrotranscribed using NZY Reverse Transcriptase kit (NZYTech, Lisboa, Portugal) using random hexamer primers. A 48.48 Dynamic Array (Fluidigm, San Francisco, CA, USA) was used to assess the expression of 45 selected transcripts of the major and minor spliceosome and associated splicing factors as previously reported.<sup>12-16</sup>

Fluidigm (South San Francisco, CA, USA) dynamic arrays use microfluidics [an "integrated fluidic circuit" (IFC) connected to reagent input wells] and high-resolution imaging to perform qPCR with fluorescence detection in nanoliter reaction volumes. This microfluidics system allows more rapid screening of large sample sets and

consumption of substantially lower amounts of PCR reagents, while avoiding the reaction-compatibility requirements of multiplex systems that combine several target detection assays in 1 reaction (J Biomol Tech. 2016 Jul; 27(2): 75–83. doi: 10.7171/jbt.16-2702-003).

The panel of splicing machinery components was selected on the basis of two main criteria: 1) the relevance of the given spliceosome components in the splicing process [such as the components of the spliceosome core (SNRNP70, RNU2, RNU4, RNU5, SNRNP200, U2AF1, U2AF2, SF3B1, TCERG1, PRPF40A, PRPF8, RBM22, RNU11, RNU12, RNU4ATAC, RNU6ATAC)], and 2) its demonstrated role in autoimmune, rheumatic or inflammatory diseases (NOVA1, PTBP1, RAVER1, RBM45, SFPQ, SND1, SNW1, SRSF1, SRSF2, SRSF5, TIA1).

In the present study, a 48.48 Dynamic Array based on microfluidic technology (Fluidigm, San Francisco, CA, USA) was implemented, to determine the expression of 48 transcripts in 48 samples, simultaneously. Specific primers for human transcripts including components of the major (n=13) and minor spliceosome (n=4), associated SFs (n=28) and three housekeeping genes were specifically designed with the Primer3 software and StepOne<sup>™</sup> Real-Time PCR System software v2.3 (Applied Biosystems, Foster City, CA, USA). Following manufacturer's instructions, 12.5ng of cDNA of each sample were pre-amplified using 1µL of PreAmp Master Mix (Fluidigm) and 0.5µL of all primers mix (500nM) in a T100 Thermal-cycler (BioRad, Hercules, CA, USA), using the following program: 1) 2 min at 95°C; 2) 15 sec at 94°C and 4 min at 60°C (14 cycles). Then, samples were treated with  $2\mu L$  of  $4U/\mu L$  Exonuclease I solution (New England BioLabs, Ipswich, MA, USA) following manufacturer's instructions. Then, samples were diluted with 18µL of TE Buffer (Thermo Scientific), and 2.7µL were mixed with 3µL of EvaGreen Supermix (Bio-Rad) and 0.3µL of DNA Binding Dye Sample Loading Reagent (Fluidigm). Primers were diluted to 5µM with 2X Assay Loading Reagent (Fluidigm). Control line fluid was charged in the chip and Prime script program was run into the IFC controller MX (Fluidigm). Finally, 5µL of each primer and 5µL of each sample were pipetted into their respective inlets on the chip and the Load Mix script in the IFC controller software was run. After this program, the qPCR was run in the Biomark System (Fluidigm) following the thermal cycling program: 1) 95°C for 1min; 2) 35 cycles of denaturing (95°C for 5sec) and annealing/extension (60°C for 20sec); and 3) a last cycle where final PCR products were subjected to graded temperature-dependent dissociation (60°C to 95°C, increasing 1°C/3 sec).

Data were processed with Real-Time PCR Analysis Software 3.0 (Fluidigm).

Additionally, total RNA from PAXgene tubes containing whole blood samples, obtained from the second RA cohort involving patients treated with TNFi for six months, was purified by using the PAXgene Blood RNA kit (PreAnalytiX, Hombrechtikon, Switzerland).

Validation of altered spliceosome components in RA patients treated with TNFi and in HD treated with purified ACPA-IgG from RA patients or with non-immune IgG from HD was performed by quantitative real time PCR (qPCR) using LightCycler 480 (Applied Biosystems, Foster City, CA, USA) thermocycler and above-mentioned primers.

#### Bioplex assay of the inflammatory profile in plasma of RA patients

Secreted levels of 27 cytokines/chemokines/adhesion molecules in plasma of RA patients were determined using a 27-plex panel in a multiplex bead-based assay system (Bio-Plex multiplex immunoassays, Bio Rad; CA, USA). The assay was performed according to the manufacturer's protocol using Bio-Plex 200 system based on Luminex technology. Briefly, plasma samples were transferred to magnetic beads and incubated for 1 h at room temperature. After incubation, a series of steps including plate wash, antibody and streptavidin incubation before exposure of plate were performed. Finally, the samples were acquired and quantified using Bio-plex 200 (Luminex 200, USA). Cytokine concentrations were determined from standard curves prepared on each plate and expressed as pg/ml using the Bio-Plex ManagerTM software (Bio-Rad, Hercules, CA, USA).

# Analysis of an external RNAseq dataset to validate gene expression and identify splicing variants.

RNA-seq data of an external cohort of 44 patients (E-MTAB-6141) was analyzed as validation cohort to explore gene expression and splicing profile. This dataset included matching data of whole blood cells and synovial biopsies.

Gene expression and splicing variants analysis.

Raw paired-end FASTQ files were trimmed using Trim Galore and quality check was assessed using Fast QC and normalized using Salmon and the last release (v34) of

human GENCODE transcriptome. The relative abundance of transcripts in transcripts per million (TPM) generated by Salmon were used as input for SUPPA2 software to perform the calculation of relative abundances of the splicing events as Percent Spliced In Index (PSI or  $\Psi$ ). For differential expression analyses and to compare splicing variants considering high or low expression, gene abundances were imported to R and summarized to gene-level using Tximeta and normalized and quantified using DESeq2. In each comparison, samples were classified according to gene expression using third and first quartiles samples. PSI and TPM values for the low and high expression groups were used with SUPPA2 to perform the differential splicing analysis with local events, then splicing differences using delta PSI ( $\Delta \Psi$ ) were calculated. The difference in average PSI from each group with adjusted, and p value < 0.05 were considered significant. The PSI values were used to calculate the relative frequency of each splicing event per sample [Relative Frequency (event i) =  $(\Sigma PSI (event i))/(\Sigma PSI (total$ events) ]] and estimate the splicing event composition per sample. The comparisons between high and low groups were tested by t test with significance cutoff at p < 0.05. Classification of splicing event profiling was established into 7 types of events according to their splicing pattern: alternative 3' splice site, alternative 5' splice site, alternative first exon, alternative last exon, mutually exclusive exons, retained intron and skipped exon.

Gene Ontology (GO) terms enrichment analyses were performed using DAVID online software v6.8, (Huang Da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4(1):44-57. doi: 10.1038/nprot.2008.211. Huang Da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009;37(1):1-13. doi: 10.1093/nar/gkn923) using differentially expressed genes and genes with differentially spliced events.

#### In vitro studies

#### 1) Effects of anti-citrullinated protein antibodies on HD-leukocytes subsets

IgGs from serum of 5 RA patients with high titers of anti–citrullinated protein antibodies (ACPAs) and negative for RF were isolated using HiTrap protein-G-HP columns (GE Healthcare, Chicago, IL, USA). IgG-ACPAS were subsequently purified using CCP affinity columns as previously described (Barbarroja N et al., ATVB 2014). Briefly, Streptavidin agarose columns (Thermo Fisher Scientific, Waltham, MA, USA) were coupled with biotinylated CCP peptides

following the manufacturer's recommendations (EZ-Link Sulfo-NHS-LC-LC-Biotin, Thermo Fisher Scientific). A cyclic-CCP peptide was synthesized according to the sequence previously designed by Schellekens et al (Arthritis Rheum 2000; 43:155–63) for the clinical test of ACPAS (Immunostep, Salamanca, Spain): HQCHQESTXGRSRGRCGRSGS, where X refers to citrulline. The IgGs-containing ACPAs from RA serum were incubated with the CCP affinity column 6 hours at room temperature. Afterward, the column was washed with PBS to obtain the flow through with IgGs depleted in ACPAS. Finally, IgG-ACPAS were eluted with 0.1M Glycinehydrogen chloride (HCL) pH2.5 and neutralized with 2M Tris. The activity of both, IgG-ACPA and flow-through (IgGs depleted in ACPAS) was confirmed by ELISA (Immunoscan CCPlus, SVAr Life Science, Sweden).

Then, 500,000 cells/well from HD peripheral blood leukocytes subsets were treated with purified IgG-ACPAS and flow-through (IgG depleted in ACPAS) (10 ug/ml), either for 6 h (neutrophils) or for 24 h (monocytes and lymphocytes), and effects on SM components and inflammatory cytokines were assessed.

To evaluate the effects of FcR (Fc receptor) blockage, monocytes, lymphocytes and neutrophils were preincubated with FcR Blocking Reagent (Miltenty) for 15 minutes at 4 °C before the treatment with purified IgG-ACPAS and flow-through (IgG depleted in ACPAS), as above described.

To further validate the specificity of ACPAS, parallel experiments were carried out using human monoclonal ACPAS (anticitrullinated fibrinogen immunoglobulin, clone 1F11,10  $\mu$ g/ml) (MQR 2.101-100, Modiquest, Molenweg, The Netherlands) and synthetic human IgG (Jackson InmunoResearch Laboratories, Inc, Newmarket, Suffolk, UK).

Lastly,

2) Effects of inflammatory cytokines on the expression of SME in HD leukocytes subsets

500,000 cells/well from HD peripheral blood leukocytes subsets were treated with purified TNFa, IL6, and CCL2 (20 ng/ml each) either for 6 h (neutrophils) or for 24 h (monocytes and lymphocytes), and effects on SM components were assessed by RT-PCR.

3) Transfection studies

Peripheral blood leukocytes subsets from 4 RA patients were used for *transfection* studies. Briefly, 500,000 cells/well were transiently overexpressed using Lipofectamine 2000 (Life Technologies) with *KHDRBS1* (OHu20035, Genscript, Leiden, The Netherlands) or *SNRNP70* (OHu21864, Genscript) vectors for 24h, being the empty pCDNA3.1<sup>+</sup> (mock, Life Technologies, Grand Island, NY, USA) used as negative control, as previously described.<sup>32</sup> Then, effectiveness of transfections was assessed by RT-PCR and Western blot assays. A 27-plex panel of secreted inflammatory molecules was assessed in RA-lymphocytes; adhesion was evaluated on RA-monocytes after 24 h using Vybrant cell adhesion kit (Molecular Probes Inc, Leiden, The Netherlands); nucleosomes and neutrophil elastase were assessed in the supernatant of RA-neutrophils using the ELISAPLUS kit for detection of human cell death (Roche Diagnostics) and the Human Elastase PMN Sandwich ELISA Kit (Abcam, Cambridge, UK), respectively.

