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Text S1. Model establishment for antifungal classification. 

Data collection for antifungal peptide classification was conducted. In detail, 

dataset 1, containing 5775 antifungal peptides and 5775 negative peptides without 

antifungal activity, was collected. The antifungal peptides were obtained from four 

antimicrobial databases, i.e., DBAASP1, APD32, DRAMP3 and CAMP4 by restricting 

the activity type to antifungal. These antifungal peptides in the dataset are those 

reported in the literature and collected in specified antimicrobial databases, but without 

considering specific activity values. Then, duplicates and peptides with sequence 

lengths more than 150 or less than 11 amino acid residues were removed. Negative 

peptides were collected from the manually reviewed peptide dataset (Swiss-Prot section) 

in UniProt knowledgebase5 by inputting the query string of “NOT goa:("response to 

fungus [9620]") existence: "Evidence at protein level [1]" length: [11 TO 150] AND 

reviewed: yes”. It will ensure that the obtained sequences are of proper length and not 

antimicrobial peptides. Therefore, the model built based on the dataset can only identify 

antifungal peptides without considering the degree of activity.

Peptide descriptors were calculated for the whole collected sequences. A total of 

9516 descriptors in 11 categories (Table S1) were obtained for each sequence by 

resorting to python packages of modlamp 4.3.0 6 and propy 1.0.0a2 7 with the suggested 

parameters.

Data preprocessing, including sample partition, descriptor normalization and 

feature selection, were carried out before calibration. Peptides in dataset 1 were divided 

into calibration and validation set in a ratio of 4:1 by using Kennard-Stone (KS) 
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algorithm8 for building the prediction models and validating the model efficiency, 

respectively. The peptide descriptors were also normalized to avoid variance impact on 

calibration. 

Classification method, support vector machine (SVM) with radial basis function 

(rbf) kernels, was adopted to build antifungal peptide classification models by using the 

python package of scikit-learn 0.24.29. The descriptor usage in calibration can be 

referred to Table S2. Hyper-parameters C and γ were used to control the regularization 

strength and kernel function scale, respectively. Grid search with ten-fold cross 

validation was used to optimize the parameters.

Metrics including accuracy, sensitivity (aka recall), specificity (aka selectively), 

F1 score, and Matthews correlation coefficient (MCC) were used to evaluate the 

performance of the built classification models10, as defined in Eq. (1).

Accuracy =  
TP + TN

TP + TN + FP + FN

Sensitivity =  
TP

TP + FN

Specificity =  
TN

FP + TN

F1 score =  
2TP

2TP + FP + FN

MCC =  
TP × TN ― FP × FN

(TP + 𝐹𝑃)(TP + FN)(TN + FP)(TN + FN)

          （1）

where TP, TN, FP, and FN represent the number of true positive, true negative, false 

positive, and false negative entries predicted by the models, respectively. In addition, 

the receiver operating characteristic (ROC) curve and area under the ROC curve (AUC) 

were also adopted to indicate the efficiency of the classifiers by plotting the curve of 

true positive rate (TPR) against false positive rate (FPR) at various thresholds. The 
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AUC value is in the range of 0.5-1.0, where 0.5 and 1.0 represent a random and perfect 

classifier, respectively. 
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Text S2. Model establishment for antifungal activity prediction. 

Minimum inhibitory concentration (MIC) is commonly used to evaluate the 

activity of isolated peptides by determining the lowest drug concentration that prevents 

visible microorganisms after overnight incubation. Using four common fungi as the 

targets, i.e., Candida albicans, Candida krusei, Cryptococcus neoformans and Candida 

parapsilosis, sequences with experimental antifungal activity were picked from dataset 

1 to form dataset 2. The information of fungal species was not considered due to the 

insufficient amount of data. Restricting the activity type to MIC, 1583, 95, 275, and 148 

records were remained with targets of C. albicans, C. krusei, C. neoformans and C. 

parapsilosis, respectively. The records with the same sequence but different activity 

values were kept as independent entries. 

For comparability, activity units were unified to μM. Then, MIC was converted to 

pMIC by a logarithmic transform as defined in Eq. (2). Three benefits might be 

achieved by the unit transform, such as (1) narrowing the MIC range of multiple orders 

of magnitude to the pMIC range of one order of magnitude, thus fitting a better model, 

(2) making a more accurate prediction for the low MIC peptides of interest because the 

difference between small MIC values will be relatively enlarged, and (3) the prediction 

error of MIC should be exponential of 2, which is consistent with the fact of step-by-

step broth dilution in experimental MIC measurement. 

pMIC = ― log2(MIC)                                                        (2)

Peptides in dataset 2 were divided into calibration and validation set by KS 

algorithm in a ratio of 4:1. Normalization was also carried out on peptides descriptors. 
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Feature selection was performed by using variable influence on projection (VIP) 

method 11. 

