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Figure S1. Distribution of regulation based on gene essentiality across 87 different conditions, Related to Figure 3 
1. These conditions comprise 56 different carbon sources including glucose, and 31 different nitrogen sources 4 
including ammonium ions. The total number of conditions in which each gene deletion was viable was calculated. 5 
This total number was then compared between targets of each regulatory mechanism. The box plots show that 6 
acetylation preferentially regulates the genes that impact growth across the 87 conditions. The box plot whiskers 7 
extend to the 99.3rd percentile of each distribution. The ANOVA p-value comparing the means is 7.1 x 10-41. 8 
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Figure S2. Distribution of regulation based on topological properties of each reaction, Related to Figure 1. A. Four 48 
different topological properties are shown in the box plots - the total number of annotated pathways each reaction 49 
participates (Tot. pathways), the number of times each reaction is traversed during a random walk between 50 
reactions in the network (Pagerank), the total number of connected reactions (Degree) and the number of times 51 
each reaction appears on a shortest path between two reactions (Betweenness). These show that reactions that 52 
are regulated by any mechanism have a higher connectivity compared to those that are unregulated or regulated 53 
by unknown mechanisms. Furthermore, reactions regulated by both acetylation and phosphorylation had the 54 
highest connectivity across all metrics. The ANOVA p-value comparing the means is provided in the title. 55 
(Abbreviations: regulation by both transcription and post-transcription (Tr + Pr), both acetylation and 56 
phosphorylation (Ac + Ph), at least 3 regulators (3 Reg), and Unknown regulation (Un)). B. Demonstration of 57 
robustness of topological analysis. Highly connected metabolites (ATP ADP AMP NADH NAD) were removed 58 
from the yeast model prior to the calculation of topological parameters. The box plots compare the properties of 59 
enzymes regulated by transcription (Tr), post-transcription (Pr), acetylation (Ac), phosphorylation (Ph), both 60 
transcription and post-transcription (Tr + Pr), both acetylation and phosphorylation (Ac + Ph), or at least 3 61 
regulators (3 Reg). Reactions regulated by both acetylation and phosphorylation had the highest connectivity as 62 
measured by the Closeness. The ANOVA p-value comparing the means is 3e-46 for closeness, 2e-29 for degree 63 
(not shown) and 5e-15 for pagerank (not shown).  64 
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Figure S3.  Properties of reactions regulated by multiple mechanisms, Related to Figure 1. The box plots compare 68 
the properties of enzymes regulated by transcription, post-transcription, acetylation, phosphorylation with those 69 
regulated by both transcription and post-transcription (Tr + Pr), both acetylation and phosphorylation (Ac + Ph), or 70 
at least 3 regulators (3 Reg). This set of combinations among regulators was chosen as both acetylation and 71 
phosphorylation are PTMs, and the transcriptome and proteome of yeast cells show significant correlation. 72 
Reactions regulated by both acetylation and phosphorylation had the highest connectivity as measured by the 73 
inverse sum of the distance from a reaction to all other reactions in the network (Closeness). Apart from 74 
connectivity, reactions regulated by two different mechanisms did not share properties of reactions regulated by 75 
each individual mechanism. For example, reactions regulated by acetylation and phosphorylation were not likely 76 
to be essential or have high maximum flux. The ANOVA p-value comparing the means is provided in the title.  77 
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Figure S4. Distribution of regulation based on reaction reversibility, Related to Figure 1. Reversible reactions were 82 
highly likely to be not regulated by any of the four mechanisms. The left panel compares the distribution of 83 
regulation of reversible reactions based on the annotation from the Yeast 7 model (reversible reactions are set to 84 
1 and irreversible reactions are set to 0).  The panel on the right uses an updated list based on thermodynamic 85 
analysis of the Yeast metabolic model by Martinez et al [49].  86 
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Figure S5. Distribution of regulation based on magnitude of maximum possible flux (mmol/gDW/hr) through each 104 
reaction, Related to Figure 1. The plots compare the distribution of regulation using flux calculated using various 105 
methods and models. The ANOVA p-value comparing the means is provided in the panel title of each plot. These 106 
results show that phosphorylated reactions are highly enriched among those reactions with high maximum flux. A. 107 
Maximum flux through each reaction was calculated using FVA using the Yeast 7 model without assuming that 108 
cells maximize their biomass (the default objective in FVA and FBA). The box plots compare the maximum flux 109 
value of reactions regulated by each mechanism. B. Maximum flux through each reaction was calculated using 110 
FVA without assuming that cells maximize their biomass using the Yeast 7.6 model (Yeast 7 model was used for 111 
all analyses). C. The flux through the model was first fit to the experimentally inferred flux data from Hackett et 112 
al[21]. The maximum flux through all reactions was then determined using FVA.  D. The flux through each 113 
reaction was inferred from Parsimonious FBA (PFBA). Note that PFBA does not provide the maximum flux but the 114 