# 4) Effects of supernatants from transfected lymphocytes on functional activity of synovial fibroblasts.

For isolation of synovial fibroblasts (SF), synovial fluid was aspirated from joints of 10 patients with established and active RA. Fluid was collected in heparinized syringes, then centrifuged at 1200 rpm for 15 min. The resulting cell pellet was resuspended in 7 ml of growth medium [DMEM / F12 (1:1) HAM with 15% heat inactivated fetal bovine serum (FBS), 2mM l-glutamine, 1% penicillin/streptomycin solution (Sigma)], supplemented with fibroblast growth factor beta (FGFb, 1 ng/ml) and plated in 25 ml tissue culture flasks. Cultures were incubated at 37°C with 5% CO<sub>2</sub> for 24 to 48 h, after which medium was aspirated and cultures were washed with phosphate buffered saline (PBS) to remove nonadherent cells. Growth medium was replaced every 3 to 4 days. After 10 to 14 days, adherent cells were removed from flasks by trypsinization, washed, and transferred to 75 ml tissue culture flasks in fresh growth medium. Purified SF were passaged (split 1:3) when they reached confluence, generally at 10 to 14 days. Passages 2 through 6 were used for experiments.

Cultured SF were grown either in 96-well culture plates (5.000 cells/well) or 24-well culture plates (500.000 cells/well), and subsequently stimulated for 24h with the supernatant obtained from transfection cultures (diluted 1:1 with growth medium).

Then, SF proliferation and migration were measured using resazurin and wound-healing assays, respectively, as previously reported (*Jiménez-Vacas JM*, *Herrero-Aguayo V*, *Gómez-Gómez E*, et al. Spliceosome component SF3B1 as novel prognostic biomarker and therapeutic target for prostate cancer. Transl Res 2019;212:89-103. doi: 10.1016/j.trsl.2019.07.001). Gene expression of inflammatory mediators was evaluated by RT-PCR.

#### Identification of the citrullinome in PBMCs by LC-MS/MS

Sample preparation and LC-MS/MS analysis

Equal amounts of each sample pool (approximately 10µg) were reduced with 10 mM dithiothreitol for 1 h at 37 °C, and subsequently alkylated with 50 mM iodoacetamide for 45 minutes at room temperature in the dark. Samples were digested with sequencing grade modified trypsin (Promega) at 1:40 enzyme-to-substrate ratio. After 16 h of digestion at 37 °C, samples were acidified with 10% trifluoroacetic acid to ~pH 3. The digested peptides were desalted using in-house made stage tips (3M Empore SPE-C18 disk, 47 mm, Sigma Aldrich) and finally dried under speed-vacuum (Thermo, USA). The dried eluates were re-constituted in water with 2% acetonitrile (ACN) and 0.1% FA for direct LC-MS. The peptide mixture (200ng) was loaded in a nanoElute (Bruker Daltonics) nano-flow LC coupled to a high-resolution TIMS-QTOF (timsTOF Pro, Bruker Daltonics) with a CaptiveSpray ion source (Bruker Daltonics). Liquid chromatography was performed at 50 °C and with a constant flow of 500 nL/min on a reversed-phase column (15 cm \* 75 m i.d.) with a pulled emitter tip, packed with 1.9 m C18-coated porous silica beads (Dr. Maisch, Ammerbuch-Entringen, Germany). Chromatographic separation was carried out using a linear gradient of 5-35% buffer B (100% ACN and 0.1% FA) over 60 min. After ESI ionization, peptides were analyzed in data-dependent mode with Parallel Accumulation-Serial Fragmentation (PASEF) enabled.

#### Data analysis

Mass spectrometry raw files were processed with PEAKS Studio 10.6 build 20201221 (Bioinformatics solutions Inc.). The MS/MS spectra were matched to *in silico* derived fragment mass values of tryptic peptides against the UniProtKB/Swiss-Prot human database (release 2021\_02). Search parameters were: Parent Mass Error Tolerance: 15.0 ppm; Fragment Mass Error Tolerance: 0.05 Da; Enzyme: Trypsin; Fixed Modifications: Carbamidomethylation; Variable Modifications: Acetylation (Protein N-term), Deamidation (NQ), Oxidation (M), Acetylation (N-term) and Citrullination (R); Max Variable PTM Per Peptide: 3. Matches were filtered for 1% FDR at peptide level. For PTMs quantification, citrullinated peptides with AScore >20 (*p* value < 0.01) (PMID: 16964243) were considered.

Quantification of citrullination was calculated as the sum of intensities of all redundant identifications of a peptide in a certain citrullination state, divided by the sum of intensities of all identifications of the same peptide, independently of modifications.

#### **Statistical analysis**

Data were expressed as mean ± SEM or median ± IQR according to data distribution, evaluated using Kolmogorov-Smirnov test. Thus, Student's t test or Mann-Whitney rank sum test were used to assess statistical differences in unpaired data, and paired t tests and Wilcoxon matched-pairs signed rank tests for paired data. The chi-square test was used to associate qualitative variables. Correlations were evaluated by Spearman's correlation test. In addition, for adjusting the p-values towards multiple hypothesis testing, a Benjamini Hochberg-based false discovery rate (FDR) was applied (REF). Statistically significant differences were considered at p-value<0.05 and FDR<0.15 (*Y. Benjamini and Y. Hochberg, Controlling the False Discovery Rate-a Practical and Powerful Approach to Multiple Testing, J. Roy. Stat. Soc. B Stat. Methodol., 1995, 57, 289-300).* 

Logistic regression models were calculated using the formula  $= \frac{1}{1+e^{-(\beta 0+\beta_{1}x_{1},i+\dots+\beta_{k}x_{k},i)}},$  being  $\theta_{i}$  the coefficients of the parameters. Receiver operating characteristic (ROC) curves were performed to evaluate the specificity and sensibility of the different diagnostic or discriminating models. Statistical analysis of each ROC curve was performed by evaluating the area under the curve (AUC) of each model and comparing them with the reference line.

Data analyses were performed using SPSS 24.0 (IBM, Chicago, IL, USA) and GraphPad Prism 8.0 (GraphPad Software, La Jolla, CA).

#### SUPPLEMENTAL FIGURES

**Supplemental Figure 1.** Spliceosome components are dysregulated in a coordinated way. Heat map of correlation between the signature of 8 spliceosome components commonly altered in neutrophils, monocytes and lymphocytes. Positive and negative correlations are displayed in red or blue respectively accordingly to the Spearman correlation coefficient. Lym, lymphocytes; Mon, monocytes; Neu, neutrophils.

**Supplemental Figure 2.** RA patients exhibit an altered circulating pro-inflammatory profile. Plasmatic levels of a panel of 27 molecules including cytokines, chemokines and adhesion molecules were analysed by using a multiplex bead-based assay system.

(A) Heat map showing the differential expression of those molecules between RA and HD are shown. Blue and red colours represent downregulated and upregulated proinflammatory molecules respectively. (B) Violin plots indicating the expression levels of differentially expressed pro-inflammatory molecules in plasma from RA and HD. \*p<0.05, \*\*p<0.01, \*\*\*p<0.001. RA, Rheumatoid Arthritis; HD, Healthy Donors.

**Supplemental Figure 3. Differential expression of SME in whole blood cells and synovial biopsies.** Heatmap showing unsupervised hierarchical clustering of expression-pattern change of splicing machinery and splicing factors. Normalized transcripts have been scaled by autoscaling method to perform the heatmap.

Supplemental Figure 4.- The SME expression pattern is associated with differential splice events, splice variants, and gene pathways. A. Volcano-plots where the  $\Delta\Psi$  of total events calculated is plotted against the –log10 (p-value) of the Fisher's Exact Test to assay differentially expressed splicing variants between high and low SME expression groups of samples. B. Relative frequency of each alternative splicing event between low and high SME expression groups. C. UpSet plot for all transcript variants generated. Strips show the number of differentially spliced transcripts significantly different between low and high SME expression. Dots and lines represent specific transcripts. The histogram represents the number of differentially spliced transcripts.

**Supplemental Figure 5.- Enrichment plots according to differential splicing variants.** Gene Ontology (GO) terms enrichment analyses were performed using DAVID online software, using genes with differentially spliced events.

Supplemental Figure 6.- Enrichment plots according to differential expressed genes. A. Gene Ontology (GO) terms enrichment analyses were performed using DAVID online software, using differentially expressed genes. B. Volcano-plots where the  $log_2$  (Fold Change) of total differentially expressed genes is plotted against the  $-log_{10}$  (p-value) of the Fisher's Exact Test to assay differentially expressed genes between high and low SME expression groups of samples.

Supplemental Figure 7. Anti-TNF therapy for six months reverse the altered spliceosome signature of whole blood along with the inflammatory and clinical profile in RA patients. (A) Table showing clinical and serological characteristics of 25 responders RA patients before and after 6 months of TNFi therapy. (B) Heat map showing levels of circulating inflammatory molecules in plasma of RA patients before and after 6 months of TNFi therapy. Levels of inflammatory molecules are expressed as log 2 and normalized to time 0 (TO), before therapy in responders RA patients. (C) Violin plots representing the expression distribution of the 8 spliceosome components in whole blood before and after 6 months of TNFi therapy; T6, time 6 months after TNFi therapy; R, responders RA patients.

**Supplemental Figure 8. In vitro treatment of healthy leukocytes in the presence of FcR blockers prevents the alterations of SME induced by ACPAs**. Monocytes (A, D), lymphocytes (B, E) and neutrophils (C, F) from healthy donors were preincubated with

FcR Blocking Reagent (Miltenty) for 15 minutes at 4 °C before the treatment with 10 ug/ml of either, IgG-ACPA purified from RA patients through CCP-affinity column chromatography [IgG-ACPAS (+)] or the flow through depleted in Ig-ACPAS [IgG-ACPAS(-)] for 24 in monocytes and lymphocytes and 6 h in neutrophils. Spliceosome components (A, B, C) and inflammatory molecules (D, E, F) were analysed by RT-PCR. Data from 5 independent experiments carried out in triplicate are shown. \*p < 0.05, \*\*p < 0.01, IgG, immunoglobulin G; ACPAS, Anti-citrullinated protein antibodies.

