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Figure S1. Large H3K9me3 domains in TSCs. Related to Figure 1

(A) Histograms showing the distribution of TSC chromosome numbers in two TSC
lines used in this study.

(B) IGV snapshot of ChIP-seq data shown by log,-transformed enrichment
(ChIP/Input). Extension of Fig. 1B with the inclusion of data from other cell types.
Light magenta areas correspond to TSC-defined large domains for H3K9me3 and
H3.1/H3.2. MSC, 10T1/2 mesenchymal cells; PAd, 3T3-L1 preadipocytes; MEF,
mouse embryonic fibroblasts.

(C, D) Boxplots showing the H3K9me3 (B) or H3.1/H3.2 (C) enrichment within
ESC-defined (left panel) or TSCs-defined (right panel) H3K9me3 domains.

(E) Boxplot showing the log,-transformed ratio of ATAC-seq intensity (ESC/TSC)
within each cluster. P values from Wilcoxon rank-sum tests.

(F) Heatmap showing Jaccard indices of the H3K9me3 and H3.1/H3.2 domains defined
in ESCs or TSCs. This shows the hierarchical clustering results. There is a stronger
correlation between the H3K9me3 and H3.1/H3.2 domains in TSCs than in ESCs
(0.64 vs. 0.32, Jaccard index).

(G) Gene expression levels of H3K9me3-methytransferase enzymes, HP1 families,
Kdm4 families, and the components of the CAF1 complex in ESCs, TSCs, and
MEFs. Each dot represents a replicate RNA-seq result.
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Figure S2. Knockdown of P150 does not derepress the expressions of repetitive

elements. Related to Figure 4.

(A) Gene expression level of H3K9me3 enzyme and components of the CAF1 complex
in control and shP150-expressing TSCs. Each dot represents a replicate RNA-seq
result.

(B) Scatterplot showing the differentially expressed repetitive elements. Each dot
corresponds to a subclass in the classes of LINE/L1, ERV1, ERVK, ERVL, and
SINE/Alu. Genes with padj values (the threshold P) < 0.05 were extracted as
DEGs.

(C) List of upregulated and downregulated repetitive elements.

(D) RT-qPCR analysis of expressions of LINE, SINE, IAP, and MERVL in
5-AZA-CdR-treated TSCs. Targets of shRNA and the concentration of 5-AZA-CdR
are shown. The control shRNA result without 5-AZA-CdR treatment is set as 1.0.

(E) RT-qPCR analysis of expressions of Dnmt1, LINE, SINE, IAP, and MERVL in
Dnmtl-knockdown TSCs. Knockdown of P150 or Dnmt1 was introduced by adding
DOX to the culture medium for 3 days. Data are presented as the mean + S.D. the
control shRNA result without shDnmt1 is set as 1.0. P values are from two-tailed,

unpaired Student’s ¢ tests.
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Figure S3. P150 knockdown causes repression of TSC marker genes and

overexpression of Oct3/4 in TSCs. Related to Figure 4.

(A) Representative images of control and P150-knockdown TSCs.

(B) Expression levels of marker genes for TSCs, ESCs, and differentiated TSCs in
TSCs with or without P150 knockdown. Dots correspond to the levels in replicate
RNA-seq experiments. N.D. not detected.

(C) Representative images of undifferentiated and differentiated TSCs. F, FGF2; A,
activin A; X, XAV939; H, heparin.

(D) The expression levels of marker genes for TSCs, ESCs, and differentiated TSCs
analyzed by RT-qPCR.

(E) Effect of P150 knockdown on the Oct3/4 expression in TSCs analyzed by RT-
qPCR. Data are presented as the mean + S.D. (three replicates). P values are from
two-tailed, unpaired Student’s ¢ tests

(F) Immunostaining of P150 knockdown TSCs for Oct3/4 and H3.1/H3.2. The left
panel shows representative images. Arrowheads highlight Oct3/4-expressing cells.
The right panel shows the relative fluorescent intensity of H3.1/H3.2 in
Oct3/4-positive P150 knockdown TSCs. P values are from two-tailed, unpaired
Student’s ¢ tests.

(G) IGV snapshots of the Oct3/4 locus in TSCs. ChIP-seq data and ATAC-seq data are
visualized through the IGV genome browser. Note that there is no H3.1/H3.2
enrichment on the Oct3/4 promoter in TSCs, suggesting that overexpression of

Oct3/4 in TSCs was an indirect effect of P150 knockdown.
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Figure S4. Human placental cells also possess lineage-specific H3K9me3 domains.

(A) IGV snapshots showing H3K9me3 enrichment specific for human placental cells
(light magenta areas). CT, cytotrophoblast; ST, syncytiotrophoblast; EVT,
extravillous cytotrophoblast; eCT, early CT; eST, early ST; eEVT, early EVT; tCT,
term CT; midST, middle ST; blast-TSC, TSC line established from blastocyst cells;
CT-TSC, TSC line established from CT cells.

(B) Distributions of the H3K9me3 domains in human placental cells. H3K9me3
domains are preferentially distributed in intergenic regions, while randomly
mapped eCT domains are not.

(C) Heatmap showing Jaccard indices and hierarchal clustering of the H3K9me3
domains in human placental cells. The H3K9me3 domains were defined for each
cell and subjected to the calculation for the Jaccard index. Note that the different
placental cell types share similar H3K9me3 domain patterns with each other, but

not with stroma cells, IMR90 cells, TSCs, or ESCs.
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Figure S5. Analyses of TSC-cloned embryos by immunostaining, RNA-seq, and in

vitro culture. Related to Figure 6.

(A) Immunostaining of TSC-derived or [IVF-derived 1-cell embryos treated with Kdm4d
mRNA. The left panel shows representative images of the nuclei of embryos
double-immunostained for H3K9me3 and H3K9me2. The right panel shows the
corresponding relative fluorescent intensities normalized against the DNA signal.

(B) Heatmap showing the normalized gene expression levels of major ZGA genes. The
list 0of 2,993 major ZGA genes was obtained from Abe et al., 2018. Group 1 (G1):
genes repressed in TSC-derived embryos. Group 2 (G2): genes hyperactivated in
TSC-derived embryos.

(C) IGV snapshot of ChIP-seq data shown by log,-transformed enrichment (upper) and
RNA-seq data (lower).

(D) Immunostaining of TSC-cloned 1-cell embryos treated with Kdm4b mRNA. The
left panel shows representative images of the nuclei of embryos
double-immunostained for H3K9me3 and H3K9me2. The right panel shows the
corresponding relative fluorescent intensities normalized against the DNA signal. In
the Kdm4b-treated cloned embryos, H3K9me2 was demethylated to various extents,
but its average level was not significantly different from that of the control
non-treated TSC-cloned embryos.

(E) In vitro development of cloned embryos derived from TSCs with or without P150
knockdown.

(F) Venn diagram showing the overlap between the genes that failed to be activated in
TSC-cloned embryos and derepressed genes in P150-knockdown TSC-cloned
embryos at the late 2-cell stage. Genes with padj values < 0.01 and fold change >

1.5 were classed as DEGs.