Support vector regression (SVR) with rbf kernel function was adopted to build the 

regression models for predicting pMIC values against the four specified fungi. The 

optimal super-parameters, C and γ, were also determined by the grid search method 

with ten-fold cross validation. For unknown peptides, pMIC values against the four 

specified fungi and probability can be predicted by the built models, and then 

transformed to MIC value for comparison. 

Root mean square error (RMSE) and determination coefficient (R2) were used to 

assess the prediction performance of the developed models. 
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Text S3. Screening protocol of antifungal peptides. 

With the established models, a stepwise protocol for large-scale antifungal peptide 

screening was integrated:

(1) For a candidate sequence, if the prediction of antifungal classification is true, 

proceed to the next step, else drop it. 

(2) If the predicted MIC value against C. albicans is smaller than 32 μM and 

probability larger than 50%, proceed to the next step; else, drop it. 

(3) If the predicted MIC value against C. krusei in step 3 is smaller than 32 μM 

and probability larger than 50%, proceed to the next step; else, drop it.

(4) If the predicted MIC value against C. neoformans is smaller than 32 μM and 

probability larger than 50%, proceed to the next step; else, drop it.  

(5) If the predicted MIC value against C. parapsilosis is smaller than 32 μM and 

probability larger than 50%, keep it and continue the next loop of screening; else, drop 

it. The above steps are repeated until all candidates are screened.

Many potential sequences may be obtained after a step-by-step screening. A final 

ranking of the screened peptides is still required to select the outperforming N 

sequences for further investigation. Antifungal index (AFI) was firstly defined for 

comprehensively assessing the antifungal ability against the considered fungi, as Eqs. 

(3): 

AFI = 2
―1 ×

pMIC𝐶𝑎 + pMIC𝐶𝑘 + pMIC𝐶𝑛 + pMIC𝐶𝑝

4

𝑝AFI =  𝑝 × 𝑝𝐶𝑎 × 𝑝𝐶𝑘 × 𝑝𝐶𝑛 × 𝑝𝐶𝑝
                                        (3)
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where pMICCa, pMICCk, pMICCn, pMICCp and pCa, pCk, pCn, pCp are predicted pMIC 

values and the corresponding probability against C. albicans, C. krusei, C. neoformans 

and C. parapsilosis, respectively, and pAFI is the probability of the calculated AFI. In 

fact, the AFI is to some extent the average of all predicted antifungal activities, which 

is consistent with the fact that most broad-spectrum antifungal peptides show similar 

bioactivity. A smaller AFI and pAFI suggest a more promising broad-spectrum 

antifungal peptide. In this study, the AFI threshold is set to 3 μM to identify prominent 

antifungal peptides. 

The screened peptides are sorted according to AFI from smallest to largest, and 

the three top-ranking peptides are chosen for further experimental validation. 
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Text S4. The details about chemical synthesis of the screened antifungal peptides. 

With the proposed protocol, a demonstrative screening application was conducted 

on peptides from the UniProt knowledgebase with sequence lengths in the range of 11-

75 amino acid residues. The screening was performed on a personal computer (Ubuntu 

20.04, 3.00 GHz Intel i9-10980XE, 32G×4 memory). 

Chemical synthesis was employed for these screened peptides. In detail, the 

screened peptides were synthesized using standard 9-fluorenylmethoxycarbonyl (Fmoc) 

solid phase peptide synthesis. All syntheses were performed at room temperature under 

nitrogen bubbling. The Fmoc resin was firstly deprotected twice one minute and four 

minutes using a deprotection cocktail containing 20% piperidine in N,N-

dimethylformamide (DMF). For each amino acid, a coupling was performed using three 

times of the corresponding Fmoc protected amino acid, three times benzotriazol-1-

yloxytripyrrolidinophosphonium hexafluorophosphate (PyBOP), and six times N,N-

Diisopropylethylamine (DIEA) in DMF. Deprotection steps (double deprotection, five 

minutes, and ten minutes) were achieved using the same cocktail described above. After 

the last deprotection, peptides were cleaved from the resin using 10 mL of a mixture of 

trifluoroacetic acid/triisopropylsilane/mQ water (TFA/TIS/H2O) with the 

corresponding ratios 94/5/1 during three hours. Peptides were then precipitated using 

approximately 25 mL of cold ethyl ether and centrifuged 10 minutes at 4400 rpm. 