Supplemental Figure 9. In vitro treatment of healthy leukocytes with monoclonal ACPAs modify the expression of the spliceosome signature along with their associated inflammatory profile. Monocytes (A, D), lymphocytes (B, E) and neutrophils (C, F) from healthy donors were treated with 10 ug/ml of a monoclonal IgG-ACPA (human monoclonal anticitrullinated fibrinogen immunoglobulin, clone 1F11) and a commercial IgG control (human IgG Jackson InmunoResearch Laboratories, Inc, Newmarket, Suffolk, UK) for 24 in monocytes and lymphocytes and 6 h in neutrophils. Spliceosome components (A, B, C) and inflammatory molecules (D, E, F) were analysed by RT-PCR. Data from 5 independent experiments carried out in triplicate are shown. \*p < 0.05, \*\*p < 0.01, IgG, immunoglobulin G; ACPAs, Anti-citrullinated protein antibodies.

Supplemental Figure 10. Citrullination status of PBMCs from RA patients associated to the SME alteration. A) Diagram showing the experimental design. RA patients were selected based on their opposite patterns of SME alteration analyzed previously by RT-PCR. Cell lysates from PBMC of 10 RA patients belonging to the first (5 patients) and third tercile (5 patients) mainly characterized by high ("mild SME alteration") and low ("severe SME alteration") levels of SME respectively were pooled and the global citrullination status was assessed by Liquid Chromatography with tandem mass spectrometry (LC-MC/MS). B) Levels of the 8 SME in PBMC from RA patients selected by using RT-PCR. C) Quantification of the global citrullination status in each pooled sample from PBMCs of RA patients. Mass spectrometry raw files were processed with PEAKS Studio 10.6 and total label-free quantification intensities (LFQ) were obtained. D) Citrullination status of well-stablished proteins as autoantigens of ACPAS in PBMCs from RA patients with differential SME alteration status. \*p<0.05

**Supplemental Figure 11. Effect of Cytokines in the expression of splicing machinery elements (SME) from healthy leukocytes.** Three cytokines with a key role in the pathogenesis of RA were added to monocytes, lymphocytes and neutrophils (10 ng/ml) purified from healthy donors. After 6 hours of treatment in neutrophils and 24 hours in monocytes and lymphocytes, SME levels were analyzed by RT-PCR. Data from 5 independent experiments carried out in triplicate are shown. \*p<0.05

Supplemental Figure 12. Impact of the modulation of the lymphocyte-splicing machinery elements in synovial fibroblast phenotype. A) Schematic representation of the experimental design. Supernatant from RA lymphocyte transfected with mock, KHDRBS1 and SNRNP70 were added to synovial fibroblast (SF) and its impact was

evaluated through functional assays after 24 hours of culture. B) Migration capacity of SF was evaluated through wound-healing assay. C) Proliferation rate of SF was studied by using resazurin-based fluorescent dye based assay. D) Activation status of SF was analyzed through RT-PCR where genes related to cytokine and chemokine activity and collagen fibrin organization were assessed. Data from 5 independent experiments carried out in triplicate are shown. Data from 4 independent experiments carried out in triplicate are shown. \* p<0.05













**Supplemental Figure 6** 

Α

| _                                |                   |               |       |  |  |
|----------------------------------|-------------------|---------------|-------|--|--|
|                                  | Responders (n=25) |               |       |  |  |
| -                                | Before<br>TNFi    | After<br>TNFi | р     |  |  |
| <b>Clinical parameters</b>       |                   |               |       |  |  |
| Female/male, n/n                 | 21/4              | -             |       |  |  |
| Age, y                           | 53 ± 11           | -             |       |  |  |
| Evolution time, y                | 10 ± 8            | -             |       |  |  |
| Swollen joints (n)               | 4,7 ± 3,9         | 0,8 ± 1,1     | 0,001 |  |  |
| Tender joints (n)                | 8,9 ± 6,4         | $2,9 \pm 6,6$ | <0,00 |  |  |
| DAS28                            | $4,8 \pm 1,1$     | $2,9 \pm 1,3$ | <0,00 |  |  |
| VAS                              | 60,9 ± 27,0       | 32,1 ± 26,4   | <0,00 |  |  |
| HAQ                              | 1,4 ± 0,8         | 1,3 ± 0,7     | 0,069 |  |  |
| Serological assessments          |                   |               |       |  |  |
| Anti-CCP levels (U/mL)           | 296,4 ± 281,2     | 166,6 ± 158,9 | 0,216 |  |  |
| Rheumatoid Factor levels (IU/mL) | 65,4 ± 77,6       | 74,8 ± 92,8   | 0,397 |  |  |
| CRP, mg/dL                       | 10,3 ± 8,2        | 5,7 ± 7,8     | 0,009 |  |  |
| ESR, mm/h                        | 29,9 ± 15,9       | 26,9 ± 18,6   | 0,384 |  |  |



С





0.5

IgG Control IgG ACPA



#### **Monocytes-Inflammation**



#### Lymphocytes-Inflammation



#### **Neutrophils-Inflammation**



**Supplemental Figure 9** 

IgG Control

IgG ACPA

IgG IgG Control ACPA

IgG IgG Control ACPA

IgG IgG Control ACPA

IgG IgG Control ACPA

IgG Control





23



### SUPPLEMENTAL TABLES

## Supplemental Table 1. List of primer sequences for inflammatory and selected splicing machinery components mRNAs

| GENE     | SEQUENCE               |                        |
|----------|------------------------|------------------------|
|          | Forward                | Reverse                |
| GAPDH    | TGTAGTTGAGGTCAATGAAGGG | ACATCGCTAGACACCATG     |
| IL1B     | CAGATTCTTTTCCTTGAGGC   | GCAACAAGTGGTGTTCTC     |
| IL2      | CACTAAGTCTTGCACTTGTC   | CTTAAATGTGAGCATCCTGG   |
| IL6      | AAGATTCCAAAGATGTAGCC   | ACATGTCTCCTTTCTCAGG    |
| IL8      | TACTCCAAACCTTTCCACC    | CTCAGCCCTCTTCAAAAAC    |
| IL12A    | ATGAGAGTTGCCTAAATTCC   | CATAAAAGAGGTCTTTCTGGAG |
| IL17A    | GTATGAGAAAAGTTCAGCCC   | TGGTTACGATGTGAAACTTG   |
| IFNG     | GGTAACTGACTTGAATGTCC   | TTTTCGCTTCCCTGTTAG     |
| IP10     | AAAGCAGTTAGCAAGGAAAG   | TCATTGGTCACCTTTTAGTG   |
| MCP1     | CTATAGAAGAATCACCAGCAG  | CTAGGGGAAAATAAGTTAGCTG |
| RANTES   | ATCTGCCTCCCCATATTC     | AAGAGTTGATGTACTCCCG    |
| TF       | GTGAAGAAATCAGCTTCTGAC  | ATTCATCAAATCTGCAGTGG   |
| TNF      | CTCAGCCTCTTCTCCTTC     | AGAAGATGATCTGACTGCC    |
| VEGFA    | GACCAAAGAAAGATAGAGCAAG | ATACGCTCCAGGACTTATAC   |
| SNRNP70  | TCTTCGTGGCGAGAGTGAAT   | GCTTTCCTGACCGCTTACTG   |
| SNRNP200 | GGTGCTGTCCCTTGTTGG     | CTTTCTTCGCTTGGCTCTTCT  |
| U2AF2    | CTTTGACCAGAGGCGCTAAA   | TACTGCATTGGGGTGATGTG   |
| RNU4ATAC | GTTGCGCTACTGTCCAATGA   | CAAAAATTGCACCAAAATAA   |
| RBM17    | CAAAGAGCCAAAGGACGAAA   | TACATGCGGTGGAGTGTCC    |
| RBM3     | AAGCTCTTCGTGGGAGGG     | TTGACAACGACCACCTCAGA   |
| KHDRBS1  | GAGCGAGTGCTGATACCTGTC  | CACCAGTCTCTTCCTGCAGTC  |
| SRSF10   | CTACACTCGCCGTCCAAGAG   | CCGTCCACAAATCCACTTTC   |
|          |                        |                        |

### Supplemental Table 2. Citrullinated proteins in PBMCs from Rheumatoid Arthritis patients identified by mass spectrometry

| <b>Citrullinated Protein</b> | Protein Description                                 | Protei  | Modified Peptide Sequence |
|------------------------------|-----------------------------------------------------|---------|---------------------------|
|                              |                                                     | n       |                           |
|                              |                                                     | Positio |                           |
|                              |                                                     | n       |                           |
| Q9Y490 TLN1_HUMAN            | Talin-1 OS=Homo sapiens OX=9606 GN=TLN1 PE=1 SV=3   | R181    | LNWLDHGRTLrEQGVEEHETL     |
|                              | Talin-1 OS=Homo sapiens OX=9606 GN=TLN1 PE=1 SV=3   | R207    | FFYSDQNVDSrDPVQLNLLYV     |
|                              | Talin-1 OS=Homo sapiens OX=9606 GN=TLN1 PE=1 SV=3   | R454    | HGSVALPAIMrSGASGPENFQ     |
|                              | Talin-1 OS=Homo sapiens OX=9606 GN=TLN1 PE=1 SV=3   | R1222   | ALRAVGDASKrLLSDSLPPST     |
|                              | Talin-1 OS=Homo sapiens OX=9606 GN=TLN1 PE=1 SV=3   | R1241   | STGTFQEAQSrLNEAAAGLNQ     |
|                              | Talin-1 OS=Homo sapiens OX=9606 GN=TLN1 PE=1 SV=3   | R1523   | SARTTNPTAKrQFVQSAKEVA     |
|                              | Talin-1 OS=Homo sapiens OX=9606 GN=TLN1 PE=1 SV=3   | R1618   | ESAGGLIQTArALAVNPRDPP     |
|                              | Talin-1 OS=Homo sapiens OX=9606 GN=TLN1 PE=1 SV=3   | R2197   | AKAVAAGNSCrQEDVIATANL     |
|                              | Talin-1 OS=Homo sapiens OX=9606 GN=TLN1 PE=1 SV=3   | R2210   | DVIATANLSRrAIADMLRACK     |
|                              | Talin-1 OS=Homo sapiens OX=9606 GN=TLN1 PE=1 SV=3   | R2368   | ALVKAASAAQrELVAQGKVGA     |
|                              | Talin-1 OS=Homo sapiens OX=9606 GN=TLN1 PE=1 SV=3   | R2538   | QQYKFLPSELrDEH******      |
| P21333 FLNA_HUMAN            | Filamin-A OS=Homo sapiens OX=9606 GN=FLNA PE=1 SV=4 | R7      | ****MSSSHSrAGQSAAGAAP     |
|                              | Filamin-A OS=Homo sapiens OX=9606 GN=FLNA PE=1 SV=4 | R24     | GAAPGGGVDTrDAEMPATEKD     |
|                              | Filamin-A OS=Homo sapiens OX=9606 GN=FLNA PE=1 SV=4 | R301    | IEPTGNMVKKrAEFTVETRSA     |
|                              | Filamin-A OS=Homo sapiens OX=9606 GN=FLNA PE=1 SV=4 | R678    | QDFHPDRVKArGPGLEKTGVA     |
|                              | Filamin-A OS=Homo sapiens OX=9606 GN=FLNA PE=1 SV=4 | R828    | AEADIDFDIIrNDNDTFTVKY     |
|                              | Filamin-A OS=Homo sapiens OX=9606 GN=FLNA PE=1 SV=4 | R1032   | PGLGADNSVVrFLPREEGPYE     |
|                              | Filamin-A OS=Homo sapiens OX=9606 GN=FLNA PE=1 SV=4 | R2003   | REEPCLLKRLrNGHVGISFVP     |
|                              | Filamin-A OS=Homo sapiens OX=9606 GN=FLNA PE=1 SV=4 | R2288   | PSKAEISFEDrKDGSCGVAYV     |
|                              | Filamin-A OS=Homo sapiens OX=9606 GN=FLNA PE=1 SV=4 | R2391   | TEIDQDKYAVrFIPRENGVYL     |
|                              | Filamin-A OS=Homo sapiens OX=9606 GN=FLNA PE=1 SV=4 | R2395   | QDKYAVRFIPrENGVYLIDVK     |

