
 

S1: Estimating data from Ernst and Banks (2002) 
 

Single cues sensitivities used for the simulations reported were estimated from Figure 3d of 

Ernst and Banks (2002). In order to gain estimates of the single cue sensitivities we viewed 

Figure 3d (as a pdf file) on a 4K computer monitor, so that the graph filled the majority of the 

screen. We then took the pixel coordinates of (1) the data points, (2) the minimum and 

maximum error bar position for each data-point and (3) the minimum and maximum values 

on the x- and y-axes. We were then able to compute the relative position of each data point 

(and error bar) in pixel coordinates on the x- and y-axis and covert these to the units shown 

in the graph by using the measured correspondence between pixel coordinates and axis units. 

Visual comparison of Figure 2 of the present paper and Figure 3d of Ernst and Banks shows 

that close correspondence achieved.  

 

There was some inconsistently in Ernst and Banks (2002) as to how a “threshold” or 

“discrimination threshold” was defined. On page 430 the authors state, “The discrimination 

threshold is defined as the difference between the  point  of  subjective  equality  (PSE)  and  

the  height  of  the comparison  stimulus  when  it  is  judged  taller  than  the  standard stimulus 

84% of the time”. However, on page 431 the authors state “… 𝑇𝐻 and 𝑇𝑉 are the haptic and 

visual thresholds (84% points in Fig. 3a)”. It is the first definition which is consistent with the 

mathematics i.e., the difference between the PSE and 84% point of the function being equal 

to the sigma of the fitted Cumulative Gaussian function.  

 

Therefore, we cross checked our thresholds estimated from Figure 3d of Ernst and Banks 

(2002), with the thresholds calculated from the integrated cues functions in Figure 3b of Ernst 

and Banks (2002). Thresholds from Figure 3b were taken to be the difference between the 

point  of  subjective  equality  (PSE)  and  the 84% point on the function. When compared to 

the thresholds estimated from Figure 3d the difference in estimates was very small (average 

across data points of 0.23). We were therefore happy that definition of threshold was that of 

page 430 and that we had accurately estimated the thresholds and understood their 

relationship to the properties of the psychometric functions reported in the paper. Note: that 

for the purposes of the present paper all that was needed is an approximation of the exact 

values.   

 

S2: Example functions and goodness of fit 
 

Figure S2a shows the true underlying functions for the minimum, maximum and base (middle) 

sigma values used in the current study as well as the stimulus levels at which the functions 

were sampled. As can be seen, consistent with Ernst and Banks (2002) Figure 3a, all functions 



straddle high and low performance levels needed for well fit functions (Wichmann & Hill, 

2001a, 2001b). Figures S2b-e show examples of how these functions were sampled with our 

four sampling regimes (10, 25, 40 and 55 trials per stimulus level), with the maximum 

likelihood best fit functions and goodness of fit (see below) values shown in the legend. We 

have only shown these for just the ∆ = 0 case, as for all delta values used the sampling range 

was shifted so as to be centred on the true mean of the underlying function. As is clear, for 

all sampling regimes the data are well fit by the Cumulative Gaussian functions.  

 

 
 



Figure S2: (a) shows the underlying “true” psychometric functions for the minimum, maximum 

and base (middle) sigma values used in the paper. The dashed vertical grey lines show the nine 

stimulus values at which these functions were sampled. (b) through (e) show examples of how 

the functions were sampled through simulation and fit with psychometric functions for the 

four data collection regimes used throughout the paper (10, 25, 40, and 55 repetitions per 

stimulus level). Inset in each graph is the goodness of fit value, pDev. This represents the 

probability with which the experimental data produced a higher likelihood ratio than that of 

the stimulated experiments. If this is greater than 0.05, the function is considered to fit the 

data well. See accompanying text for details. 

 

 

Within the cue integration literature, the goodness of fit of a function and the criteria upon 

which a fit is considered unacceptable is rarely if ever stated (for example Ernst & Banks, 

2002; Helbig & Ernst, 2007; Hillis et al., 2002). Thus, it is impossible to tell if a goodness of fit 

test was performed, and if one was, which test which was used, and the criteria adopted for 

rejecting a fitted function. Given that the fit of data to the MVUE model is normally assessed 

by eye, it is likely that this is also the case for the fit of individual psychometric functions 

(Kingdom & Prins, 2016). The Palamedes toolbox (Prins & Kingdom, 2009) used in the present 

study implements a bootstrapped likelihood ratio test to assess the goodness of fit of a 

psychometric function. The logic of the test is as follows (Kingdom & Prins, 2016).  

 

As detailed in the main text, when fitting a psychometric function to some data the 

experimenter assumes: (1) the observer does not improve or degrade at the task they are 

performing over time, (2) each perceptual judgement an observer makes is statistically 

independent of all others, and (3) performance of the observer can be well characterised by 

the psychometric function that the experimenter is choosing to fit to the data. These 

assumptions combined can be referred to as the “target model”. The validity of the target 

model can be assessed by comparing it to a “saturated model” which only assumes (1) and 

(2). Thus, in the saturated model, the probability of response for one stimulus level is 

completely independent on the probability of response for any other stimulus level i.e., no 

psychometric function is assumed.  