flux value that minimizes the sum of flux through all reactions while maximizing the biomass objective. Hence it 115 
does not reveal any futile cycles or redundancy in the network. E. The heatmap shows the distribution of 116 
regulation based on magnitude of maximum possible flux (Vmax) through of each reaction. Reactions are sorted 117 
based on Vmax inferred from FVA. The columns correspond to each reaction-gene pair. Those that are regulated 118 
by each mechanism are shown in yellow, while those that are not regulated by a specific mechanism are in blue.  119 
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Figure S6. Comparison of the properties of enzymes in yeast regulated by each mechanism during the cell cycle 148 
(CC-Tr, CC-Ph) and nitrogen starvation (Ni-Tr, Ni-Ph), Related to Figure 1. Data from stationary phase conditions 149 
(transcription (Tr), post-transcription (Pr), acetylation (Ac), phosphorylation (Ph) or Unknown regulation (Un)) are 150 
shown for comparison. Similar to stationary phase, enzymes that impact growth when knocked out are likely to be 151 
acetylated (A), enzymes that catalyze reactions with high flux are likely to be regulated through phosphorylation in 152 
all three conditions (B), enzymes that are highly connected are likely to be regulated by one of the four 153 
mechanisms (C). No consistent difference across datasets was observed in regulation based on the enzyme 154 
catalytic activity (kcat) of the target enzyme (D) and enzymes regulated by phosphorylation on average tend to 155 
have high molecular weight (E). The Anova p-value comparing the differences in means is shown in the title. 156 
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Figure S7. Comparison of properties of enzymes in E. coli regulated by each mechanism, Related to Figure 2. A. 175 
Similar to yeast, enzymes that are highly connected (i.e. high closeness) are likely to be regulated. B. Similar to 176 
our analysis in Figure 2A, which showed using the entire set of acetylated proteins the association between 177 
acetylation regulation and growth impacting enzymes, this figure shows that the subset of acetylated proteins 178 
regulated by the deacetylase cobB also show the same trend with reactions that impact growth when knocked out 179 
are highly likely to be acetylated and regulated by cobB. The Anova p-value comparing the differences in means 180 
is shown in the title. C, D. Comparison of total number of targets between species. Total number of regulation 181 
targets (i.e. gene-reactions) of PTMs in E. coli (Ec) and yeast (Sc) are compared with those that have high Vmax 182 
and are growth limiting in those species in the stationary phase condition. 183 
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Figure S8.  Condition-specific essentiality is correlated with acetylation, Related to Figure 2. The scatter plots 189 
show the association between the impact of a gene knockout on biomass from FBA with the acetylation levels of 190 
the corresponding protein in a given condition. On average, increased essentiality is associated with an increase 191 
in acetylation. All proteins with at least 2 fold change in acetylation between conditions and are part of the 192 
metabolic model are shown. The change in biomass relative to glucose is show in the x-axis. The correlations 193 
were observed even when the total absolute acetylation levels were considered instead of relative levels to 194 
proteins.  195 
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Figure S9.  Condition-specific essentiality from TN-seq is correlated with acetylation, Related to Figure 2. The 198 
scatter plots show the association between the impact of a gene knockout on viability from Transposon 199 
mutagenesis screens with the acetylation levels of the corresponding protein in a given condition. All proteins in 200 
the metabolic model with available TN-seq data and acetylation data across conditions from Schmidt et al study 201 
are shown. Although FBA made false positive growth predictions for some enzymes such as XylA (Figure S8), our 202 
results were observed even with experimentally derived knockout screens, suggesting that this link between 203 
essentiality and acetylation is robust. 204 
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Figure S10. Correlation between maximum flux and phosphorylation levels (normalized to glucose), Related to 208 
Figure 2. All proteins that showed at least 2-fold change in phosphorylation levels between conditions are shown. 209 
This trend was observed with both the total phosphorylation levels and relative levels normalized to proteins. 210 
While in most cases a change in maximal flux or essentiality resulted in a change in regulation by PTMs (Figure 211 
2F), there were exceptions. For example, dapA did not show this trend suggesting that other factors likely 212 
influence regulation by PTMs in a combinatorial fashion.  213 
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Figure S11. Representative decision trees with maximum depth of 4, Related to Figures 3-5. Single decision tree 264 
models were trained for the multi-organism (A), E. coli (B), yeast (C), and mammalian (D) datasets. Only the top 265 
50% most important features, as identified in the Shapley analysis, were used to train the trees.  266 
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Figure S12. Analysis of model predictions on the cell-cycle phosphorylation data, Related to Figures 3-5. A. 294 
Feature distributions for phosphorylated gene-reaction pairs are compared between true positive (TP), true 295 
negative (TN) and false negative (FN) observations using boxplots. There were no false positives from this 296 
validation test. B SHAP decision plot was created for 50 random observations to compare trends between the 297 
classification groups. Values on the x-axis represent log odds of belonging to the phosphorylation class. C and D. 298 
The phosphorylated gene-reaction pairs that were correctly classified (true positives) are displayed in a SHAP 299 
summary plot (C) and decision plot (D). E. ROC curve for the model’s phosphorylation predictions on the cell-300 
cycle data.  301 
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Figure S13. Binary classification models for predicting acetylation and phosphorylation separately, Related to 325 
Figures 3-5. The pipeline for training the models was identical to process used for the multi-class model.  A, B 326 
The 5-fold cross-validation results for the acetylation model.  C, D.  The 5-fold cross-validation results for the 327 
phosphorylation model. E, F. The phosphorylation model was used to predict the cell-cycle validation dataset, 328 
which includes the G1, S and G2 phases. Overall, these results show that the ternary classification model 329 
outperforms the binary classification models.  330 
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Figure S14. Organism-specific ML models – E. coli, Related to Figures 3-5. XGBoost model trained on the E. coli 361 
dataset. A, B. 5-fold cross-validation results. Bar graph shows the mean scores across the 5 folds with a 95% 362 
confidence interval. C, D. SHAP value summary plots for the phosphorylation and acetylation classes. E, F. SHAP 363 
value heatmaps for the phosphorylation and acetylation classes. Observations are clustered by the model output, 364 
f(x).  365 
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Figure S15. Organism-specific ML models – S. cerevisiae, Related to Figures 3-5. XGBoost model trained on the 395 
yeast dataset. A, B. 5-fold cross-validation results. Bar graph shows the mean scores across the 5 folds with a 396 
95% confidence interval. C, D. SHAP value summary plots for the phosphorylation and acetylation classes. E, F. 397 
SHAP value heatmaps for the phosphorylation and acetylation classes.  398 