|                   | Filamin-A OS=Homo sapiens OX=9606 GN=FLNA PE=1 SV=4                        | R2484 | MDCQECPEGYrVTYTPMAPGS |
|-------------------|----------------------------------------------------------------------------|-------|-----------------------|
| P60709 ACTB_HUMAN | Actin cytoplasmic 1 OS=Homo sapiens OX=9606 GN=ACTB PE=1 SV=1              | R62   | SYVGDEAQSKrGILTLKYPIE |
|                   | Actin cytoplasmic 1 OS=Homo sapiens OX=9606 GN=ACTB PE=1 SV=1              | R177  | EGYALPHAILrLDLAGRDLTD |
|                   | Actin cytoplasmic 1 OS=Homo sapiens OX=9606 GN=ACTB PE=1 SV=1              | R312  | GTTMYPGIADrMQKEITALAP |
|                   | Actin cytoplasmic 2 OS=Homo sapiens OX=9606 GN=ACTG1 PE=1 SV=1             | R62   | SYVGDEAQSKrGILTLKYPIE |
|                   | Actin cytoplasmic 2 OS=Homo sapiens OX=9606 GN=ACTG1 PE=1 SV=1             | R177  | EGYALPHAILrLDLAGRDLTD |
|                   | Actin cytoplasmic 2 OS=Homo sapiens OX=9606 GN=ACTG1 PE=1 SV=1             | R312  | GTTMYPGIADrMQKEITALAP |
| P35579 MYH9_HUMAN | Myosin-9 OS=Homo sapiens OX=9606 GN=MYH9 PE=1 SV=4                         | R159  | HIYAITDTAYrSMMQDREDQS |
|                   | Myosin-9 OS=Homo sapiens OX=9606 GN=MYH9 PE=1 SV=4                         | R1923 | EVSSLKNKLRrGDLPFVVPRR |
| P68032 ACTC_HUMAN | Actin alpha cardiac muscle 1 OS=Homo sapiens OX=9606 GN=ACTC1<br>PE=1 SV=1 | R64   | SYVGDEAQSKrGILTLKYPIE |
| P18206 VINC_HUMAN | Vinculin OS=Homo sapiens OX=9606 GN=VCL PE=1 SV=4                          | R502  | HLEGKIEQAQrWIDNPTVDDR |
|                   | Vinculin OS=Homo sapiens OX=9606 GN=VCL PE=1 SV=4                          | R538  | RLANVMMGPYrQDLLAKCDRV |
| P07996 TSP1_HUMAN | Thrombospondin-1 OS=Homo sapiens OX=9606 GN=THBS1 PE=1 SV=2                | R20   | LFLMHVCGTNrIPESGGDNSV |
|                   | Thrombospondin-1 OS=Homo sapiens OX=9606 GN=THBS1 PE=1 SV=2                | R479  | MNGKPCEGEArETKACKKDAC |
| P14618 KPYM_HUMAN | Pyruvate kinase PKM OS=Homo sapiens OX=9606 GN=PKM PE=1 SV=4               | R279  | SKIENHEGVRrFDEILEASDG |
|                   | Pyruvate kinase PKM OS=Homo sapiens OX=9606 GN=PKM PE=1 SV=4               | R294  | LEASDGIMVArGDLGIEIPAE |
|                   | Pyruvate kinase PKM OS=Homo sapiens OX=9606 GN=PKM PE=1 SV=4               | R376  | AKGDYPLEAVrMQHLIAREAE |
| P08670 VIME_HUMAN | Vimentin OS=Homo sapiens OX=9606 GN=VIM PE=1 SV=4                          | R196  | REKLQEEMLQrEEAENTLQSF |
|                   | Vimentin OS=Homo sapiens OX=9606 GN=VIM PE=1 SV=4                          | R273  | PDLTAALRDVrQQYESVAAKN |
|                   | Vimentin OS=Homo sapiens OX=9606 GN=VIM PE=1 SV=4                          | R304  | KFADLSEAANrNNDALRQAKQ |
|                   | Vimentin OS=Homo sapiens OX=9606 GN=VIM PE=1 SV=4                          | R381  | NMKEEMARHLrEYQDLLNVKM |
|                   | Vimentin OS=Homo sapiens OX=9606 GN=VIM PE=1 SV=4                          | R410  | YRKLLEGEESrISLPLPNFSS |
| P05106 ITB3_HUMAN | Integrin beta-3 OS=Homo sapiens OX=9606 GN=ITGB3 PE=1 SV=2                 | R93   | PVSEARVLEDrPLSDKGSGDS |
| P02788 TRFL_HUMAN | Lactotransferrin OS=Homo sapiens OX=9606 GN=LTF PE=1 SV=6                  | R462  | EGYLAVAVVRrSDTSLTWNSV |
| P06733 ENOA_HUMAN | Alpha-enolase OS=Homo sapiens OX=9606 GN=ENO1 PE=1 SV=2                    | R429  | SKAKFAGRNFrNPLAK***** |

| P12814 ACTN1_HUMAN | Alpha-actinin-1 OS=Homo sapiens OX=9606 GN=ACTN1 PE=1 SV=2                        | R232 | LDAEDIVGTArPDEKAIMTYV |
|--------------------|-----------------------------------------------------------------------------------|------|-----------------------|
|                    | Alpha-actinin-1 OS=Homo sapiens OX=9606 GN=ACTN1 PE=1 SV=2                        | R350 | TLQTKLRLSNrPAFMPSEGRM |
|                    | Alpha-actinin-1 OS=Homo sapiens OX=9606 GN=ACTN1 PE=1 SV=2                        | R614 | WDHVRQLVPRrDQALTEEHAR |
| P07437 TBB5_HUMAN  | Tubulin beta chain OS=Homo sapiens OX=9606 GN=TUBB PE=1 SV=2                      | R2   | *******MrEIVHIQAGQC   |
|                    | Tubulin beta chain OS=Homo sapiens OX=9606 GN=TUBB PE=1 SV=2                      | R121 | ELVDSVLDVVrKEAESCDCLQ |
| P68371 TBB4B_HUMAN | Tubulin beta-4B chain OS=Homo sapiens OX=9606 GN=TUBB4B PE=1<br>SV=1              | R2   | *******MrEIVHLQAGQC   |
|                    | Tubulin beta-4B chain OS=Homo sapiens OX=9606 GN=TUBB4B PE=1<br>SV=1              | R77  | DLEPGTMDSVrSGPFGQIFRP |
|                    | Tubulin beta-4B chain OS=Homo sapiens OX=9606 GN=TUBB4B PE=1<br>SV=1              | R121 | ELVDSVLDVVrKEAESCDCLQ |
| P02768 ALBU_HUMAN  | Albumin OS=Homo sapiens OX=9606 GN=ALB PE=1 SV=2                                  | R281 | HGDLLECADDrADLAKYICEN |
| Q6S8J3 POTEE_HUMAN | POTE ankyrin domain family member E OS=Homo sapiens OX=9606<br>GN=POTEE PE=2 SV=3 | R762 | SYVGKEAQSKrGILTLKYPME |
| O75083 WDR1_HUMAN  | WD repeat-containing protein 1 OS=Homo sapiens OX=9606 GN=WDR1<br>PE=1 SV=4       | R470 | VAIGGVDGNVrLYSILGTTLK |
| P00558 PGK1_HUMAN  | Phosphoglycerate kinase 1 OS=Homo sapiens OX=9606 GN=PGK1 PE=1<br>SV=3            | R66  | KSVVLMSHLGrPDGVPMPDKY |
| P06396 GELS_HUMAN  | Gelsolin OS=Homo sapiens OX=9606 GN=GSN PE=1 SV=1                                 | R623 | AEKTGAQELLrVLRAQPVQVA |
|                    | Gelsolin OS=Homo sapiens OX=9606 GN=GSN PE=1 SV=1                                 | R741 | IETDPANRDRrTPITVVKQGF |
| P04075 ALDOA_HUMAN | Fructose-bisphosphate aldolase A OS=Homo sapiens OX=9606<br>GN=ALDOA PE=1 SV=2    | R201 | ILPDGDHDLKrCQYVTEKVLA |
| P11021 BIP_HUMAN   | Endoplasmic reticulum chaperone BiP OS=Homo sapiens OX=9606<br>GN=HSPA5 PE=1 SV=2 | R49  | YSCVGVFKNGrVEIIANDQGN |
|                    | Endoplasmic reticulum chaperone BiP OS=Homo sapiens OX=9606<br>GN=HSPA5 PE=1 SV=2 | R60  | VEIIANDQGNrITPSYVAFTP |