Supernatant was removed and peptides were washed twice with15 ml of cold ethyl ether 

before lyophilization.
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Experimental validation was performed by measuring their minimum inhibitory 

concentration (MIC) against C. albicans SC5314, C. krusei IFM56881, C. neoformans 

H99, and C. parapsilosis ATCC22019. In detail, a single actively growing microbial 

colony was inoculated into 5 ml sterile SDB medium and incubated overnight at 37°C. 

The turbidity of the fungal solution was adjusted to 1 - 5×106 colony forming units 

(CFU)/ml using a blood cell counting plate. The fungal suspension was then diluted 

with sabouraud dextrose broth (SDB) to 0.5–2.5 × 103 CFU/ml. An aliquot of 100 μl 

of the final suspension was added into each well of a sterile 96-well plate containing 

100 μl of medium containing antimicrobial agents at double-diluted concentrations. 

Phosphate-buffered saline (PBS) was used as a negative control and fluconazole as a 

positive control. The plate was assessed for MIC values after 24 h or 48 h of incubation 

at 37°C. The MIC value was determined to be the minimum concentration at which 

microscopic growth could not be observed by the naked eye, as recommended by the 

Clinical Laboratory and Standards Institute CLSI (2008) methods. The experiment was 

repeated three times, three biological replicates at a time. The units of experimental 

MIC were converted from μg/ml to μM to facilitate comparison with prediction results.
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Table S1. Peptide descriptors used in this study.

Categ
ories Descriptor category No. 

descriptors Descriptor namea

1 common descriptor 9 Length, ChargeDensity, Isoelectric point, InstabilityInd, Aromaticity, AliphaticInd, 
BomanInd, HydRatio

2 amino acid composition 20 A, R, N, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
3 dipeptide composition 400 AA, AR, …, YV, VV
4 tripeptide composition 8000 AAA, AAR, …, WVV, YVV
5 composition transition 

distribution 
147 _PolarizabilityC1~3, _SolventAccessibilityC1~3, _SecondaryStrC1~3, _ChargeC1~3, 

_PolarityC1~3, _NormalizedVDWVC1~3, _HydrophobicityC1~3, _PolarizabilityT12~23, …
6 Geary autocorrelation 240 GearyAuto_Hydrophobicity1~30, GearyAuto_AvFlexibility1~30, 

GearyAuto_Polarizability1~30, GearyAuto_FreeEnergy1~30, GearyAuto_ResidueASA1~30, 
GearyAuto_ResidueVol1~30, GearyAuto_Steric1~30, GearyAuto_Mutability1~30

7 Moran autocorrelation 240 MoranAuto_Hydrophobicity1~30, MoranAuto_AvFlexibility1~30, 
MoranAuto_Polarizability1~30, MoranAuto_FreeEnergy1~30, 
MoranAuto_ResidueASA1~30, MoranAuto_ResidueVol1~30, MoranAuto_Steric1~30, 
MoranAuto_Mutability1~30

8 Normalized Moreau-
Broto autocorrelation 

240 MoreauBrotoAuto_Hydrophobicity1~30, MoreauBrotoAuto_AvFlexibility1~30, 
MoreauBrotoAuto_Polarizability1~30, MoreauBrotoAuto_FreeEnergy1~30, 
MoreauBrotoAuto_ResidueASA1~30, MoreauBrotoAuto_ResidueVol1~30, 
MoreauBrotoAuto_Steric1~30, MoreauBrotoAuto_Mutability1~30

9 Type I Pseudo amino 
acid composition 

30 PAAC1~30

10 Quasi sequence order 100 QSOSW1~50, QSOgrant1~50
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11 Sequence order 
coupling numbers

90 tausw1~45, taugrant1~45

a More information about these descriptors refers to the website of modlamp (https://pypi.org/project/modlamp/) and propy 

(https://pypi.org/project/propy3/).
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1 Table S2. Usage of peptide descriptors in antifungal identification. 