 399 

 400 

 401 

A B 

D C 

E F 



 402 

 403 

 404 

 405 

 406 

 407 

 408 

 409 

 410 

 411 

 412 

 413 

 414 

 415 

 416 

 417 

 418 

 419 

 420 

 421 

 422 

 423 

 424 

 425 

 426 

Figure S16. Organism-specific ML models – mammalian cells, Related to Figures 3-5. XGBoost model trained on 427 
the mammalian dataset. A, B. 5-fold cross-validation results. Bar graph shows the mean scores across the 5 folds 428 
with a 95% confidence interval. C, D. SHAP value summary plots for the phosphorylation and acetylation classes. 429 
E, F. SHAP value heatmaps for the phosphorylation and acetylation classes.  430 

 431 

 432 

 433 

 434 

A B 

D C 

E F 



 435 

 436 

 437 

 438 

 439 

 440 

 441 

 442 

Figure S17. Impact of including organism type in the ML model, Related to Figures 3-5. 5-fold cross-validation 443 
results for XGBoost model with organism-type included in the training data. Bar graph shows the mean scores 444 
across the 5 folds with a 95% confidence interval. The organism type was added as a categorical array where a 1 445 
designated E. coli, 2 for yeast and 3 for human. The cross-validation results were extremely consistent with those 446 
from the primary model, suggesting that the model’s decision-making is not influenced by organism type 447 
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Figure S18. Impact of training on different phases of the cell cycle, Related to Figures 3-5. Models were trained by 491 
replacing the G0 cell-cycle data from the training set with the feature matrix from the remaining phases: G1, S, 492 
and G2. Each model was then used to predict the phosphorylated genes from the phases not featured in the 493 
training. These results are shown here for the G1-model (A, B), S-model (C, D) and G2-model (E, F). All three 494 
models, especially for S and G2, performed inferior to the primary CAROM-ML model in regard to this validation 495 
test. These results suggest that S and G2 conditions have a distinct phosphorylation pattern from the remaining 496 
conditions.  497 
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Figure S19. CAROM-ML model performance using various ML algorithms, Related to Figures 3-5. 5-fold cross-529 
validation results were compared for various untuned algorithms, with F1 score used as the metric (A). XGBoost, 530 
colored in red, had the best performance and was therefore used for the main CAROM-ML model. AdaBoost (B, 531 
C) and random forest (D, E) models were further tested by tuning their hyperparameters and performing 5-fold 532 
cross-validation. For all bar graphs, the mean scores across the 5 folds are shown with a 95% confidence interval. 533 
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Figure S20. Impact of retaining genes that do not have evidence for phosphorylation or acetylation Related to 543 
Figures 3-5. 5-fold cross-validation results for model trained on full set of genes is shown. Bar graph shows the 544 
mean scores across the 5 folds with a 95% confidence interval. For the main CAROM-ML model, online 545 
databases were used to compile a list of enzymes that have been found to be phosphorylated or acetylated in 546 
published studies. Non-annotated enzymes were removed from the training data. Here we show the results for 547 
the model which had these non-annotated enzymes included in the training data did not differ from the model with 548 
these genes removed during the model construction. 549 
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Figure S21. Interpretation of the CAROM-ML model using Shapley analysis: Unknown class, Related to Figures 558 
3-5. Corresponding plots for the phosphorylation and acetylation classes are shown in Figure 4 in the main text. 559 
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Figure S22. Correlation map of all model features, Related to Figures 3-5. Heatmap of Pearson’s correlation 596 
between feature values for the following datasets: all organism types (A), yeast (B), E. coli (C), and human (D). 597 