|                    | Endoplasmic reticulum chaperone BiP OS=Homo sapiens OX=9606<br>GN=HSPA5 PE=1 SV=2     | R74  | SYVAFTPEGErLIGDAAKNQL |
|--------------------|---------------------------------------------------------------------------------------|------|-----------------------|
|                    | Endoplasmic reticulum chaperone BiP OS=Homo sapiens OX=9606<br>GN=HSPA5 PE=1 SV=2     | R492 | FDLTGIPPAPrGVPQIEVTFE |
| P68871 HBB_HUMAN   | Hemoglobin subunit beta OS=Homo sapiens OX=9606 GN=HBB PE=1<br>SV=2                   | R31  | VDEVGGEALGrLLVVYPWTQR |
| P26038 MOES_HUMAN  | Moesin OS=Homo sapiens OX=9606 GN=MSN PE=1 SV=3                                       | R295 | MGNHELYMRRrKPDTIEVQQM |
| P00488 F13A_HUMAN  | Coagulation factor XIII A chain OS=Homo sapiens OX=9606 GN=F13A1<br>PE=1 SV=4         | R716 | LIASMSSDSLrHVYGELDVQI |
| P05164 PERM_HUMAN  | Myeloperoxidase OS=Homo sapiens OX=9606 GN=MPO PE=1 SV=1                              | R184 | RTITGMCNNRrSPTLGASNRA |
|                    | Myeloperoxidase OS=Homo sapiens OX=9606 GN=MPO PE=1 SV=1                              | R236 | LARAVSNEIVrFPTDQLTPDQ |
|                    | Myeloperoxidase OS=Homo sapiens OX=9606 GN=MPO PE=1 SV=1                              | R670 | LLACIIGTQFrKLRDGDRFWW |
|                    | Myeloperoxidase OS=Homo sapiens OX=9606 GN=MPO PE=1 SV=1                              | R725 | NNIFMSNSYPrDFVNCSTLPA |
| P20700 LMNB1_HUMAN | Lamin-B1 OS=Homo sapiens OX=9606 GN=LMNB1 PE=1 SV=2                                   | R14  | ATPVPPRMGSrAGGPTTPLSP |
| Q01518 CAP1_HUMAN  | Adenylyl cyclase-associated protein 1 OS=Homo sapiens OX=9606<br>GN=CAP1 PE=1 SV=5    | R17  | LVERLERAVGrLEAVSHTSDM |
| Q9BVA1 TBB2B_HUMAN | Tubulin beta-2B chain OS=Homo sapiens OX=9606 GN=TUBB2B PE=1<br>SV=1                  | R2   | *******MrEIVHIQAGQC   |
|                    | Tubulin beta-2B chain OS=Homo sapiens OX=9606 GN=TUBB2B PE=1<br>SV=1                  | R121 | ELVDSVLDVVrKESESCDCLQ |
| P02675 FIBB_HUMAN  | Fibrinogen beta chain OS=Homo sapiens OX=9606 GN=FGB PE=1 SV=2                        | R285 | ENGGWTVIQNrQDGSVDFGRK |
| Q86UX7 URP2_HUMAN  | Fermitin family homolog 3 OS=Homo sapiens OX=9606 GN=FERMT3<br>PE=1 SV=1              | R35  | EDPEAESVTLrVTGESHIGGV |
|                    | Fermitin family homolog 3 OS=Homo sapiens OX=9606 GN=FERMT3<br>PE=1 SV=1              | R215 | PDPLLLQRLPrPSSLSDKTQL |
| P10809 CH60_HUMAN  | 60 kDa heat shock protein mitochondrial OS=Homo sapiens OX=9606<br>GN=HSPD1 PE=1 SV=2 | R446 | IVLGGGCALLrCIPALDSLTP |

| P62937 PPIA_HUMAN  | Peptidyl-prolyl cis-trans isomerase A OS=Homo sapiens OX=9606<br>GN=PPIA PE=1 SV=2       | R37  | DKVPKTAENFrALSTGEKGFG |
|--------------------|------------------------------------------------------------------------------------------|------|-----------------------|
| P06576 ATPB_HUMAN  | ATP synthase subunit beta mitochondrial OS=Homo sapiens OX=9606<br>GN=ATP5F1B PE=1 SV=3  | R345 | LATDMGTMQErITTTKKGSIT |
| P69905 HBA_HUMAN   | Hemoglobin subunit alpha OS=Homo sapiens OX=9606 GN=HBA1 PE=1<br>SV=2                    | R32  | AGEYGAEALErMFLSFPTTKT |
| A5A3E0 POTEF_HUMAN | POTE ankyrin domain family member F OS=Homo sapiens OX=9606<br>GN=POTEF PE=1 SV=2        | R762 | SYVGKEAQSKrGILTLKYPME |
| P07900 HS90A_HUMAN | Heat shock protein HSP 90-alpha OS=Homo sapiens OX=9606<br>GN=HSP90AA1 PE=1 SV=5         | R620 | MERIMKAQALrDNSTMGYMAA |
| P25705 ATPA_HUMAN  | ATP synthase subunit alpha mitochondrial OS=Homo sapiens OX=9606<br>GN=ATP5F1A PE=1 SV=1 | R186 | APGIIPRISVrEPMQTGIKAV |
|                    | ATP synthase subunit alpha mitochondrial OS=Homo sapiens OX=9606<br>GN=ATP5F1A PE=1 SV=1 | R262 | KRSTVAQLVKrLTDADAMKYT |
| P08238 HS90B_HUMAN | Heat shock protein HSP 90-beta OS=Homo sapiens OX=9606<br>GN=HSP90AB1 PE=1 SV=4          | R291 | ELNKTKPIWTrNPDDITQEEY |
|                    | Heat shock protein HSP 90-beta OS=Homo sapiens OX=9606<br>GN=HSP90AB1 PE=1 SV=4          | R604 | STYGWTANMErIMKAQALRDN |
|                    | Heat shock protein HSP 90-beta OS=Homo sapiens OX=9606<br>GN=HSP90AB1 PE=1 SV=4          | R612 | MERIMKAQALrDNSTMGYMMA |
| P31146 COR1A_HUMAN | Coronin-1A OS=Homo sapiens OX=9606 GN=CORO1A PE=1 SV=4                                   | R354 | RCEPIAMTVPrKSDLFQEDLY |
|                    | Coronin-1A OS=Homo sapiens OX=9606 GN=CORO1A PE=1 SV=4                                   | R408 | PPKSRELRVNrGLDTGRRRAA |
|                    | Coronin-1A OS=Homo sapiens OX=9606 GN=CORO1A PE=1 SV=4                                   | R450 | LQATVQELQKrLDRLEETVQA |
| Q13509 TBB3_HUMAN  | Tubulin beta-3 chain OS=Homo sapiens OX=9606 GN=TUBB3 PE=1 SV=2                          | R2   | *******MrEIVHIQAGQC   |
|                    | Tubulin beta-3 chain OS=Homo sapiens OX=9606 GN=TUBB3 PE=1 SV=2                          | R121 | ELVDSVLDVVrKECENCDCLQ |

| P22626 ROA2_HUMAN  | Heterogeneous nuclear ribonucleoproteins A2/B1 OS=Homo sapiens<br>OX=9606 GN=HNRNPA2B1 PE=1 SV=2   | R200  | RQEMQEVQSSrSGRGGNFGFG |
|--------------------|----------------------------------------------------------------------------------------------------|-------|-----------------------|
|                    | Heterogeneous nuclear ribonucleoproteins A2/B1 OS=Homo sapiens<br>OX=9606 GN=HNRNPA2B1 PE=1 SV=2   | R203  | MQEVQSSRSGrGGNFGFGDSR |
|                    | Heterogeneous nuclear ribonucleoproteins A2/B1 OS=Homo sapiens<br>OX=9606 GN=HNRNPA2B1 PE=1 SV=2   | R228  | NFGPGPGSNFrGGSDGYGSGR |
| P08133 ANXA6_HUMAN | Annexin A6 OS=Homo sapiens OX=9606 GN=ANXA6 PE=1 SV=3                                              | R358  | VARVELKGTVrPANDFNPDAD |
| P68104 EF1A1_HUMAN | Elongation factor 1-alpha 1 OS=Homo sapiens OX=9606 GN=EEF1A1<br>PE=1 SV=1                         | R423  | ESFSDYPPLGrFAVRDMRQTV |
| Q03252 LMNB2_HUMAN | Lamin-B2 OS=Homo sapiens OX=9606 GN=LMNB2 PE=1 SV=4                                                | R28   | AATMATPLPGrAGGPATPLSP |
| P52272 HNRPM_HUMAN | Heterogeneous nuclear ribonucleoprotein M OS=Homo sapiens<br>OX=9606 GN=HNRNPM PE=1 SV=3           | R410  | GIERMGPGIDrLGGAGMERMG |
|                    | Heterogeneous nuclear ribonucleoprotein M OS=Homo sapiens<br>OX=9606 GN=HNRNPM PE=1 SV=3           | R429  | MGAGLGHGMDrVGSEIERMGL |
|                    | Heterogeneous nuclear ribonucleoprotein M OS=Homo sapiens<br>OX=9606 GN=HNRNPM PE=1 SV=3           | R443  | EIERMGLVMDrMGSVERMGSG |
| P63104 1433Z_HUMAN | 14-3-3 protein zeta/delta OS=Homo sapiens OX=9606 GN=YWHAZ PE=1<br>SV=1                            | R18   | QKAKLAEQAErYDDMAACMKS |
| P60174 TPIS_HUMAN  | Triosephosphate isomerase OS=Homo sapiens OX=9606 GN=TPI1 PE=1<br>SV=4                             | R53   | APPTAYIDFArQKLDPKIAVA |
| P60660 MYL6_HUMAN  | Myosin light polypeptide 6 OS=Homo sapiens OX=9606 GN=MYL6 PE=1<br>SV=2                            | R110  | GNGTVMGAEIrHVLVTLGEKM |
| Q00610 CLH1_HUMAN  | Clathrin heavy chain 1 OS=Homo sapiens OX=9606 GN=CLTC PE=1 SV=5                                   | R1620 | VDKLDASESLrKEEEQATETQ |
| Q93084 AT2A3_HUMAN | Sarcoplasmic/endoplasmic reticulum calcium ATPase 3 OS=Homo<br>sapiens OX=9606 GN=ATP2A3 PE=1 SV=2 | R164  | AVGDKVPADLrLIEIKSTTLR |
| P22314 UBA1_HUMAN  | Ubiquitin-like modifier-activating enzyme 1 OS=Homo sapiens OX=9606<br>GN=UBA1 PE=1 SV=3           | R239  | PGVVTCLDEArHGFESGDFVS |