Descriptor category No. descriptors Used descriptors Usage percentage %
Common descriptor 9 2 22.2
Amino acid composition 20 3 15.0
Dipeptide composition 400 80 20.0
Tripeptide composition 8000 1611 20.1
Composition transition distribution 147 39 26.5
Geary autocorrelation 240 31 12.9
Moran autocorrelation 240 46 19.2
Moreau-Broto autocorrelation 240 20 8.3
Type I Pseudo amino acid composition 30 7 23.3
Quasi sequence order 100 20 20.0
Sequence order coupling numbers 90 2 2.2
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3 Table S3. Results of the antifungal peptide classification model. 

Calibration ValidationSequence lengths 
(Sample size) Acc. Sen. Spec. F1 MCC Acc. Sen. Spec. F1 MCC
All (n=9240, 2310)a 0.95 0.95 0.95 0.95 0.90 0.89 0.90 0.89 0.89 0.79
≤50 (n=7874, 2162) 0.94 0.94 0.94 0.94 0.89 0.89 0.90 0.89 0.89 0.78
>50 & ≤ 100 (n=1189, 141) 0.98 0.98 0.99 0.98 0.97 0.91 0.90 0.92 0.90 0.82
> 100 (n=177, 7) 0.99 1.00 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00

4 a Sample size of calibration and validation set, respectively. 

5
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6 Table S4. Results of antifungal activity prediction models.

Calibration ValidationTargets RMSE R2 RMSE R2

C. albicans (n=1266, 317)a 0.69 0.90 1.23 0.66
C. krusei (n=76, 19) 0.48 0.94 1.10 0.69
C. neoformans (n=220, 55) 0.82 0.90 0.89 0.89
C. parapsilosis (n=118, 30) 0.73 0.90 1.17 0.69

7 a Sample size of calibration and validation set, respectively. 



S-17

Reference

(1) Pirtskhalava, M.;  Amstrong, A. A.;  Grigolava, M.;  Chubinidze, M.;  

Alimbarashvili, E.;  Vishnepolsky, B.;  Gabrielian, A.;  Rosenthal, A.;  

Hurt, D. E.; Tartakovsky, M., DBAASP v3: database of antimicrobial/cytotoxic 

activity and structure of peptides as a resource for development of new 

therapeutics. Nucleic Acids Res. 2020, 49 (D1), D288-D297.

(2) Wang, G. S.;  Li, X.; Wang, Z., APD3: the antimicrobial peptide database as a 

tool for research and education. Nucleic Acids Res. 2015, 44 (D1), D1087-

D1093.

(3) Kang, X. Y.;  Dong, F. Y.;  Shi, C.;  Liu, S. C.;  Sun, J.;  Chen, J. X.;  Li, 

H. q.;  Xu, H. M.;  Lao, X. Z.; Zheng, H., DRAMP 2.0, an updated data 

repository of antimicrobial peptides. Sci. Data 2019, 6 (1), 148.

(4) Waghu, F. H.;  Barai, R. S.;  Gurung, P.; Idicula-Thomas, S., CAMPR3: a 

database on sequences, structures and signatures of antimicrobial peptides. 

Nucleic Acids Res. 2015, 44 (D1), D1094-D1097.

(5) Consortium, T. U., UniProt: the universal protein knowledgebase in 2021. 

Nucleic Acids Res. 2020, 49 (D1), D480-D489.

(6) Müller, A. T.;  Gabernet, G.;  Hiss, J. A.; Schneider, G., modlAMP: Python 

for antimicrobial peptides. Bioinformatics 2017, 33 (17), 2753-2755.

(7) Cao, D. S.;  Xu, Q. S.; Liang, Y. Z., propy: a tool to generate various modes 

of Chou’s PseAAC. Bioinformatics 2013, 29 (7), 960-962.

(8) Kennard, R. W.; Stone, L. A., Computer aided design of experiments. 



S-18

Technometrics 1969, 11 (1), 137-148.

(9) Pedregosa, F.;  Varoquaux, G.;  Gramfort, A.;  Michel, V.;  Thirion, B.;  

Grisel, O.;  Blondel, M.;  Prettenhofer, P.;  Weiss, R.; Dubourg, V., Scikit-

learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825-2830.

(10) Lever, J.;  Krzywinski, M.; Altman, N., Classification evaluation. Nat. 

Methods 2016, 13 (8), 603-604.

(11) Wold, S.;  Sjöström, M.; Eriksson, L., PLS-regression: a basic tool of 

chemometrics. Chemom. Intell. Lab. Syst. 2001, 58 (2), 109-130.