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Figure S23. Predicting on unseen organisms, Related to Figures 3-5. XGBoost models were trained on the data 620 
from two organisms and used to make predictions on the third (e.g. train on E. coli and yeast, test on 621 
mammalian). Data from the test organism was moved to the training data in increments of 0%, 10% and 20%. 622 
Model performance improved significantly after including a small number of samples from the test organism in the 623 
training dataset.  624 
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Figure S24. Impact of adjusting flux-related feature parameters on the ML results, Related to Figures 3-5. For the 657 
ML analysis, the Vmax and Vmin features were constrained to magnitudes below 100 in order to reduce the effect 658 
of unconstrained reactions and the variability across organism types. Here we show that the CAROM-ML model is 659 
robust to increasing the threshold to the 900 mmol/gDW/hr value used for the ANOVA testing. A supplementary 660 
model was trained on the E. coli, yeast, HeLa and G0 phase data after adjusting this threshold. A. Results from 661 
training the model using 5-fold cross-validation. Bar graph shows the mean scores across the 5 folds with a 95% 662 
confidence interval. B. The model was used to predict on the cell cycle validation dataset, which includes the G1, 663 
S and G2 phases. C. The cell cycle metabolic models were generated using dynamic flux analysis (DFA) with a 664 
default value of 1 for kappa, the optimization weight that is applied to the metabolomics data relative to the 665 
biomass objective. Changes to kappa therefore affect the flux- and growth-related features. The ML model’s 666 
performance on the cell cycle dataset was fairly robust as kappa was incrementally changed from 1e-3 to 4, 667 
however the default value of 1 provided the best results. Setting it 0 or very low values results in the model not 668 
learning any differences between the cell cycle phases as expected. At very high values, the DFA model overfits 669 
to the metabolomics and is affected by noise in the measurement. The default value of 1 provides a good trade off 670 
in separating signal from noise.  671 
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Figure S25. Relationship between flux and MW per reaction, Related to Figures 3-5. Here we address whether 675 
the flux features generated from flux variability analysis, Vmax and Vmin, are strongly correlated with the 676 
molecular weight (MW) of the metabolites present in the corresponding reactions. We did not find a significant 677 
correlation between MW of the metabolites and the predicted fluxes. For this analysis, “MW” represents the sum 678 
of MW for all metabolites in a given reaction. The plots show the relationships between (A) Vmax vs. MW and (B) 679 
Vmin vs. MW for each organism on log scales. The Spearman’s correlation shown on each plot suggest there is 680 
not a consistent relationship between flux and the MW present in a given reaction. While a negative correlation is 681 
expected, in some cases we see a positive correlation. This suggests that there is not a strong relationship 682 
between the two. C. A separate XGBoost model was trained after adjusting the Vmax/min features for the MW per 683 
reaction by multiplying the fluxes with the MW. The model’s performance slightly worsened compared to the main 684 
CAROM-ML model.  685 
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Figure S26. Random permutation models as benchmark for the CAROM-ML model, Related to Figures 3-5. We 700 
generated 100 random permutations of the class labels for the CAROM-ML training dataset. The models 701 
generated with these permutations achieved scores close to MCC=0, as expected for a random model. A. For 702 
each permutation, an XGBoost model was trained using the CAROM-ML feature dataset and the shuffled class 703 
labels, then used to predict on the cell cycle G1/S/G2 dataset. B. For each permutation, a subset of the shuffled 704 
class labels from the training dataset was used to guess the G1/S/G2 class labels. 705 
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