|                    | Ubiquitin-like modifier-activating enzyme 1 OS=Homo sapiens OX=9606<br>GN=UBA1 PE=1 SV=3  | R880  | AENYDIPSADrHKSKLIAGKI |
|--------------------|-------------------------------------------------------------------------------------------|-------|-----------------------|
| P52566 GDIR2_HUMAN | Rho GDP-dissociation inhibitor 2 OS=Homo sapiens OX=9606<br>GN=ARHGDIB PE=1 SV=3          | R149  | ATFMVGSYGPrPEEYEFLTPV |
| P61978 HNRPK_HUMAN | Heterogeneous nuclear ribonucleoprotein K OS=Homo sapiens OX=9606<br>GN=HNRNPK PE=1 SV=1  | R37   | MEEEQAFKRSrNTDEMVELRI |
| P08567 PLEK_HUMAN  | Pleckstrin OS=Homo sapiens OX=9606 GN=PLEK PE=1 SV=3                                      | R174  | WLVSNQSVRNrQEGLMIASSL |
|                    | Pleckstrin OS=Homo sapiens OX=9606 GN=PLEK PE=1 SV=3                                      | R307  | VTSVESNSNGrKSEEENLFEI |
| P37802 TAGL2_HUMAN | Transgelin-2 OS=Homo sapiens OX=9606 GN=TAGLN2 PE=1 SV=3                                  | R4    | ******MANrGPAYGLSREV  |
|                    | Transgelin-2 OS=Homo sapiens OX=9606 GN=TAGLN2 PE=1 SV=3                                  | R196  | QAGMTGYGMPrQIL******  |
| P61158 ARP3_HUMAN  | Actin-related protein 3 OS=Homo sapiens OX=9606 GN=ACTR3 PE=1<br>SV=3                     | R4    | ******MAGrLPACVVDCGT  |
| P31946 1433B_HUMAN | 14-3-3 protein beta/alpha OS=Homo sapiens OX=9606 GN=YWHAB PE=1<br>SV=3                   | R20   | QKAKLAEQAErYDDMAAAMKA |
| P08311 CATG_HUMAN  | Cathepsin G OS=Homo sapiens OX=9606 GN=CTSG PE=1 SV=2                                     | R82   | VTLGAHNIQRrENTQQHITAR |
| P02671 FIBA_HUMAN  | Fibrinogen alpha chain OS=Homo sapiens OX=9606 GN=FGA PE=1 SV=2                           | R263  | DMPQMRMELErPGGNEITRGG |
|                    | Fibrinogen alpha chain OS=Homo sapiens OX=9606 GN=FGA PE=1 SV=2                           | R512  | GIGTLDGFRHrHPDEAAFFDT |
| P15311 EZRI_HUMAN  | Ezrin OS=Homo sapiens OX=9606 GN=EZR PE=1 SV=4                                            | R295  | MGNHELYMRRrKPDTIEVQQM |
| Q9Y4G6 TLN2_HUMAN  | Talin-2 OS=Homo sapiens OX=9606 GN=TLN2 PE=1 SV=4                                         | R209  | FFYSDQNVDSrDPVQLNLLYV |
|                    | Talin-2 OS=Homo sapiens OX=9606 GN=TLN2 PE=1 SV=4                                         | R2198 | AKAVAAGNSCrQEDVIATANL |
| P26599 PTBP1_HUMAN | Polypyrimidine tract-binding protein 1 OS=Homo sapiens OX=9606<br>GN=PTBP1 PE=1 SV=1      | R254  | QNIYNACCTLrIDFSKLTSLN |
| P02545 LMNA_HUMAN  | Prelamin-A/C OS=Homo sapiens OX=9606 GN=LMNA PE=1 SV=1                                    | R329  | KLRDLEDSLArERDTSRRLLA |
| P41218 MNDA_HUMAN  | Myeloid cell nuclear differentiation antigen OS=Homo sapiens OX=9606<br>GN=MNDA PE=1 SV=1 | R204  | TQAQRQVDARrNVPQNDPVTV |
| P23527 H2B10_HUMAN | Histone H2B type 1-O OS=Homo sapiens OX=9606 GN=H2BC17 PE=1<br>SV=3                       | R93   | HYNKRSTITSrEIQTAVRLLL |

32

| Q93079 H2B1H_HUMANHistone H2B type 1-H OS=Homo sapiens OX=9606 GN=H2BC9 PE=1 SV=3R93P33778 H2B1B_HUMANHistone H2B type 1-B OS=Homo sapiens OX=9606 GN=H2BC3 PE=1 SV=2R93P06899 H2B1J_HUMANHistone H2B type 1-J OS=Homo sapiens OX=9606 GN=H2BC11 PE=1R93SV=3SV=3SV=3R93P58876 H2B1N_HUMANHistone H2B type 1-D OS=Homo sapiens OX=9606 GN=H2BC5 PE=1 SV=2R93Q99877 H2B1N_HUMANHistone H2B type 1-N OS=Homo sapiens OX=9606 GN=H2BC15 PE=1R93O60814 H2B1K_HUMANHistone H2B type 1-K OS=Homo sapiens OX=9606 GN=H2BC12 PE=1R93SV=3SV=3SV=3R93 | HYNKRSTITSTEIQTAVRLLL |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| P33778 H2B1B_HUMANHistone H2B type 1-B OS=Homo sapiens OX=9606 GN=H2BC3 PE=1 SV=2R93P06899 H2B1J_HUMANHistone H2B type 1-J OS=Homo sapiens OX=9606 GN=H2BC11 PE=1R93SV=3SV=3R93P58876 H2B1D_HUMANHistone H2B type 1-D OS=Homo sapiens OX=9606 GN=H2BC5 PE=1 SV=2R93Q99877 H2B1N_HUMANHistone H2B type 1-N OS=Homo sapiens OX=9606 GN=H2BC15 PE=1R93O60814 H2B1K_HUMANHistone H2B type 1-K OS=Homo sapiens OX=9606 GN=H2BC12 PE=1R93SV=3SV=3SV=3                                                                                            | HYNKRSTITSrEIQTAVRLLL |
| P06899 H2B1J_HUMANHistone H2B type 1-J OS=Homo sapiens OX=9606 GN=H2BC11 PE=1R93SV=3SV=3Histone H2B type 1-D OS=Homo sapiens OX=9606 GN=H2BC5 PE=1 SV=2R93Q99877 H2B1N_HUMANHistone H2B type 1-N OS=Homo sapiens OX=9606 GN=H2BC15 PE=1R93SV=3SV=3SV=3R93                                                                                                                                                                                                                                                                                  | HYNKRSTITSrEIQTAVRLLL |
| P58876 H2B1D_HUMANHistone H2B type 1-D OS=Homo sapiens OX=9606 GN=H2BC5 PE=1 SV=2R93Q99877 H2B1N_HUMANHistone H2B type 1-N OS=Homo sapiens OX=9606 GN=H2BC15 PE=1R93SV=3SV=3SV=3R93                                                                                                                                                                                                                                                                                                                                                        | HYNKRSTITSrEIQTAVRLLL |
| Q99877   H2B1N_HUMAN Histone H2B type 1-N OS=Homo sapiens OX=9606 GN=H2BC15 PE=1 R93   SV=3 SV=3 R93   O60814   H2B1K_HUMAN Histone H2B type 1-K OS=Homo sapiens OX=9606 GN=H2BC12 PE=1 R93   SV=3 SV=3 R93                                                                                                                                                                                                                                                                                                                                | HYNKRSTITSrEIQTAVRLLL |
| O60814 H2B1K_HUMAN Histone H2B type 1-K OS=Homo sapiens OX=9606 GN=H2BC12 PE=1 R93<br>SV=3                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HYNKRSTITSrEIQTAVRLLL |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HYNKRSTITSrEIQTAVRLLL |
| P09382 LEG1_HUMAN Galectin-1 OS=Homo sapiens OX=9606 GN=LGALS1 PE=1 SV=2 R21                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NLKPGECLRVrGEVAPDAKSF |
| Q16181 SEPT7_HUMAN Septin-7 OS=Homo sapiens OX=9606 GN=SEPTIN7 PE=1 SV=2 R425                                                                                                                                                                                                                                                                                                                                                                                                                                                              | QRILEQQNSSrTLEKNKKKGK |
| P61626 LYSC_HUMAN Lysozyme C OS=Homo sapiens OX=9606 GN=LYZ PE=1 SV=1 R68                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TRATNYNAGDrSTDYGIFQIN |
| P18669 PGAM1_HUMAN Phosphoglycerate mutase 1 OS=Homo sapiens OX=9606 GN=PGAM1 R162<br>PE=1 SV=2                                                                                                                                                                                                                                                                                                                                                                                                                                            | SCESLKDTIArALPFWNEEIV |
| Q9UGI8 TES_HUMAN Testin OS=Homo sapiens OX=9606 GN=TES PE=1 SV=1 R254 R                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | KEGDPAIYAErAGYDKLWHPA |
| P47756 CAPZB_HUMAN F-actin-capping protein subunit beta OS=Homo sapiens OX=9606 R15 GN=CAPZB PE=1 SV=4                                                                                                                                                                                                                                                                                                                                                                                                                                     | QLDCALDLMRrLPPQQIEKNL |
| F-actin-capping protein subunit beta OS=Homo sapiens OX=9606 R244<br>GN=CAPZB PE=1 SV=4                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GKTKDIVNGLrSIDAIPDNQK |
| P62820 RAB1A_HUMAN Ras-related protein Rab-1A OS=Homo sapiens OX=9606 GN=RAB1A R72<br>PE=1 SV=3                                                                                                                                                                                                                                                                                                                                                                                                                                            | LQIWDTAGQErFRTITSSYYR |
| P52209 6PGD_HUMAN 6-phosphogluconate dehydrogenase decarboxylating OS=Homo sapiens R136 S<br>OX=9606 GN=PGD PE=1 SV=3                                                                                                                                                                                                                                                                                                                                                                                                                      | GVSGGEEGArYGPSLMPGGN  |
| Q13576 IQGA2_HUMAN Ras GTPase-activating-like protein IQGAP2 OS=Homo sapiens OX=9606 R1342 E<br>GN=IQGAP2 PE=1 SV=4                                                                                                                                                                                                                                                                                                                                                                                                                        | EVDHATDMVSrAMIDSRTPEE |
| P19971 TYPH_HUMAN Thymidine phosphorylase OS=Homo sapiens OX=9606 GN=TYMP PE=1 R265 L                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VGVGASLGLrVAAALTAMDK  |