 

The target model is “nested” under the saturated model, as it is a single specific case of the 

saturated model. Thus, the likelihood associated with the fit of the target model can never 

produce a better fit than that of the less restrictive saturated model. For a given set of data 

one can calculate the likelihood ratio (likelihood of the target model / likelihood of the 

saturated model) which will, by definition, be less than or equal to 1. It will only be equal to 

one if the target and saturated models provide as good a fit as one another. The likelihood 

ratio test, implemented in the Palamedes Toolbox, simulates a set of experiments through a 

bootstrap procedure where the simulated observer is behaving in accordance with the more 

restrictive target model. The simulated data is fit twice, once under the assumptions of the 



target model and once under the assumptions of the saturated model, and a likelihood ratio 

calculated. The probability with which the experimental data produces a higher likelihood 

ratio than that of the stimulated experiments is calculated (pDev in Figure S2). If this 

probability is less than 0.05% the goodness of fit is deemed poor. As with any p-value, the 

0.05% cut-off is a completely arbitrary convention (Kingdom & Prins, 2016). Thus, some 

experimenters may adopt this and others not. This mirrors the open discussion about the use 

of p-values for general statistical analysis.  

 

For the present study, it was computationally unfeasible to run a bootstrapped likelihood 

ratio test for each of the ~15.3 million simulated functions (even when using MATLAB’s 

Parallel processing toolbox to spread the computational load over the 8-Core Intel Core i9 

available to the author this would have taken ~1-2 months of constant processing). 

Nevertheless, we wanted to assess the extent to which the maximum likelihood fit functions 

would in general be considered well fit. Therefore, for the maximum and minimum cue sigma 

value used in the paper (i.e. shallowest and steepest psychometric functions), we simulated 

data for 1000 observers, fit Cumulative Gaussian psychometric functions to the data (as 

described in the main text) and assessed the goodness of fit using the bootstrapped likelihood 

ratio test (1000 bootstraps). We did this for our four sampling regimes: 10, 25, 40 and 55 trials 

per stimulus level.  

 

Based upon the 0.05% criteria for a cut-off between well and poorly fit function (pDev in 

Figure S2), virtually all functions would have been classed as well fit, regardless of data 

collection regime of the slope of the underlying function (Table T2; overall average 94.95%). 

As would be expected, this was true for all Delta levels. This is because the sampling range 

was always centred on the true mean of the function, so the values for Delta 0, 3 and 6 in 

Table T2 are effectively replications of one another. This confirms across 24000 fitted 

functions what can be seen in the example functions of Figure S2 i.e. that the data are well fit 

by the psychometric functions. We can therefore be satisfied that the around 94.95% of all 

functions reported in the paper would have been classed as well fit based on this criteria. See 

also the criteria adopted for rejecting psychometric functions discussed in the main body of 

the text. 

 

 

Sigma / Trials Delta 0 Delta 3 Delta 6 

Min 10 93.8% 95.5% 95.4% 

Max 10 95.5% 95.2% 95.5% 

Min 25 96.2% 94.5% 94.6% 

Max 25 95.6% 96.7% 95.4% 

Min 40 95.7% 95.5% 94.1% 

Max 40 94.7% 95% 95.2% 

Min 55 95.5% 94.1% 94.4% 



Max 55 94.7% 93.7% 94.7% 

Mean Value 94.91% 95.03% 94.91% 

 

Table T2: Shows the percentage of psychometric functions which would be classified as well 

fit based upon the bootstrapped likelihood ratio test described in the main text. The 

percentage of well fit functions is shown for the minimum and maximum sigma used in the 

simulations of the paper, and for each combination of trials per stimulus value on the 

psychometric function and cue conflict level (cue delta in mm). 

 

 

 
 

Figure S3: Shows the percentage of experiments in which the mean of the Cumulative 

Gaussian functions fit to our simulated population of MVUE observers could be statistically 

distinguished from the experimentally derived prediction of MS, when there is zero cue 

conflict. Each pixel in the image shows this percentage as calculated across 100 simulated 

experiments, of a given sigma ratio and number of participants. The four panes show this for 

(a) 10, (b) 25, (c) 40 and (d) 55, simulated trials per stimulus level on the psychometric function.  

 
 



 

 
 

Figure S4: Shows the percentage of experiments in which the mean of the Cumulative 

Gaussian functions fit to our simulated population of MVUE observers could be statistically 

distinguished from the experimentally derived prediction of PCS, when there is zero cue 

conflict. Each pixel in the image shows this percentage as calculated across 100 simulated 

experiments, of a given sigma ratio and number of participants. The four panes show this for 

(a) 10, (b) 25, (c) 40 and (d) 55, simulated trials per stimulus level on the psychometric function. 

 



 
 

Figure S5: Shows the percentage of experiments in which the mean of the Cumulative 

Gaussian functions fit to our simulated population of MVUE observers could be statistically 

distinguished from the experimentally derived prediction of PCS with an experimental cue 

conflict of 3mm. Each pixel in the image shows this percentage as calculated across 100 

simulated experiments, of a given sigma ratio and number of participants. The four panes 

show this for (a) 10, (b) 25, (c) 40 and (d) 55, simulated trials per stimulus level on the 

psychometric function. 

 



 
 

Figure S6: Shows the percentage of experiments in which the mean of the Cumulative 

Gaussian functions fit to our simulated population of MVUE observers could be statistically 

distinguished from the experimentally derived prediction of PCS with an experimental cue 

conflict of 6mm. Each pixel in the image shows this percentage as calculated across 100 

simulated experiments, of a given sigma ratio and number of participants. The four panes 

show this for (a) 10, (b) 25, (c) 40 and (d) 55, simulated trials per stimulus level on the 

psychometric function. 
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