33

34

| P61981 1433G_HUMAN | 14-3-3 protein gamma OS=Homo sapiens OX=9606 GN=YWHAG PE=1<br>SV=2                                                  | R19  | QKARLAEQAErYDDMAAAMKN |
|--------------------|---------------------------------------------------------------------------------------------------------------------|------|-----------------------|
| P61160 ARP2_HUMAN  | Actin-related protein 2 OS=Homo sapiens OX=9606 GN=ACTR2 PE=1<br>SV=1                                               | R80  | VNYPMENGIVrNWDDMKHLWD |
| Q13418 ILK_HUMAN   | Integrin-linked protein kinase OS=Homo sapiens OX=9606 GN=ILK PE=1<br>SV=2                                          | R56  | RSAVVEMLIMrGARINVMNRG |
| Q9H0U4 RAB1B_HUMAN | Ras-related protein Rab-1B OS=Homo sapiens OX=9606 GN=RAB1B PE=1<br>SV=1                                            | R69  | LQIWDTAGQErFRTITSSYYR |
| P09972 ALDOC_HUMAN | Fructose-bisphosphate aldolase C OS=Homo sapiens OX=9606<br>GN=ALDOC PE=1 SV=2                                      | R201 | ILPDGDHDLKrCQYVTEKVLA |
| Q15233 NONO_HUMAN  | Non-POU domain-containing octamer-binding protein OS=Homo sapiens<br>OX=9606 GN=NONO PE=1 SV=4                      | R202 | IVEFSGKPAArKALDRCSEGS |
| Q13011 ECH1_HUMAN  | Delta(3 5)-Delta(2 4)-dienoyl-CoA isomerase mitochondrial OS=Homo<br>sapiens OX=9606 GN=ECH1 PE=1 SV=2              | R59  | EAPDHSYESLrVTSAQKHVLH |
|                    | Delta(3 5)-Delta(2 4)-dienoyl-CoA isomerase mitochondrial OS=Homo<br>sapiens OX=9606 GN=ECH1 PE=1 SV=2              | R245 | DEALGSGLVSrVFPDKEVMLD |
| P04843 RPN1_HUMAN  | Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit<br>1 OS=Homo sapiens OX=9606 GN=RPN1 PE=1 SV=1 | R65  | LAHLGGGSTSrATSFLLALEP |
| P21281 VATB2_HUMAN | V-type proton ATPase subunit B brain isoform OS=Homo sapiens<br>OX=9606 GN=ATP6V1B2 PE=1 SV=3                       | R185 | SAIDGMNSIArGQKIPIFSAA |
|                    | V-type proton ATPase subunit B brain isoform OS=Homo sapiens<br>OX=9606 GN=ATP6V1B2 PE=1 SV=3                       | R471 | NFIAQGPYENrTVFETLDIGW |
| P61106 RAB14_HUMAN | Ras-related protein Rab-14 OS=Homo sapiens OX=9606 GN=RAB14 PE=1<br>SV=4                                            | R72  | LQIWDTAGQErFRAVTRSYYR |
| P27797 CALR_HUMAN  | Calreticulin OS=Homo sapiens OX=9606 GN=CALR PE=1 SV=1                                                              | R162 | GKNVLINKDIrCKDDEFTHLY |
|                    | Calreticulin OS=Homo sapiens OX=9606 GN=CALR PE=1 SV=1                                                              | R222 | DASKPEDWDErAKIDDPTDSK |

SV=2

Ann Rheum Dis

| Q96AE4 FUBP1_HUMAN | Far upstream element-binding protein 1 OS=Homo sapiens OX=9606<br>GN=FUBP1 PE=1 SV=3      | R271  | FREVRNEYGSrIGGNEGIDVP |
|--------------------|-------------------------------------------------------------------------------------------|-------|-----------------------|
| P35241 RADI_HUMAN  | Radixin OS=Homo sapiens OX=9606 GN=RDX PE=1 SV=1                                          | R295  | MGNHELYMRRrKPDTIEVQQM |
| P14543 NID1_HUMAN  | Nidogen-1 OS=Homo sapiens OX=9606 GN=NID1 PE=1 SV=3                                       | R1017 | LHGGEPTTIIrQDLGSPEGIA |
| P00491 PNPH_HUMAN  | Purine nucleoside phosphorylase OS=Homo sapiens OX=9606 GN=PNP<br>PE=1 SV=2               | R229  | MSTVPEVIVArHCGLRVFGFS |
| P02787 TRFE_HUMAN  | Serotransferrin OS=Homo sapiens OX=9606 GN=TF PE=1 SV=3                                   | R696  | TSSLLEACTFrRP*******  |
| P84243 H33_HUMAN   | Histone H3.3 OS=Homo sapiens OX=9606 GN=H3-3A PE=1 SV=2                                   | R43   | TGGVKKPHRYrPGTVALREIR |
|                    | Histone H3.3 OS=Homo sapiens OX=9606 GN=H3-3A PE=1 SV=2                                   | R117  | DTNLCAIHAKrVTIMPKDIQL |
|                    | Histone H3.2 OS=Homo sapiens OX=9606 GN=H3C15 PE=1 SV=3                                   | R43   | TGGVKKPHRYrPGTVALREIR |
|                    | Histone H3.2 OS=Homo sapiens OX=9606 GN=H3C15 PE=1 SV=3                                   | R117  | DTNLCAIHAKrVTIMPKDIQL |
| P59998 ARPC4_HUMAN | Actin-related protein 2/3 complex subunit 4 OS=Homo sapiens OX=9606<br>GN=ARPC4 PE=1 SV=3 | R71   | VLIEGSINSVrVSIAVKQADE |
| O00194 RB27B_HUMAN | Ras-related protein Rab-27B OS=Homo sapiens OX=9606 GN=RAB27B<br>PE=1 SV=4                | R80   | LQLWDTAGQErFRSLTTAFFR |
|                    | Ras-related protein Rab-8A OS=Homo sapiens OX=9606 GN=RAB8A<br>PE=1 SV=1                  | R69   | LQIWDTAGQErFRTITTAYYR |
| P52565 GDIR1_HUMAN | Rho GDP-dissociation inhibitor 1 OS=Homo sapiens OX=9606<br>GN=ARHGDIA PE=1 SV=3          | R172  | VEEAPKGMLArGSYSIKSRFT |
| P35908 K22E_HUMAN  | Keratin type II cytoskeletal 2 epidermal OS=Homo sapiens OX=9606<br>GN=KRT2 PE=1 SV=2     | R430  | VQDAIADAEQrGEHALKDARN |
| P05141 ADT2_HUMAN  | ADP/ATP translocase 2 OS=Homo sapiens OX=9606 GN=SLC25A5 PE=1<br>SV=7                     | R259  | IMYTGTLDCWrKIARDEGGKA |
| Q9NRW1 RAB6B_HUMAN | Ras-related protein Rab-6B OS=Homo sapiens OX=9606 GN=RAB6B PE=1<br>SV=1                  | R74   | LQLWDTAGQErFRSLIPSYIR |
| Q96KP4 CNDP2_HUMAN | Cytosolic non-specific dipeptidase OS=Homo sapiens OX=9606<br>GN=CNDP2 PE=1 SV=2          | R453  | GAHSQNEKLNrYNYIEGTKML |

35

| P46459 NSF_HUMAN   | Vesicle-fusing ATPase OS=Homo sapiens OX=9606 GN=NSF PE=1 SV=3                                               | R67  | PGSIAFSLPQrKWAGLSIGQE |
|--------------------|--------------------------------------------------------------------------------------------------------------|------|-----------------------|
|                    | Vesicle-fusing ATPase OS=Homo sapiens OX=9606 GN=NSF PE=1 SV=3                                               | R533 | LLVQQTKNSDrTPLVSVLLEG |
| P20340 RAB6A_HUMAN | Ras-related protein Rab-6A OS=Homo sapiens OX=9606 GN=RAB6A<br>PE=1 SV=3                                     | R74  | LQLWDTAGQErFRSLIPSYIR |
| P62491 RB11A_HUMAN | Ras-related protein Rab-11A OS=Homo sapiens OX=9606 GN=RAB11A<br>PE=1 SV=3                                   | R33  | GKSNLLSRFTrNEFNLESKST |
| P49748 ACADV_HUMAN | Very long-chain specific acyl-CoA dehydrogenase mitochondrial<br>OS=Homo sapiens OX=9606 GN=ACADVL PE=1 SV=1 | R229 | PSSGSDAASIrTSAVPSPCGK |
| P14222 PERF_HUMAN  | Perforin-1 OS=Homo sapiens OX=9606 GN=PRF1 PE=1 SV=1                                                         | R177 | YSFSTDTVECrFYSFHVVHTP |
| Q13126 MTAP_HUMAN  | S-methyl-5'-thioadenosine phosphorylase OS=Homo sapiens OX=9606<br>GN=MTAP PE=1 SV=2                         | R133 | SFYDGSHSCArGVCHIPMAEP |
| P09486 SPRC_HUMAN  | SPARC OS=Homo sapiens OX=9606 GN=SPARC PE=1 SV=1                                                             | R205 | RVKKIHENEKrLEAGDHPVEL |
| P61026 RAB10_HUMAN | Ras-related protein Rab-10 OS=Homo sapiens OX=9606 GN=RAB10 PE=1<br>SV=1                                     | R70  | LQIWDTAGQErFHTITTSYYR |
| O14983 AT2A1_HUMAN | Sarcoplasmic/endoplasmic reticulum calcium ATPase 1 OS=Homo<br>sapiens OX=9606 GN=ATP2A1 PE=1 SV=1           | R164 | AVGDKVPADIrILAIKSTTLR |
| P54577 SYYC_HUMAN  | TyrosinetRNA ligase cytoplasmic OS=Homo sapiens OX=9606<br>GN=YARS1 PE=1 SV=4                                | R207 | KYLPALGYSKrVHLMNPMVPG |
| P49821 NDUV1_HUMAN | NADH dehydrogenase [ubiquinone] flavoprotein 1 mitochondrial<br>OS=Homo sapiens OX=9606 GN=NDUFV1 PE=1 SV=4  | R256 | ETVAVSPTICrRGGTWFAGFG |
| Q92930 RAB8B_HUMAN | Ras-related protein Rab-8B OS=Homo sapiens OX=9606 GN=RAB8B PE=1<br>SV=2                                     | R69  | LQIWDTAGQErFRTITTAYYR |
| O43488 ARK72_HUMAN | Aflatoxin B1 aldehyde reductase member 2 OS=Homo sapiens OX=9606<br>GN=AKR7A2 PE=1 SV=3                      | R61  | MDAPASAAAVrAFLERGHTEL |
| O14974 MYPT1_HUMAN | Protein phosphatase 1 regulatory subunit 12A OS=Homo sapiens<br>OX=9606 GN=PPP1R12A PE=1 SV=1                | R31  | ETDLEPPVVKrQKTKVKFDDG |

| P51159 RB27A_HUMAN | Ras-related protein Rab-27A OS=Homo sapiens OX=9606 GN=RAB27A<br>PE=1 SV=3                                  | R80   | LQLWDTAGQErFRSLTTAFFR |
|--------------------|-------------------------------------------------------------------------------------------------------------|-------|-----------------------|
| P25325 THTM_HUMAN  | 3-mercaptopyruvate sulfurtransferase OS=Homo sapiens OX=9606<br>GN=MPST PE=1 SV=3                           | R137  | LLDGGLRHWLrQNLPLSSGKS |
| P30038 AL4A1_HUMAN | Delta-1-pyrroline-5-carboxylate dehydrogenase mitochondrial<br>OS=Homo sapiens OX=9606 GN=ALDH4A1 PE=1 SV=3 | R338  | DVESVVSGTLrSAFEYGGQKC |
| Q8NF50 DOCK8_HUMAN | Dedicator of cytokinesis protein 8 OS=Homo sapiens OX=9606<br>GN=DOCK8 PE=1 SV=3                            | R1358 | KVSTQVLQKSrDVKARLEEAL |
| Q14166 TTL12_HUMAN | Tubulintyrosine ligase-like protein 12 OS=Homo sapiens OX=9606<br>GN=TTLL12 PE=1 SV=2                       | R461  | KYIESPVLFLrEDVGKVKFDI |
| P62753 RS6_HUMAN   | 40S ribosomal protein S6 OS=Homo sapiens OX=9606 GN=RPS6 PE=1<br>SV=1                                       | R51   | LGEEWKGYVVrISGGNDKQGF |
| Q15286 RAB35_HUMAN | Ras-related protein Rab-35 OS=Homo sapiens OX=9606 GN=RAB35 PE=1 SV=1                                       | R69   | LQIWDTAGQErFRTITSTYYR |
| Q02878 RL6_HUMAN   | 60S ribosomal protein L6 OS=Homo sapiens OX=9606 GN=RPL6 PE=1<br>SV=3                                       | R105  | PVGGDKNGGTrVVKLRKMPRY |
| P25098 ARBK1_HUMAN | Beta-adrenergic receptor kinase 1 OS=Homo sapiens OX=9606 GN=GRK2<br>PE=1 SV=2                              | R454  | AQEVKESPFFrSLDWQMVFLQ |
| Q14558 KPRA_HUMAN  | Phosphoribosyl pyrophosphate synthase-associated protein 1 OS=Homo<br>sapiens OX=9606 GN=PRPSAP1 PE=1 SV=2  | R295  | THGILSAEAPrLIEESSVDEV |
| O95716 RAB3D_HUMAN | Ras-related protein Rab-3D OS=Homo sapiens OX=9606 GN=RAB3D<br>PE=1 SV=1                                    | R83   | LQIWDTAGQErYRTITTAYYR |
| P11217 PYGM_HUMAN  | Glycogen phosphorylase muscle form OS=Homo sapiens OX=9606<br>GN=PYGM PE=1 SV=6                             | R17   | DQEKRKQISVrGLAGVENVTE |
| P61018 RAB4B_HUMAN | Ras-related protein Rab-4B OS=Homo sapiens OX=9606 GN=RAB4B PE=1 SV=1                                       | R69   | LQIWDTAGQErFRSVTRSYYR |
| Q96E17 RAB3C_HUMAN | Ras-related protein Rab-3C OS=Homo sapiens OX=9606 GN=RAB3C PE=1 SV=1                                       | R91   | LQIWDTAGQErYRTITTAYYR |

| Q96AX2 RAB37_HUMAN | Ras-related protein Rab-37 OS=Homo sapiens OX=9606 GN=RAB37 PE=1 SV=3               | R91  | LQIWDTAGQErFRSVTHAYYR |
|--------------------|-------------------------------------------------------------------------------------|------|-----------------------|
| Q9Y2Z0 SGT1_HUMAN  | Protein SGT1 homolog OS=Homo sapiens OX=9606 GN=SUGT1 PE=1<br>SV=3                  | R84  | LNPNNSTAMLrKGICEYHEKN |
| Q96GD0 PLPP_HUMAN  | Pyridoxal phosphate phosphatase OS=Homo sapiens OX=9606 GN=PDXP<br>PE=1 SV=2        | R142 | DPSAGDGAAPrVRAVLVGYDE |
| Q13501 SQSTM_HUMAN | Sequestosome-1 OS=Homo sapiens OX=9606 GN=SQSTM1 PE=1 SV=1                          | R217 | SPRPPRAGEArPGPTAESASG |
| Q86YS6 RAB43_HUMAN | Ras-related protein Rab-43 OS=Homo sapiens OX=9606 GN=RAB43 PE=1 SV=1               | R79  | LQIWDTAGQErFRTITQSYYR |
| P14174 MIF_HUMAN   | Macrophage migration inhibitory factor OS=Homo sapiens OX=9606<br>GN=MIF PE=1 SV=4  | R12  | PMFIVNTNVPrASVPDGFLSE |
| P20337 RAB3B_HUMAN | Ras-related protein Rab-3B OS=Homo sapiens OX=9606 GN=RAB3B PE=1 SV=2               | R83  | LQIWDTAGQErYRTITTAYYR |
| Q7Z6P3 RAB44_HUMAN | Ras-related protein Rab-44 OS=Homo sapiens OX=9606 GN=RAB44 PE=1 SV=4               | R894 | LQLWDTAGQErYHSMTRQLLR |
| Q9BWS9 CHID1_HUMAN | Chitinase domain-containing protein 1 OS=Homo sapiens OX=9606<br>GN=CHID1 PE=1 SV=1 | R65  | LKAESVVLEHrSYCSAKARDR |
| Q16658 FSCN1_HUMAN | Fascin OS=Homo sapiens OX=9606 GN=FSCN1 PE=1 SV=3                                   | R205 | FLRHDGRLVArPEPATGYTLE |
| P02749 APOH_HUMAN  | Beta-2-glycoprotein 1 OS=Homo sapiens OX=9606 GN=APOH PE=1 SV=3                     | R96  | FAGILENGAVrYTTFEYPNTI |
| Q0VD83 APOBR_HUMAN | Apolipoprotein B receptor OS=Homo sapiens OX=9606 GN=APOBR PE=1 SV=3                | R928 | DAEGLMVTGGrRAEAKETEPE |
| P35250 RFC2_HUMAN  | Replication factor C subunit 2 OS=Homo sapiens OX=9606 GN=RFC2<br>PE=1 SV=3         | R155 | SMTDGAQQALrRTMEIYSKTT |
| Q9HBH5 RDH14_HUMAN | Retinol dehydrogenase 14 OS=Homo sapiens OX=9606 GN=RDH14 PE=1<br>SV=1              | R234 | NILFTRELARrLEGTNVTVNV |
| P07478 TRY2_HUMAN  | Trypsin-2 OS=Homo sapiens OX=9606 GN=PRSS2 PE=1 SV=1                                | R122 | KLSSPAVINSrVSAISLPTAP |
| Q8TBH0 ARRD2_HUMAN | Arrestin domain-containing protein 2 OS=Homo sapiens OX=9606<br>GN=ARRDC2 PE=1 SV=2 | R43  | RVLLELSSAArVGALRLRARG |

| Q8WY91 THAP4_HUMAN | Peroxynitrite isomerase THAP4 OS=Homo sapiens OX=9606 GN=THAP4<br>PE=1 SV=2                                        | R156  | QAALQGEATPrAAQEAASQEQ |
|--------------------|--------------------------------------------------------------------------------------------------------------------|-------|-----------------------|
| Q8IVF5 TIAM2_HUMAN | T-lymphoma invasion and metastasis-inducing protein 2 OS=Homo<br>sapiens OX=9606 GN=TIAM2 PE=2 SV=4                | R1655 | DRGTLLKAQIrHQSLDSQSEN |
| Q92618 ZN516_HUMAN | Zinc finger protein 516 OS=Homo sapiens OX=9606 GN=ZNF516 PE=1<br>SV=1                                             | R1086 | WGVSGPGLEHrGTLRTQARPG |
| P98160 PGBM_HUMAN  | Basement membrane-specific heparan sulfate proteoglycan core protein<br>OS=Homo sapiens OX=9606 GN=HSPG2 PE=1 SV=4 | R2655 | QTLDLNCVVArQPQAIITWYK |
| Q86SX3 TEDC1_HUMAN | Tubulin epsilon and delta complex protein 1 OS=Homo sapiens OX=9606<br>GN=TEDC1 PE=1 SV=2                          | R257  | HSFCTPGMGPrTFWNDLWLVC |
| A3KMH1 VWA8_HUMAN  | von Willebrand factor A domain-containing protein 8 OS=Homo sapiens<br>OX=9606 GN=VWA8 PE=1 SV=2                   | R1259 | SLTVLDVLEGrTHTISLPINL |
| Q14993 COJA1_HUMAN | Collagen alpha-1(XIX) chain OS=Homo sapiens OX=9606 GN=COL19A1<br>PE=1 SV=3                                        | R27   | LLPASTSVTVrDKTEESCPIL |
| Q6ZRP7 QSOX2_HUMAN | Sulfhydryl oxidase 2 OS=Homo sapiens OX=9606 GN=QSOX2 PE=1 SV=3                                                    | R109  | PTWRALAGDVrDWASAIRVAA |
| A6NI79 CCD69_HUMAN | Coiled-coil domain-containing protein 69 OS=Homo sapiens OX=9606<br>GN=CCDC69 PE=1 SV=1                            | R271  | LQQEKEELLYrVLGANASPAF |
| O15409 FOXP2_HUMAN | Forkhead box protein P2 OS=Homo sapiens OX=9606 GN=FOXP2 PE=1<br>SV=2                                              | R382  | ALDDRSTAQCrVQMQVVQQLE |

#### **GRAPHICAL ABSTRACT**

